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Compilation of longitudinal 
microbiota data and hospitalome 
from hematopoietic cell 
transplantation patients
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Roberta J. Wright3, antonio L. C. Gomes  4, Jonathan U. Peled  5,6, Ying taur3,  
Miguel-angel Perales5,6, Marcel R. M. van den Brink5,6, Eric Littmann7, Eric G. Pamer7, 
Jonas Schluter  1 ✉ & Joao B. Xavier  1 ✉

The impact of the gut microbiota in human health is affected by several factors including its 
composition, drug administrations, therapeutic interventions and underlying diseases. Unfortunately, 
many human microbiota datasets available publicly were collected to study the impact of single 
variables, and typically consist of outpatients in cross-sectional studies, have small sample numbers 
and/or lack metadata to account for confounders. these limitations can complicate reusing the data for 
questions outside their original focus. Here, we provide comprehensive longitudinal patient dataset 
that overcomes those limitations: a collection of fecal microbiota compositions (>10,000 microbiota 
samples from >1,000 patients) and a rich description of the “hospitalome” experienced by the hosts, 
i.e., their drug exposures and other metadata from patients with cancer, hospitalized to receive 
allogeneic hematopoietic cell transplantation (allo-HCT) at a large cancer center in the United States. 
We present five examples of how to apply these data to address clinical and scientific questions on host-
associated microbial communities.

Background & Summary
The intestinal microbiota is critical to many aspects of human health1, yet most of our knowledge of mechanisms 
linking microbiota and host phenotypes comes from animal models2. Experiments with animals are important, 
but the specific mechanisms can be hard to translate into human therapies: the gut microbiota can differ between 
the animal and humans, and so can environmental factors such as the pathogen-free environment, diets, inbreed-
ing, and subject geno- and pheno-types that drive a disease2. Instead, associations inferred directly from patients 
undergoing well-defined perturbations could accelerate the discovery of new mechanisms of microbiota-host 
interaction to benefit human health3. This idea fits the concept of reverse translational research4: Microbiota data 
acquired from well-monitored patients could be reused in other studies beyond the study for which it was origi-
nally collected; the longitudinal data could empower causal inference and lead to hypotheses that are more likely 
to produce microbiota-targeted therapies for patients.

The composition of the gut microbiota measured from feces using 16S rRNA amplicon sequencing can 
vary widely from person to person and can even change over time within a single person5–7. This large variabil-
ity hampers the inference of microbiota-host associations. Furthermore, many microbiota studies in humans 
are cross-sectional, have low sample numbers or collect data from outpatients that may lack information on 
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confounding factors such as the status of the immune system of the human host and drugs such as antibiotics. 
Limitations such as these can introduce statistical bias in microbiome research8. Therefore, we recently compiled 
an extensive hospitalome of our patients, including a vast collection of medication administrations and blood 
phenotype data3. Time-series data of hospitalized patients that link the past events to the future events in an indi-
vidual person are valuable and necessary assets to reveal “mathematically causal” relationships9.

Here we provide a description of the gut microbiota data that we acquired from patients hospitalized to 
receive allogeneic hematopoietic cell transplantation (allo-HCT) at Memorial Sloan Kettering (MSK). Over the 
years we have been depositing the raw sequencing data at the NCBI’s short read archive (SRA) in batches called 
BioProjects. Here we provide links to deposited data for each sample analyzed, which helps the reader obtain 
a paired-end fastq file for any given sample without having to navigate the multiple BioProjects that our team 
has submitted over the years. We also provide computer code written in Matlab (The Mathworks Inc., version 
2018a), which exemplifies how to analyze and extract insights from the curated data tables that compose this rich 
longitudinal dataset. We have used these data before in several publications in the past 10 years3,10–27, in part or 
in whole, to design lab experiments with mice that identified mechanisms such as microbiota protection against 
vancomycin resistant Enterococcus17, the impact of dietary lactose on the expansion of Enterococcus in the gut20, 
the mechanisms of resistance to colonization by Clostridioides difficile19, and to find microbiome risk factors for 
Graft-versus-host disease (GVHD)-related mortality20,21,28. The data compiled here include >10,000 microbiota 
samples and clinical metadata from >1,000 patients. We will continue to expand these data as we continue col-
lection, but so far, we include only patients hospitalized for allo-HCT. This choice makes the cohort uniform in 
crucial ways: The underlying disease is typically a hematologic malignancy such as leukemia or lymphoma, and 
the patients all have received chemotherapy and in some cases irradiation as conditioning regimen before infu-
sion of hematopoietic cells from a healthy donor to reconstitute the hematopoietic system.

Patients undergoing allo-HCT are carefully monitored during their hospitalizations: HCT is considered the 
strongest perturbation of the immune system deliberately carried out in humans. Patients receive prophylactic 
antibiotics before the transplant (at MSK during certain years, a combination of a fluoroquinolone and intra-
venous vancomycin29), and often they also receive empirical (without evidence of bloodstream infection) or 
therapeutic (with evidence of bloodstream infection) antibiotics in response to infection symptoms such as a 
neutropenic fever. Patient treatment regimens and the microbiota dynamics associated with those treatments 
allowed us to infer the association of individual antibiotic exposures on microbiota composition in vivo10, and 
the time-series of white blood cells collected routinely for these patients allowed us to infer the impact of the gut 
microbiota in the dynamics of the immune system of its human host3. But we believe there are many more ques-
tions to be addressed.

We compiled this vast longitudinal dataset of microbiota and associated clinical metadata from allo-HCT 
patients believing that it will interest investigators outside of our center. Here we organize and explain the dataset 
to aid those investigators in addressing new questions. Our first goal is to compile and annotate easily accessible 
links to public repositories where the data may be obtained. Our second goal is to guide readers through quan-
titative analysis of the data. The analysis examples are: displaying a patient’s microbiota timeline and metadata; 
visualizing the entire dataset using the t-Distributed Stochastic Neighbor Embedding (t-SNE) dimensionality 
reduction technique30 with a patient’s trajectory overlaid on top; quantifying the association between exposure 
to antibiotics and gut microbiota composition; and performing survival analysis where changes in microbiota 
composition predict patient risk of bloodstream infection. This compilation of resources facilitates future data 
access, analysis, and interpretation. In particular, we guide readers through the sample filtering criteria specific 
to each example.

Methods
Human participants and clinical metadata. Sample collection from patients and analysis of the bio-
specimens were approved by the Memorial Sloan Kettering Cancer Center Institutional Review Board. All par-
ticipants provided signed informed consent for specimen collection. Clinical metadata, including antibiotics, 
body temperature, timing and identity of isolates of bloodstream infections were obtained from semi-automated 
parsing of clinical records with extensive data curation. Absolute blood cell counts were obtained from routine 
clinical laboratory studies3. The data were stripped of all patient identifiable fields such as medical record num-
bers. The PatientID is a non-identifiable patient number that can be used to link clinical metadata to microbiota 
sample data. Note that a minority of patients acquired before we systematized our naming convention are named 
with “patient_witth_sample_####”.

All dates of sample and clinical metadata collection were removed and set to artificial time points. To 
avoid publication of the calendar dates of events associated with patients, we made the event dates of any 
patient to be relative to a patient-specific, deidentified reference date (these deidentified dates are provided 
in columns “Timepoint”, “TimepointOfTransplant”, “StartTimepoint” and “StopTimepoint”; see below). The 
secret reference dates will not be disclosed. We also provided columns that conveniently represent the event 
dates relative to the date of nearest HCT of any patient (see below for columns “DayRelativeToNearestHCT”, 
“StartDayRelativeToNearestHCT”, “StopDayRelativeToNearestHCT”).

Stool sample extraction, 16S rRNA amplificon sequencing and analysis. A frozen aliquot 
(≈100 mg) of each fecal sample was suspended, while frozen, in a solution containing 500 μl of extraction buffer 
[200 mM tris (pH 8.0), 200 mM NaCl, 20 mM EDTA], 200 μl of 20% SDS, 500 μl of phenol/chloroform/isoamyl 
alcohol (25:24:1), and 500 μl of 0.1-mm-diameter zirconia/silica beads (BioSpec Products). Microbial cells were 
lysed by mechanical disruption with a bead beater (BioSpec Products) for 2 min, after which two rounds of phe-
nol/chloroform/isoamyl alcohol extraction were performed. DNA was precipitated with ethanol and resuspended 
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in 50 μl of tris/EDTA buffer with ribonuclease (100 μg/ml). The isolated DNA was subjected to additional purifi-
cation with QIAamp mini spin columns (Qiagen).

For each sample, duplicate 50-μl PCRs were performed, each containing 50 ng of purified DNA, 0.2 mM deoxynucle-
otide triphosphates, 1.5 mM MgCl2, 2.5 U Platinum Taq DNA polymerase, 2.5 μl of 10 × PCR buffer, and 0.5 μM of each 
primer designed to amplify the V4-V5: 563 F (5′-nnnnnnnn-NNNNNNNNNNNN-AYTGGGYDTAAAGNG-3′)  
and 926 R (5′-nnnnnnnn-NNNNNNNNNNNN-CCGTCAATTYHTTTRAGT-3′). A unique 12-base Golay bar-
code (Ns) precedes the primers for sample identification31, and one to eight additional nucleotides were placed in 
front of the barcode to offset the sequencing of the primers. Cycling conditions were 94 °C for 3 min, followed by 
27 cycles of 94 °C for 50 s, 51 °C for 30 s, and 72 °C for 1 min. For the final elongation step, 72 °C for 5 min was used. 
Replicate PCRs were pooled, and amplicons were purified using the QIAquick PCR Purification Kit (Qiagen). PCR 
products were quantified and pooled at equimolar amounts before Illumina barcodes and adaptors were ligated, 
using the Illumina TruSeq Sample Preparation protocol. The completed library was sequenced on an Illumina MiSeq 
platform following the Illumina recommended procedures with a paired-end 250 × 250 bp kit.

Amplicon sequence variants (ASVs) were identified from 16S paired-end sequencing using the Divisive 
Amplicon Denoising Algorithm (DADA2) pipeline including filtering and trimming of the reads32. Reads were 
trimmed to remove the first 180 bp or the first point with a quality score Q < 2, and reads containing ambiguous 
nucleotides (N) or if two or more errors were expected based on the quality of the trimmed read were removed. 
Taxonomy was assigned to ASVs using a 8-mer based classifier trained by IDTaxa33 using the SILVA database34.

Quantification of microbiota density and detection of the vanA gene. qPCR was performed 
on DNA extracted from the samples using DyNAmo SYBR Green qPCR kit (Finnzymes) and 0.2 μM of the 
universal bacterial primer 8 F (5′-AGAGTTTGATCCTGGCTCAG) and the broad-range bacterial primer 
338 R (5′-TGCTGCCTCCCGTAGGAGT-3′). Standard curves were prepared by serial dilution of the PCR 
blunt vector (Invitrogen) containing 1 copy of the 16 s rRNA gene. Cycling conditions were 95 °C for 10 min-
utes followed by 40 cycles of 95 °C for 30 seconds, 52 °C for 30 seconds, and 72 °C for 1 minute. Detection 
of the vanA gene was conducted via PCR performed using specific primers for the vanA gene: forward, 
5′-AATCGGCAAGACAATATGAC; reverse, 5′-ACCTCGCCAACAACTAACGC.

Data Records
The following data have been compiled as comma-separated value (csv) files in Figshare35. Folders “samples” and 
“taxonomy” contain a single file each at the moment. We expect to expand the contents of these folders as we 
compile more data (e.g., taxonomy of fungal ITS sequences, which is a recent interest of our team36) in the future. 
The files are the following:

Folder “counts”:
•	 tblcounts_asv_melt.csv: A melted table containing the sequence counts of each ASV detected in 12,546 stool 

samples
•	 SampleID: stool sample identifier
•	 ASV: identifier of the ASVs
•	 Count: number of reads

•	 tblqpcr.csv: 16S rRNA qPCR data for 3,342 stool samples
•	 SampleID: stool sample identifier
•	 qPCR16S: 16S copies per gram of stool sample

•	 tblcounts_{asv,genus,family,order,class,phylum}_wide.csv: Wide-format taxa-by-sample table of counts at 
different taxonomic levels

Folder “meta_data”:
•	 tblhctmeta.csv: The day and source of HCT for 1,278 patients

•	 PatientID: deidentified identifier of patients
•	 TimepointOfTransplant: deidentified day of allo-HCT (day of hematopoietic cell infusion). Out of 

1,278 patients 1,212 have a single HCT, 64 have 2 HCTs and 2 patients have 3 HCTs.
•	 HCTSource: hematopoietic cell sources for HCT patients (BM_unmodified: bone marrow; PBSC_

unmodified: peripheral blood stem cells; TCD: T-cell depleted; cord: cord blood)
•	 Disease: disease of patients
•	 wbcPatientId: identifiers for the same patients included in a study of the role of the microbiota in 

white blood cell dynamics3

•	 autoFmtPatientId: identifiers for the same patients included in our paper describing an autologous 
faecal microbiota trial18

•	 nejmPatientId: whether the same patients from MSKCC samples were included in a recent multicentre 
study15

•	 tbldrug.csv: Timing and route of drug administration for 1,278 patients
•	 PatientID: deidentified identifier of patients
•	 StartTimepoint: deidentified day when drug administration started
•	 StopTimepoint: deidentified day when drug administration stopped (including the day)
•	 Factor: name of the drug
•	 Category: category of the drug
•	 AntiInfective: whether a drug is an anti-infective agent
•	 Route: route of drug administration
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•	 StartDayRelativeToNearestHCT: start day of drug administration relative to the nearest day of bone 
marrow transplant

•	 StopDayRelativeToNearestHCT: stop day of drug administration relative to the nearest day of bone 
marrow transplant

•	 tblInfectionsCidPapers.csv: The day of positive blood cultures for 426 patients and microbes (genera Ente-
rococcus, Escherichia, Klebsiella, Enterobacter, Pseudomonas, Stenotrophomonas, and Citrobacter) analysed in 
previous publications from our team13,23

•	 PatientID: deidentified identifier of patients
•	 Timepoint: deidentified day of infection
•	 InfectiousAgent: the bacteria causing infections
•	 DayRelativeToNearestHCT: day of infection relative to the nearest day of bone marrow transplant

•	 tbltemperature.csv: temperatures for 1,249 patients
•	 PatientID: deidentified identifier of patients
•	 Timepoint: deidentified day when patient temperature was measured
•	 MaxTemperature: Maximum temperature (unit: Fahrenheit) recorded on that day for that patient
•	 DayRelativeToNearestHCT: day of temperature measurement relative to the nearest day of bone mar-

row transplant
•	 tblbc.csv: Daily measurements of white blood cells, platelets and red blood cells for 1,278 patients

•	 PatientID: deidentified ID of patients
•	 Day: deidentified day of blood cell measurement
•	 BloodCellType: immature monocyte cells (ImmatureMonocytes), sezary cells (SezaryCells), variant 

lymphocyte cells (VariantLymphocytes), immature granulocyte cells (ImmatureGranulocytes), band 
cells (BandCells), basophil cells (Basophills), blast cells (BlastCells), eosinophil cells (Eosinophils), 
lymphocyte cells (Lymphocytes), neutrophil cells (Neutrophils), monocyte cells (Monocytes), platelet 
(Platelets), total white blood cells (WBCtotal), total red blood cells (RBCtotal)

•	 Value: blood cell counts
•	 Unit: K_per_μL (1,000 cells/μL) or M_per_μL (1,000,000 cells/μL)
•	 DayRelativeToNearestHCT: day of blood cell measurement relative to the nearest day of bone marrow 

transplant
•	 tblVanA.csv: Results of PCR detection for vanA gene for 7,547 samples

•	 SampleID: stool sample identifier
•	 VanA: whether vanA gene is detected in the sample

Folder “samples”:
•	 tblASVsamples.csv: The day of collection of 12,546 stool samples for 1,870 patients and the stool consistency

•	 SampleID: stool sample identifier.
•	 PatientID: deidentified identifier of patients
•	 Timepoint: deidentified day of sample collection
•	 Consistency: stool consistency
•	 Accession: the NCBI SRA accession number for the most recent submission (among all duplicate 

submissions) of the same sequencing data corresponding to this sample
•	 BioProject: project-level SRA identifier for the chosen ‘Accession’
•	 DayRelativeToNearestHCT: day of sample collection relative to the nearest day of bone marrow 

transplant

Folder “taxonomy”:
•	 tblASVtaxonomy_silva_v4v5_filter.csv: taxonomic information for 17,865 ASVs

•	 ASV: identifier of the ASVs
•	 Sequence: V4-V5 region of the 16S rRNA gene sequences
•	 Kingdom, Phylum, Class, Order, Family, Genus: taxonomic classification
•	 ConfidenceKingdom, ConfidencePhylum, ConfidenceClass, ConfidenceOrder, ConfidenceFamily, 

ConfidenceGenus: confidence assignment at each taxonomic level
•	 HexColor: HEX color code used in microbiota composition bar plots (Fig. 1) and the t-SNE plot 

(Fig. 2).
•	 ColorOrder: auxiliary integers used to group and sort the orders of ASVs in stacked barplot (Fig. 1)

technical Validation
Displaying a patient timeline. We will display an individual patient’s microbiota timeline with associ-
ated clinical metadata as our first example analysis. We chose one patient (PatientID = 1511) and plotted the 
metadata by displaying the dates of sample acquisition relative to the HCT date (day −5 to day +21, Fig. 1). 
Therefore, the data filtering step here was straightforward: we excluded any sample that did not meet the criteria 
of PatientID = 1511 and −5≤DayRelativeToNearestHCT≤ + 21.

The top panel shows the maximum body temperature recorded for each day as a black dot, with red dots repre-
senting fevers (Temperature >37 °C or 100.4 °F). The second panel shows the anti-infectives given to the patient, 
with horizontal bars indicating daily administration of antibiotics, antivirals or antifungals. The third panel shows 
the count of neutrophils for the patient, with red dots representing neutropenia (<500 cell/μL). Finally, the bot-
tom plot shows the gut microbiota composition analyzed by 16S rRNA amplicon sequencing in the 13 microbiota 
samples that fit the filtering criteria. Note that the values plotted are relative abundances. Relative abundances are 
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obtained by dividing the number of read counts for that ASV by the number of total read counts in that sample 
(that total value may also be called the depth of that sample). Note that in the inference example below (Fig. 4) we 
will compute absolute abundances by multiplying the relative abundances by the qPCR16S column in tblqpcr.csv 
for that sample (the number of 16S copies per gram of stool sample measured by qPCR).

We can see how patient 1511 had a significant change in their microbiota composition after intravenous 
administration of piperacillin/tazobactam at day + 3 (indicated by a red dashed line). This combination of a 
beta-lactam (piperacillin) and a beta-lactamase inhibitor (tazobactam) is typically empirically administered at 
MSK to eradicate bacterial infections and, as such, was administered here in response to the fever occurring 
on that same day. We observe the expected drastic changes in the microbiota composition immediately follow-
ing piperacillin/tazobactam administration10, with some bacteria dropping in their relative abundance (e.g., 
Erysipelatoclostridium) and other bacteria increasing (e.g., Lactobacillus and Streptococcus). The neutrophil counts 
show prolonged neutropenia (red), and engraftment on day 19 post-HCT.

Visualizing the entire dataset of microbiota compositions. The large number of samples in our 
dataset provides a comprehensive overview of the microbiota compositional states experienced by the patients 
during their hospitalization. Here we used t-SNE30 to obtain a two-dimensional representation of all microbiota 
compositions which amount to 12,546 data points (Fig. 2). The t-SNE plot collapses high-dimensional micro-
biotas of HCT-receiving patients into several distinct clusters including high-diversity samples (located closer 
to the center of the plot) and lower diversity samples dominated by different bacteria. Samples dominated by 
Enterococcus (represented in green) are the most common type of low-diversity compositional state observed in 
the patients, and Enterococcus domination has been previously associated with higher risk of bloodstream infec-
tions by vancomycin-resistant Enterococcus13, with higher risk of graft-vs-host disease related death and a higher 
risk of overall mortality20.

We can overlay the trajectory of an individual patient’s microbiota composition on the t-SNE plot. This type 
of trajectories were used before to trace the success or failure of fecal microbiota transplants18. In this example 
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Fig. 1 Timeline of clinical events and microbiota composition for a representative patient (PatientID = 1511) 
receiving hematopoietic cell transplantation at MSK. Day 0 is the day the patient received the infusion of 
hematopoietic cells (day of HCT). Negative days represent pre-transplant days and positive days represent post-
transplant days. The data shown here are for the period from day −5 to day +21.
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we overlaid the trajectory of PatientID = 1511 between day −5 and day + 21 (white arrows in Fig. 2 connect the 
consecutive microbiota samples shown in Fig. 1).

Inferring the impact of antibiotics on the microbiota using regularized regression. All patients 
in our dataset received antibiotics, but they received different antibiotics at different times and in different combi-
nations. In previous studies we have used this variability to infer the impact of antibiotics on the different bacteria 
present in the gut microbiota by correlating microbiota changes with antibiotic exposures3,10.

In this example we use a similar approach to infer the impact of antibiotics on the 20 most abundant microbes 
(ASVs) in the dataset. We selected for analysis only medications that belong to antibacterial classes, and we 
excluded atovaquone that is used for prophylaxis of pneumocystis and toxoplasma. As in a previous study from 
our team10, here we made a distinction between the administration route (e.g. oral or intravenous). Figure 3 shows 
the fraction of all patients who have ever received a specific antibiotic orally or intravenously (the two antibiotic 
administration routes accounts for 97% of all cases). The most frequently used antibiotics were sulfamethoxazole 
trimethoprim and vancomycin for oral and intravenous administrations respectively. Intravenous vancomycin 
was mainly used prophylactically for almost all patients; however, it was also empirically administered orally to 
kill infectious bacteria (e.g., Clostridioides difficile) in the gut because intravenous vancomycin may not reach ade-
quate concentrations in the gastrointestinal tract. Quinolones (ciprofloxacin and levofloxacin), metronidazole, 
and azithromycin were given both orally and intravenously at similar frequencies among patients. Piperacillin/
tazobactam was the second most commonly administered antibiotic by intravenous infusion.

For simplicity, we assume antibiotics independently affect the exponential growth rate of microbes and the 
magnitude of their effects can be inferred by the following linear regression:

Enterococcus (genus) Streptococcus (genus)
Staphylococcus (genus) Bacilli (class)
Clostridia (class) Erysipelotrichia (class)
Bacteroidetes (phylum) Proteobacteria (phylum)
Verrucomicrobia (phylum) Other Bacteria (kingdom)

Most abundant taxon in a sample

Fig. 2 Projection of all microbiota samples from MSK patients receiving HCT onto a two-dimensional space 
using t-SNE (t-distributed stochastic neighbor embedding). White lines with arrows: microbiota compositional 
trajectory of the PatientID = 1511 also shown in Fig. 1.
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regression problem for each microbe i
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Fig. 3 Relative frequency of antibiotics administered to HCT patients at MSK by oral (a) and intravenous (b) 
routes. Antibiotics are grouped by their categories and displayed in the same color within each group.
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Equation (3) can be solved by penalized linear regression to avoid overfitting. Using simplified notations for Eq. 
(3), i.e., Yk = DkXk, we solved the following ridge regression for each given penalty parameter λ

= − + λλ � � � �XX Y D X( ) argmin( )
(4)

k k k k F k F
X

opt 2 2

k

where ⋅ F
2  is the Frobenius norm. We chose λ to minimize the sum of squares error on unseen (test) data using 

3-fold cross-validation (with the Matlab option of 10 Monte-Carlo repetitions) and the optimal λ was then 
applied to the entire dataset for estimating the values of growth and susceptibility parameters.

We limited ourselves to sample pairs that are at most 3 days apart (the minimum interval that includes >50% 
data) and both have absolute abundances determined by qPCR data. We also focused on the 20 most abundant 
ASVs that have non-zero abundances among samples—from a total of 289 patients—fulfilling the minima criteria 
for inclusion in the regression. We included antibiotics administrated orally and intravenously but separated our 
analysis for the two administration routes. We also included only anti-bacterial drugs and grouped these drugs 
based on their drug category (Fig. 3). We separated metronidazole and aztreonam from the miscellaneous class as 
independent groups and removed other drugs in that class. For most anti-bacterial antibiotic classes, it is typical 
that one or two antibiotics were administered much more often than the rest drugs in the same class (Fig. 3).

The effect sizes obtained using this model show that the route of administration influences the effects of anti-
biotics on microbiota compositions (Fig. 4): intravenous drugs tend to be more effective to reduce microbial 
abundances in the gut relative to oral drugs. Piperacillin/tazobactam (penicillins) and vancomycin (glycopeptide 
antibiotics)—the most commonly administered antibiotics by intravenous infusion—have the strongest inhibi-
tory effects on many commensal bacteria such as Blautia, Ruminococcus, Erysipelatoclostridium. The timeline of 
microbial composition shift in Fig. 1 illustrated the inferred negative effect of piperacillin/tazobactam on ASV 6 
(Erysipelatoclostridium) at day 3. However, the expansion of Lactobacillus upon administration of piperacillin/
tazobactam—suggesting a positive antibiotic effect—was incorrectly inferred. This potential caveat due to the 
simplicity of our model is discussed below with details.

intestinal domination increases a patient’s risk of bloodstream infection. Patients undergo-
ing allo-HCT are at high risk to bloodstream infections, especially during neutropenia (Fig. 5). We previously 
reported patient risk to bloodstream infection by Enterococcus after the gut microbiota became dominated by 
Enterococcus, where domination was defined as a relative abundance >30%13. A similar analysis was later con-
ducted to determine the risk that a patient would develop a bloodstream infection by various gram-negative bac-
teria after the gut microbiota became dominated by a bacteria of the same genus, with domination again defined 
as >30%23.

Here we run that same type of survival analysis: We restricted our analysis to the period from day −15 to day 
+35 and we determined the risk of a bloodstream infection with Enterococcus (Fig. 6a) and Escherichia (Fig. 6b). 
We used the Cox proportional hazards model with domination as a time-dependent covariate, which starts at 
value 0 and changes to 1 once the relative abundance of the genus in the stool increases above a given threshold. 
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Fig. 4 Effects of orally (a) and intravenously (b) administered antibiotics on microbes. Each ASV was labeled 
by its lowest taxonomy level that is not unclassified.
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We first conducted analysis assuming a 30% domination value. Recapitulating our previous results, intestinal 
domination by Enterococcus had a hazard ratio of 3.8 for blood-stream infection by Enterococcus (P < 0.05, with 
a [2.6–5.5] 95% confidence interval) and intestinal domination by Escherichia had a hazard ratio of 8.1 for blood-
stream infection by Escherichia (P < 0.05 with a [4.4–15.0] 95% confidence interval).

We then repeated the same analysis for dominations defined at 10%, 1% and 0.1% (Fig. 6c,d). The analyses 
reveal that Enterococcus abundances as small as 1% increase the risk of blood-stream infection by Enterococcus 
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infections (n = 79) than in patients who did not (n = 940), especially in the critical period of two weeks after 
the transplant (day 0, where ‘Day’ is relative to the nearest allo-HCT transplant). (b) The average abundance of 
bacteria of the genus Escherichia is higher in patients who got a bloodstream infection by that genus (n = 52) 
than in patients who did not (n = 967), especially in the critical period of two weeks after the transplant (day 0).  
(c) The hazard ratio calculated for the risk of bloodstream infection after the patient was detected with an 
intestinal domination. These analyses were previously done by defining intestinal domination at an abundance 
threshold of 30% domination13,23. The results shown here reveal that domination redefined at an abundance 
threshold as small as 1% still increases the risk of bloodstream infection by Enterococcus. (d) The presence in the 
stool is even a stronger predictor of bloodstream infection for the case Escherichia, for which even levels of 0.1% 
have a significant association.
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significantly (P < 0.05). The case for Escherichia was more sensitive: Escherichia abundances as small as 0.1% 
increased the risk of bloodstream infection by Escherichia significantly (P < 0.05). Such analyses, all conducted 
using the Cox proportional hazards model, can be extended to find other factors that increase the risk of blood-
stream infections and other clinical complications of allo-HCT.

Discussions and potential caveats. We present repositories for a longitudinal microbiota data-
set obtained from efforts at MSK from the past decade of monitoring cancer patients hospitalized to receive 
allo-HCT. These microbiota data, combined with the curated clinical metadata presented here, can serve as pow-
erful hypothesis generators for microbiome studies. For example, we illustrate the use of these data with five 
analyses and we provide links to code repositories where these examples can be followed by the interested user. 
Despite the comprehensiveness of our data collection, not all factors (e.g., diet) that influence gut microbiota 
composition have been included and it is not yet available to analyze their effects using our datasets. We expect to 
release more data types in the future.

We showed an example of inference where we quantified the impact of antibiotics on the 20 most abundant 
microbes (ASVs). That example (Fig. 4) illustrates how to pose a supervised question to address an important 
microbiota problem: how different antibiotics might have an impact on the different bacteria that makeup the 
microbiota. We had addressed a related question before using straightforward statistical tests for a dataset of 94 
patients, where we determined whether an antibiotic could lead to intestinal domination13. We have also used 
more sophisticated Bayesian methods to infer the impacts of antibiotics on the microbiota using a dataset with 18 
of these patients10. In the present manuscript, we presented a similar approach and used a simple model of expo-
nential bacterial growth combined with penalized least squares regression to solve the same problem for the most 
abundant taxa, but now for a dataset with a much larger number of patients. Despite the simpler linear model, 
the results captured the negative impact of piperacillin/tazobactam on many commensal bacteria, confirming 
our previous studies3,10. We here also visualized Lactobacillus expansion and intestinal domination, illustrated 
in Fig. 1, but this was not captured by our model. The most likely reason that our simple model of exponential 
growth could not capture this is that after an expansion of Lactobacillus following the administration of piperacil-
lin/tazobactam, its abundance remains relatively unchanged over multiple consecutive days. Since the antibiotics 
continued to be administered during the time, the inference will combine all the data and conclude that—on 
average—there is no measurable impact of piperacillin/tazobactam on Lactobacillus. Therefore, the model as 
developed here is only sensitive to transient expansions of bacteria but unable to capture bacterial expansions 
followed by sustained dominations. One possible way to resolve this issue in future iterations of the analysis is to 
include more realistic details in a more complicated model, such as an ecological carrying capacity and microbial 
interactions, as done before3,10,37–39.

Finally, some notes of caution on generalizing these findings: The patient cohort presented here consists 
entirely of patients undergoing allo-HCT at MSK, which represent states of the human immune system and 
microbiota compositions far from that of healthy people. The microbiota changes observed during a patient’s 
treatment occur in parallel with a high burden of antibiotic exposure, dietary perturbation, and gastrointestinal 
inflammation induced by the conditioning regimen. The combination of these profound microbiota perturba-
tions rarely occurs for healthy individuals. The clinical complications associated with the microbiota changes 
observed in these patients may also be specific. For example, we found that Enterococcus or Escherichia expan-
sions increase the risk of bloodstream infections by those bacteria when detected in the microbiota at abundances 
as low as 1% (Fig. 6). This risk may be specific to transplant recipients damaged by conditioning regimen with 
injury to the intestinal barrier that could facilitate the translocation of pathogens from the gut into the blood40. 
Still, allo-HCT patients provide a unique opportunity to study microbiota dynamics in such extreme situations. 
There are many other opportunities for analysis that we did not discuss here such as the impact of the microbiota 
on the counts of immune cells in circulation3. The findings made from these data may be applicable to other HCT 
patients and perhaps other patients undergoing similar perturbations.

Code availability
The customized Matlab code (Matlab 2018a) used for the examples provided below is available in the GitHub 
repository (https://github.com/liaochen1988/MSKCC_Microbiome_SD2021_Scripts) with each part in a 
separate directory:

• Figure 1: example 1_display_patient_timeline/main.m
• Figure 2: example 2_visualize_compositional_states/main.m
• Figure 3: example 3_drug_administration_stats/main.m
• Figure 4: example 4_impacts_of_antibiotics/main.m
• Figures 5, 6: example 5_survival_analysis/main.m
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