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Abstract: Recently, rechargeable zinc-ion batteries (ZIBs) have gained a considerable amount of
attention due to their high safety, low toxicity, abundance, and low cost. Traditionally, a composite
manganese oxide (MnO2) and a conductive carbon having a polymeric binder are used as a positive
electrode. In general, a binder is employed to bond all materials together and to prevent detachment
and dissolution of the active materials. Herein, the synthesis of α-MnO2 nanowires on carbon cloth
via a simple one-step hydrothermal process and its electrochemical performance, as a binder-free
cathode in aqueous and nonaqueous-based ZIBs, is duly reported. Morphological and elemental
analyses reveal a single crystal α-MnO2 having homogeneous nanowire morphology with preferential
growth along {001}. It is significant that analysis of the electrochemical performance of the α-MnO2

nanowires demonstrates more stable capacity and superior cyclability in a dimethyl sulfoxide (DMSO)
electrolyte ZIB than in an aqueous electrolyte system. This is because DMSO can prevent irreversible
proton insertion as well as unfavorable dendritic zinc deposition. The application of the binder-free
α-MnO2 nanowires cathode in DMSO can promote follow-up research on the high cyclability of ZIBs.
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1. Introduction

Nowadays, due to the increasing use of energy in modern society and intensifying degrees of
electrification, rechargeable batteries are in great demand. In particular, lithium-ion batteries (LIBs) are
versatile and have a wide range of applications, proving them to be the market leaders. However, LIBs
have several shortcomings, such as safety issues, recycling, and especially their high cost and limited
resources [1–3]. Therefore, alternative battery technologies using cheap and abundant materials such as
sodium (Na) [4,5], aluminum (Al) [6,7], magnesium (Mg) [8–10], and zinc (Zn) [11–13] for electrodes
are actively sought after in order to address these concerns.
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Zn exhibits favorable low redox potential, high stability, and a high specific volumetric capacity
of 5855 mAh cm−3, which is even greater than that of lithium (2066 mAh cm−3) [14]. These properties
make it a promising anode material [15,16]. Zn is low in cost and highly abundant. It has been applied
in various types of batteries, such as zinc-nickel [17], zinc-air [18,19], zinc-iodine [20], zinc-iron [21],
and zinc-ion [22,23]. In addition, an established Zn recycling industry is available to recover Zn
from its myriad of consumptions in different industries [24]. Moreover, since Zn is rather stable in
ambient condition, a zinc-ion battery (ZIB) permits easier and inexpensive handling for fabrication
and packaging [25].

Different cathode materials have been employed for ZIBs, e.g., Prussian blue analogues [26–28],
vanadium-based oxides [29,30], and manganese-based oxides (MnOx) [31]. For a long time, MnOx has
been a subject of intensive research due to its numerous potential applications in different electrochemical
energy storage and conversion devices, such as fuel cells, supercapacitors, and batteries [32–35].
Manganese oxide (MnO2) is also considered a potential electrode for ZIBs [36–38]. MnO2 is inexpensive
and exhibits a high theoretical capacity. Nonetheless, MnO2 cathodes are subjected to the challenging
issues of poor cyclability [39]. Yet, introduction of MnSO4 into the electrolyte was found to be beneficial
for enhancing cycling stability since it inhibited MnO2 dissolution [40]. Another difficulty confronted
in exploiting the MnO2 cathode is its poor conductivity which increases the internal resistivity of
the ZIBs, resulting in poor performance of the battery [41]. However, a solution frequently applied
is the introduction of a conductive agent, such as carbon black, reduced graphene oxide (rGO) [42],
and carbon nanotubes (CNTs) [43], which are usually used with polymeric binders to bind all materials
together on the current collector. Of late, reducing the content of additives and binders is much in favor
in order to accomplish a high mass loading of active material in the battery. It is observed that polymeric
binders increase both processing and material costs. Moreover, it is evident that some binders, such as
polyvinylidene fluoride (PVDF), require an undesirable toxic solvent such as N-methyl-2-pyrrolidone
(NMP) for electrode fabrication [44,45]. Thus, a binder-free MnO2/rGO electrode was examined as
cathode material for ZIBs [42]. Consequently, the binder-free MnO2/rGO demonstrated enhanced
capacity, excellent rate capability, and cycling stability in comparison to that of the conventional MnO2

electrode. A binder-free δ-MnO2-carbon composite electrode was synthesized and applied in ZIBs,
and efficient charge transfer and improved cyclability was reported [46].

Research in ZIBs is commonly studied via aqueous electrolytes not only because of their low
cost and versatility, but most importantly, because of their high ionic conductivity which favorably
enhances battery performance [47]. Nevertheless, when an aqueous electrolyte is used, critical issues
such as severe capacity fading resulting from proton insertion [48] and decomposition of water lead to
hydrogen gas evolution and unsatisfactory low coulombic efficiency [27]. Therefore, the development
of a nonaqueous electrolyte system based on organic solvents and ionic liquids was carried out [49–51].
For instance, over the years, our group has actively studied nonaqueous systems in developing
MnO2-based ZIBs [46,52]. In fact, strategies to enhance electrochemical performance, cyclability,
and stability of ZIBs using a Deep Eutectic Solvent (DES) based on choline chloride/urea/zinc chloride
mixture were successfully developed [52]. In previous work, a ZIB using δ-MnO2 with nanoflower
morphology in DES was demonstrated. In a following study, the capacity, stability, and cyclability of
DES-based ZIBs were greatly improved by enhancing the conductivity and surface area of δ-MnO2 [46].
This was achieved by developing a binder-free δ-MnO2-carbon fiber composite via hydrothermal
process coupled with annealing, which resulted in better connectivity of the MnO2 network due to
the removal of interlayer and physiosorbed water. However, despite this success, long-term stability
and cyclability as well as a high capacity could not be attained using the DES electrolyte. Thus, other
strategies to improve the nonaqueous ZIBs were implemented.

In this paper, an α-MnO2 nanowire-carbon fiber composite was synthesized. Thereby,
the electrochemical performance of this novel cathode material was investigated in both aqueous and
nonaqueous electrolyte systems. It is a known fact that nanostructured materials show greater surface
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area and redox reaction sites in comparison to its bulk counterpart. Therefore, it is expected that MnO2

with its one-dimensional (1D) nanostructure will show enhanced electrochemical performance.

2. Materials and Methods

2.1. Materials

All chemicals were used as received without further purification: potassium permanganate
(KMnO4), QRëC, Auckland, New Zealand; ammonium sulfate ((NH4)2SO4), Sigma-Aldrich, St. Louis,
MO, USA; carbon cloth (AvCarb 1071 HCB), AvCarb Material Solutions, Lowell, MA, USA; deionized
(DI) water; isopropyl alcohol (IPA), Ajax Finechem, Auckland, New Zealand; sulfuric acid (H2SO4),
Ajax Finechem, Auckland, New Zealand; zinc trifluoromethanesulfonate (Zn(OTf)2), Sigma-Aldrich,
St. Louis, MO, USA; and Dimethyl sulfoxide (DMSO), Sigma-Aldrich, St. Louis, MO, USA.

2.2. Electrode and Battery Fabrication

The carbon cloth was surface treated with 1.0 M H2SO4 for 1 h, washed with DI water several
times, and vacuum dried at 60 ◦C for 2 h before usage.

In a typical experiment, 0.1264 g KMnO4 and 0.0428 g (NH4)2SO4 were dissolved and mixed in
40 mL DI water. Then, the resulting solution was sonicated for 1 h and hydrothermally synthesized at
180 ◦C for seven days using a Teflon-lined autoclave decorated with carbon cloth on its inner wall.
Next, the carbon cloth, deposited with MnO2 particles, was washed with DI water several times, rinsed
with IPA, and vacuum dried for at least 4 h before usage.

In a typical experiment, pre-cut Zn foil (Shandong AME Energy Co. Ltd., China) 15 mm in
diameter and 0.08 mm thick was ultrasonicated in acetone for 30 min. Then, it was washed with
distilled water several times and rinsed with IPA before vacuum drying for 2 h. Next, 0.1 M and
3.0 M aqueous Zn(OTf)2 and 0.1 M Zn(OTf)2 in DMSO were used as electrolytes to investigate the
electrochemical performance of the nanowire α-MnO2-carbon fiber composite.

A CR2032 cell was used to assemble the ZIB. The assembled battery consisted of an anode (made
up of Zn foil), a cathode (hydrothermally grown MnO2 on carbon cloth), and an electrolyte (Zn(OTf)2

dissolved in DI water or DMSO). The electrodes were separated with a glass microfiber (Whatman,
Sigma-Aldrich, St. Louis, MO, USA), punched into a disc which was 19 mm in diameter, and enclosed
within circular metal cases. The mass loading of α-MnO2 on circular carbon cloth is 1.3 mg/cm2.

2.3. Characterization

To evaluate the electrochemical performance of the fabricated Zn/MnO2 battery, the following
electrochemical tests were conducted: cyclic voltammetry (CV), electrochemical impedance
spectroscopy (EIS), and galvanostatic charge-discharge tests.

1. Galvanostatic charge-discharge tests were conducted via Battery Testing System (NEWARE,
BTS-4000 series, Neware Technology Ltd., Shenzhen, China) at 30 ◦C within the voltage range of
0.4–1.9 V. The equivalent C-rate per current density was indicated: 50, 100, 150, and 200 mA g−1

correspond to 0.16 C, 0.32 C, 0.49 C, and 0.65 C, respectively.
2. EIS tests were conducted using VersaSTAT 3F (AMETEK, Berwyn, PA, USA) at an amplitude

potential of 10 mV around the open circuit voltage (OCV) within the frequency range of
0.01–100,000 Hz.

3. CV tests were conducted using VersaSTAT 3F (AMETEK, Berwyn, PA, USA) within the voltage
range of 0.7–2.1 V vs. Zn/Zn2+ with scan rates of 0.5, 2.0, 5.0, and 10.0 mV/s. The tests were
carried out using the CR2032 cell with a two-electrode configuration. In this configuration, the
positive electrode of the cell was used as the working electrode. The negative electrode of the cell
was used as both counter and reference electrode.
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Both elemental and morphological analyses were investigated using scanning electron microscope
(SEM), JEOL (Peabody, MA, USA) JSM-6480LV, 15 kV, with energy dispersive X-Ray spectroscopy
(EDS) and transmission electron microscope (TEM), JEOL (Peabody, MA, USA) JEM-1400, 100 kV.
The crystalline and phase structure was determined using X-ray diffraction (XRD), Bruker (Billerica,
MA, USA) D8-Advance, Cu Kα radiation, λ= 1.5418 Å, operating at 40 kV and 40 mA within 2θ range
of 5 to 90 degrees.

3. Results and Discussion

The investigation commenced by optimizing different parameters such as hydrothermal synthesis
time and temperature. Figure S1 shows SEM images at different hydrothermal synthesis time, at
T = 140 ◦C. Thus, it is observed that the sample obtained is a mixed morphology of nanoflowers
and nanowires, even if synthesis time was prolonged from one to seven days. However, when the
hydrothermal processing temperature and time was set to 110 ◦C and 24 h, respectively, the nanoflower
morphology without the presence of nanowires was readily obtained, as shown in Figure S2. On the
other hand, when temperature increased from 140 ◦C to 180 ◦C while keeping the synthesis time for
seven days, the nanowire morphology without the presence of nanoflowers was obtained.

Figure 1 displays the representative image of MnO2 nanowires produced at 180 ◦C for seven days.
The nanowires have a diameter 26 ± 5 nm, where the observed thick wires of ~100 nm are bundles
of wires. As shown in Figure S2, EDS analysis depicts the elements Mn, O, C, and K, verifying the
possible existence of the MnO2-carbon fiber composite. To determine the structure and phase of these
MnO2 nanowires, XRD analysis was conducted.
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Figure 1. SEM image of α-MnO2 nanowires hydrothermally synthesized at 180 ◦C for seven days.

Figure 2a shows the XRD analysis of the MnO2-carbon fiber composite. Based on the prominent
diffraction peaks at 2θ ' 18.1◦, 25.7◦, 28.8◦, 36.7◦, 37.5◦, 39.0◦, 41.2◦, 42.0◦, 49.9◦, 56.4◦, 60.3◦, 65.1◦,
and 69.7◦, which correspond to the planes (200), (220), (310), (400), (211), (330), (420), (301), (411),
(600), (521), (002), and (541), respectively, the produced MnO2 had an α phase. On the other hand,
the diffraction peak around 2θ ' 26.0◦ is associated with the carbon fiber. In Figure 2b, the simulated
crystal structure showing the tunnel configuration is presented. Typically, α-MnO2 consists of double
chains of edge-sharing MnO6 octahedra, which are linked at the corners to form 1D 2 × 2 and
1 × 1 tunnels in the tetragonal unit cell. The size of the 2 × 2 tunnel is 4.6 Å, which is a large tunnel for
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insertion/extraction of cations. Moreover, based on the TEM with selected area electron diffraction
(SAED) pattern (Figure 2c,d), the synthesized α-MnO2 is a single crystal, as can be inferred from the
absence of a ring, which is commonly observed for polycrystalline materials. Distinct spots determined
via SAED, which formed hexagonal patterns, are assigned to the family of planes {001}, {00

_
1}, {541},

{54
_
1}, {5

_
4

_
1}, and {5

_
41}, as can be inferred from the measured angles and distances among these planes.

The preferred growth of the crystal is perpendicular to the {001} planes, owing to its high surface
energy [53]. Based on the EDS result in Figure S3, the produced α-MnO2 nanowires still contain partial
amount of K+, i.e., 1.32 at %.
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Figure 2. (a) XRD pattern of synthesized binder-free single crystal α-MnO2 nanowire-carbon fiber
composite cathode, (b) simulated structure, (c) TEM image, and (d) SAED analysis of single crystal
α-MnO2.

As shown in Figure 3a, CVs at a scan rate of 0.5 mV/s revealed broad redox peaks around 1.2 and
1.6 V vs. Zn/Zn2+ for the sample 0.1 M aqueous Zn(OTf)2 electrolyte. The ill-resolved redox peaks for
the sample 0.1 M aqueous Zn(OTf)2 electrolyte can be attributed to the capacitive behavior of α-MnO2

on neutral aqueous electrolyte, i.e., at low salt concentration [54]. Interestingly, when concentration
increased to 3.0 M, using the same aqueous electrolyte, well-defined redox peaks were observed at 1.35
and 1.65 V, which were at higher potentials in comparison to those observed at lower concentration.
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Typically, redox peaks are attributed to Zn2+ intercalation/deintercalation, which vary depending
on the charge state of Mn [46,52,53]. On the other hand, using 0.1 M Zn(OTf)2 electrolyte in DMSO,
the CV displayed distinct reversible redox peaks situated around 1.15 and 1.7 V. Since this report is the
first which deals with α-MnO2 in DMSO-based ZIBs, the charge storage mechanism of the cathode at
different scan rates of 0.5, 2.0, 5.0, and 10.0 mV/s were examined, as shown in Figure 3b–d, according to
Equations (1) and (2) [55]:

i = avb (1)

i = k1v + k2v1/2 (2)

i/v1/2 = k1v1/2 + k2 (3)

The i and v in Equation (1) correspond to the peak current and scan rate, respectively. The b-value
can be calculated using the slope of log (v) vs. log (i): if the b-value is close to 0.5, the electrochemical
behavior is controlled by the diffusion process, while the b-value close to 1.0 is based on capacitive
behavior. As shown in Figure 3c, the calculated b-value is 0.69. It can be inferred that at the considered
scan rates, the charge storage mechanism is dominantly diffusion-controlled in 0.1 M Zn(TOf)2 DMSO.
To understand the behavior with respect to each applied current density, Equation (2) was used, where
the k1v term refers to the capacitive process and the k2v1/2 term corresponds to the diffusion-controlled
process. The values of k1 and k2 were obtained by using the slope and y-intercept of Equation (3). It is
noted that the capacitive contribution of the storage mechanism in DMSO-based ZIBs increased at an
incremental scan rate, as shown in Figure 3d. Specifically, the diffusion-controlled process turned out
to be the predominant role under lower current densities whilst the capacitive process dominated at
higher current densities.

The galvanostatic charge-discharge test revealed that the battery using 0.1 M aqueous Zn(OTf)2

electrolyte demonstrated higher capacity in comparison to both the 3.0 M aqueous Zn(OTf)2 and
0.1 M Zn(OTf)2 DMSO for all current densities (50, 100, 150, and 200 mA g−1). However, after
56 cycles, the battery eventually failed. In an aqueous system, cycling performance is commonly
attributed to the following: (1) dendritic Zn deposition [56], (2) irreversible surface passivation on
the Zn anode [57], and (3) dissolution and irreversible phase transformation of the MnO2 cathode
leading to capacity fading [58]. It is observed that when electrolyte concentration increased to 3.0 M
Zn(OTf)2, long-term cyclability significantly improved and even reached up to 1000 cycles, although
both capacity and capacity retention were found to be relatively lower in comparison to the more dilute
aqueous electrolyte system. Based on this result, it is noted that when a concentrated electrolyte was
used, anode passivation and dendritic Zn formation could be prevented, but capacity fading remained
a critical issue. Hence, replacing the aqueous electrolyte system with a DMSO electrolyte proved to be
beneficial in solving the problems of irreversible reactions in the anode and cathode.

In Figure 4, both the galvanostatic charge-discharge test and the cycling performance of the
nonaqueous α-MnO2-based ZIB with 0.1 M Zn(OTf)2 DMSO electrolyte are indicated. For the first
300 cycles, results demonstrated stable capacity of around 60 mAh g−1. Thereafter, it stabilized at a
capacity of around 50 mAh g−1 up to 2000 cycles, at current density of 100 mA g−1. It is recognized
that the electrochemical performance and cyclability of a ZIB is highly dependent on the stability and
reversibility of the reaction, occurring in both anode and cathode. In an aqueous system, efforts are
made to avoid the formation of a passivation layer and other irreversible reactions. This is achieved
with the use of a mild acidic and neutral pH electrolyte system. However, long-term stability and
cyclability are still an imminent issue for an aqueous system due to corrosion and hydrogen evolution
problems, which are unavoidable owing to the presence of water. An attempt to address this issue
was demonstrated in previous reports [46,52], such as the use of DES utilizing δ-MnO2 as cathode
material in both unannealed and annealed conditions. The obtained capacity was much lower than that
obtained in an aqueous system because of inferior ionic conductivity. However, a stable capacity up to
150 cycles was achieved, which served as the benchmark for this newly explored nonaqueous system.
Unfortunately, long-term stability and cyclability beyond 150 cycles was not attained using the DES
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electrolyte system. This was probably due to an inferior choice of cathode material: δ-MnO2, which has
a physiosorbed interlayer and structurally bonded water that can affect the reversibility of the reaction
in the cathode. Hence, to avoid this problem, α-MnO2, having no bonded water, was synthesized and
investigated in a novel nonaqueous electrolyte system using DMSO as an electrolyte. In the present
case, it can be argued that the long-term cyclability and stability of MnO2-based ZIB is not only highly
dependent on the cathode and the anode, but also on the electrolyte used. For instance, when α-MnO2

was used in an aqueous system, the battery instantly failed after only a few cycles. However, this did
not occur when DMSO was used as the electrolyte, even at dilute Zn(OTf)2. As shown in Figure S4,
both Nyquist and Bode plots of EIS depicted lower impedance value in the anode in the case of the
DMSO-based ZIBs compared to the aqueous ones. This implied that DMSO played a significant role in
the prevention of Zn passivation, dendritic Zn deposition, and irreversible phase transformation of
MnO2, leading to better cyclability and electrochemical performance as shown in Figure S5.
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100, 150, and 200 mA·g−1 and the corresponding voltage-charge profile with voltage window of 0.4 to
1.9 V, and (b) galvanostatic charge-discharge test of α-MnO2-carbon fiber composite at current density
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4. Conclusions

It is evident that binder-free α-MnO2 nanowires on carbon cloth was successfully prepared via
the hydrothermal method. In both aqueous and DMSO-based electrolytes, the characteristics and
electrochemical performances of the cathode were examined. It was found that the ZIB using 0.1 M
Zn(OTf)2 DMSO electrolyte demonstrated exceptional cycling performance in comparison to the 0.1 M
and 3.0 M Zn(OTf)2 aqueous electrolytes. In the DMSO electrolyte, even in the absence of a polymeric
binder, the cathode proved to be very stable. Overall, higher cyclability and stability of the MnO2-based
ZIBs could be attained with the Zn(OTf)2 DMSO electrolyte.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/9/3113/s1.
Figure S1. Morphology of MnO2-carbon fiber composite synthesized at 140 ◦C with respect to synthesis time:
(a) 24 h. (b) 72 h. and (c) 168 h. Figure S2. Morphology of MnO2-carbon fiber composite with respect to synthesis
temperature: (a) 110 ◦C (b) 140 ◦C and (c) 180 ◦C. Figure S3. EDS analysis of synthesized α-Mn2 nanowire-carbon
fiber composite. Figure S4. (a) Nyquist and (b) Bode plots of EIS of the zinc-ion batteries using 0.1 M and 3.0 M
aqueous Zn(OTf)2 and 0.1 M Zn(OTf)2 DMSO electrolytes. Figure S5. SEM image of Zn anode in DMSO-based
ZIB after more than 2000 cycles.
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ZIB Zinc-ion battery
DMSO Dimethyl sulfoxide
LIB Lithium-ion battery
rGO Reduced graphene oxide
CNT Carbon nanotube
NMP N-methyl-2-pyrrolidone
DES Deep eutectic solvent
DI water Deionized water
CV Cyclic voltammetry
EIS Electrochemical Impedance Spectroscopy
OCV Open circuit voltage
SEM Scanning electron microscope
TEM Transmission electron microscope
XRD X-ray diffraction
EDS Energy dispersive X-Ray spectroscopy
SAED Selected area electron diffraction
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