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The effects of proliferation status and cell 
cycle phase on the responses of single cells to 
chemotherapy

ABSTRACT  DNA-damaging chemotherapeutics are widely used in cancer treatments, but for 
solid tumors they often leave a residual tumor-cell population. Here we investigated how cel-
lular states might affect the response of individual cells in a clonal population to cisplatin, a 
DNA-damaging chemotherapeutic agent. Using a live-cell reporter of cell cycle phase and 
long-term imaging, we monitored single-cell proliferation before, at the time of, and after 
treatment. We found that in response to cisplatin, cells either arrested or died, and the ratio 
of these outcomes depended on the dose. While we found that the cell cycle phase at 
the time of cisplatin addition was not predictive of outcome, the proliferative history of the 
cell was: highly proliferative cells were more likely to arrest than to die, whereas slowly 
proliferating cells showed a higher probability of death. Information theory analysis revealed 
that the dose of cisplatin had the greatest influence on the cells’ decisions to arrest or die, 
and that the proliferation status interacted with the cisplatin dose to further guide this 
decision. These results show an unexpected effect of proliferation status in regulating re-
sponses to cisplatin and suggest that slowly proliferating cells within tumors may be acutely 
vulnerable to chemotherapy.

INTRODUCTION
Cells within a single tumor or tissue display great diversity at their 
epigenetic, transcriptomic, and proteomic states. Even in geneti-
cally homogeneous cells, these internal factors alone can generate 
significant phenotypic and behavioral heterogeneity, leading to 

variation in response to drug stimuli (Albeck et al., 2008; Spencer 
et al., 2009; Sharma et al., 2010). Tumor cells exposed to chemo-
therapeutic DNA-damaging agents show a wide range of responses: 
at the intermediate EC50 dose, for example, cells show maximally 
divergent outcomes, with half surviving and half succumbing. The 
cellular features that promote one cell fate outcome or the other 
include internal cellular states (Inde and Dixon, 2018) and the 
stochastic nature of DNA damage (Hanahan and Weinberg, 2011; 
Fumagalli et al., 2012). In addition, different DNA-damaging agents 
generate sets of specific types of DNA legions (e.g., single- or 
double-strand breaks, cross-links) in various genomic locations, 
which in turn affect a cell’s ability to recover (Noll et al., 2006; 
Fumagalli et al., 2012). Recent studies of sister cells suggest that the 
strongest contributor to the diversity of responses to DNA damage 
is the internal state of the cell: its protein, RNA, and epigenomic 
states (Chakrabarti et al., 2018). Individual cell fate choices therefore 
are shaped by the distribution of cellular states across the tumor and 
collectively determine the overall response to therapy.
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Traditional assays of cellular response to chemotherapy involve 
analyzing the expression of proliferation markers in fixed cells, and 
therefore cannot link the proliferation outcomes to the prior states 
of the cells. Live microscopy that follows the response of individual 
cells to treatment over time has identified preexisting cell-state 
features (e.g., expression of MYC or cell cycle phase) that impact 
cellular outcomes in mammalian systems (Paek et al., 2016; Ryl 
et al., 2017; Chatzopoulou et al., 2018). Studies tracking multiple 
cell generations and sister cells over time as they respond to DNA 
damage and drug compounds suggest that multigeneration long-
term memory features dominate cellular outcome choices (Arora 
et al., 2017; Chakrabarti et al., 2018; Korsnes and Korsnes, 2018; 
Wolff et al., 2018). These studies show a relation between cell 
state and the fate of cells after stimulus, but the specific variables 
explored in each study (e.g., p53 signaling or circadian rhythm) 
only explain a minor (though significant) portion of the observed 
variation, suggesting that our understanding of the contribution 
of the internal cell state to cell fate is still missing important 
features.

Two major sources of diversity across genotypically similar cancer 
cells in vitro and in vivo are cell cycle phase and overall proliferative 
rate (Driessens et al., 2012; Yano et al., 2014). These two factors 
have long since been linked to sensitivity to general chemotherapy 
(Hill and Baserga, 1975; Hoshino et al., 1975). Cell cycle phase-spe-
cific cytotoxic drugs differentially target cells based on proliferative 
status (Amadori et al., 1997; Baguley et al., 1995). This observation 
is rationalized in terms of selective killing: highly proliferative cancer 
cells pass through their sensitive cell cycle phases more frequently 
during the treatment time window, thereby increasing their likeli-
hood of being damaged by the cytotoxic agent (Berenbaum, 1972). 
Recent studies using cell cycle phase-specific drugs have contra-
dicted this view, but no alternative models have yet succeeded in 
solving this paradox (Noguchi, 2006; Mitchison, 2012). Despite the 
long-recognized importance of the cycle phase and proliferative 
rate for treatment response, there have been few efforts to disen-
tangle their contributions, and it remains unknown how they interact 
to impact the specific outcome.

Cisplatin, one of the most effective and broadly used chemo-
therapeutic drugs, damages DNA by inducing both inter- and 
intrastrand cross-links, as well as protein–DNA cross-links. Cispla-
tin is a cross-linker chemotherapeutic agent and its cytotoxic 
effects are conventionally considered to be agnostic of the cell 
cycle (Rupniak et al., 1983; Zamble and Lippard, 1995). Despite its 
success, many tumors still react poorly and/or develop resistance 
to cisplatin (Galluzzi et al., 2012). At a cellular level, cisplatin 
generates heterogeneous responses with cells either dying or ar-
resting. This heterogeneous outcome has been proposed to lead 
to cancer cell persistence (Luong et al., 2016; Shen et al., 2013). 
Moreover, the duration and dose of cisplatin treatment affect both 
the overall degree of cytotoxicity and the cell cycle phase at which 
the resistant cells arrest (He et al., 2011; Rupniak et al., 1983). The 
effects of internal cellular states on regulating the balance be-
tween cell cycle arrest or death in response to cisplatin treatment 
remain poorly understood.

Here, we studied how cell cycle phase and proliferation status 
contribute to determining cellular outcomes of human cells in re-
sponse to cisplatin. We tracked the proliferation behavior and cell 
cycle progression in hundreds of asynchronously growing cells and 
dissected the effects of cell cycle phase and proliferation status at 
the time of treatment. Using information theory analysis, we found 
that cell cycle phase had minimal influence on cellular outcomes. 
Proliferation status showed synergistic interactions with cisplatin 

dose in shaping the balance of cellular outcomes. Our work has thus 
dissected the contributions of different aspects of cellular physiol-
ogy in guiding cellular outcomes in response to cisplatin.

RESULTS
Cisplatin induces heterogeneous dose-dependent 
cell fate choices
The standard approaches to studying drug responses mainly use 
bulk population measurements and single-time snapshots to esti-
mate proliferation status. Recent work has highlighted the limita-
tions of such population- and time-averaged indirect measures of 
responses to chemotherapeutic drugs (Tyson et al., 2012; Hafner 
et al., 2016). To address these limitations, we used live long-term 
high–temporal resolution assays and tracked human bone osteosar-
coma epithelial cells (U2OS) 2 d before and 5 d after drug addition 
(Figure 1A). Different cisplatin doses resulted in a monotonic dose-
dependent reduction in proliferation with varied kinetics of the re-
sponse (Figure 1, B and C). Specifically, low to intermediate doses 
(Figure 1C, b–f) resulted in delayed exponential-like growth whereas 
high doses (Figure 1C, g–l) induced a smooth drop followed by a 
plateau in cell numbers. In addition, low to intermediate doses led 
to a graded decrease in proliferation, whereas higher doses clus-
tered together, showing less than a fivefold increase in cell number 
at concentrations above 2 μM (g to l), a signature of a nonlinear 
dose response (see details of the response curve in Supplemental 
Figure S1). These proliferation dynamics can result from multiple 
underlying time-dependent effects, including asynchronously 
triggered heterogeneous cell fate choices with different intrinsic 
time scales. Indeed, the DNA-damaging agent cisplatin is known to 
halt proliferation by inducing both cell death and cell cycle arrest 
(Siddik, 2003; Galluzzi et al., 2012; Paek et al., 2016; Martins et al., 
2018). To determine the contribution of cell death and cell cycle 
arrest to the observed proliferation curves, we turned to higher-
resolution live-cell microscopy.

We first sought to quantify the cisplatin dose–dependent distri-
butions of cell fate choices. We conducted a series of short-term, 
high-resolution microscopy experiments and monitored cell fate 
outcomes over time at three different cisplatin doses (0, 7, 10, and 
13 µM, referred to as control, low, medium, and high doses, respec-
tively). We implemented a Kaplan–Meier survival analysis using 
death and division as events, and right-censoring for cells that did 
not die nor divide within the 3 d (see Materials and Methods). The 
fraction of dying cells increased over time at all doses, with the ex-
tent of cell death being dose-dependent (Figure 1D). Notably, a lag 
of approximately 24 h occurred at all concentrations before cell 
death was observed, possibly reflecting the time required for induc-
tion and execution of cell death programs. The fraction of dividing 
cells showed a more abrupt dose-dependent decrease, with even 
the lowest dose of cisplatin reducing cell division below 50% of the 
control (Figure 1E).

Our long-term live-cell imaging allowed us to analyze the 
specific cellular trajectories preceding arrest or death (Figure 1F). 
Specifically, we found that untreated cells typically proliferated 
throughout the observation period, undergoing multiple cell 
divisions, with only a small fraction (8.4%) dying (Figure 1G). Cispla-
tin-treated cells died or arrested either after undergoing a single 
division or without executing any cell divisions. The proportion of 
cells dividing more than once after cisplatin treatment was negligi-
ble (less than 1%). We therefore classified cells into six cellular 
phenotypes (Figure 1F) according to whether they proliferated, ar-
rested, or died and the number of cell divisions occurring before the 
terminal outcome. Note that cisplatin-treated cells did not undergo 
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multiple divisions and therefore exhibited only four of these pheno-
typic outcomes (Figure 1F). We computed the distribution of each 
cellular outcome for increasing cisplatin doses. As expected, higher 
cisplatin doses increased the dying fraction (Figure 1G). The fraction 
of arrested cells showed a nonmonotonic response: it increased 

compared with control cell and then decreased with increasing cis-
platin dose, with the highest dose reaching a value even below that 
of the control population (Figure 1G). These experiments revealed 
the complex role of treatment strength in shifting the population 
balance between various cellular outcomes.

FIGURE 1:  Cisplatin induces dose-dependent heterogeneous cell fate outcomes. (A) Schematic of the experimental 
setup. Cells were continuously monitored using a fluorescence microscope for up to 7 d under environmentally controlled 
conditions. After 2 d, cells were treated with cisplatin and their outcomes were monitored. (B) Sample images of control 
or cisplatin-treated cells taken every 48 h. Cells were untreated or treated with 4.4 or 70 µM cisplatin. (C) Normalized cell 
number over time in cultures treated with a gradient of cisplatin doses. Colored lines represent the response to each 
cisplatin dose (untreated control “a” in dark green, lowest dose “b” in light green, and highest dose “l” in black). Doses 
range from 70 to 0.07 µM in twofold decrements (70, 35, 17.5 µM, etc.). Each growth curve was normalized to the 
number of cells at t = –48 h. Cell tracking started at t = –48 h with n = 280–320 cells tracked at 30-min intervals for a total 
of 7 d. Data were pooled from two replicates per dose. (D) Fraction of dying cells using the Kaplan–Meier estimator 
method for control, low, medium, and high cisplatin doses of 0, 7, 10, and 13 µM cisplatin, respectively. Shaded area 
along curves represents 95% confidence intervals. Cisplatin was added at t = 0 and individual cells were tracked for the 
following 3 d at 30-min intervals. (E) Fraction of dividing cells calculated using the Kaplan–Meier estimator method for 
those cells that undergo one or more mitosis events after cisplatin treatment, monitored as described in D. (F) Cellular 
outcomes were annotated and classified into six categories. For cells that divided, one of the two daughter cells was 
randomly selected for further tracking. Asterisk denotes outcomes that were only observed in the untreated cells. 
(G) Frequency of each outcome for each cisplatin dose. Final fractions were computed relative to the cell number before 
treatment (N0). n = 300 (control), 262 (low-dose), 247 (medium-dose), and 316 (high-dose) individual cells.
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Cell divisions do not affect the timing or choice of final 
cellular outcomes
We first investigated the effects of cisplatin on cell division. Cisplatin 
suppressed cell division, as nearly 80% of treated cells failed to 
divide after treatment at the highest dose, whereas only 16% of 
untreated cells did not divide in the equivalent time period (Figure 
1G). To determine the effect of cisplatin on cell cycle progression, 
we measured the intermitotic time (IMT) between the last division 
before cisplatin addition and the first division after. To adequately 
capture the variability in IMT distributions, we chose an exponen-
tially modified Gaussian (EMG; Luce, 1986) model, which has been 
used to fit IMT distributions from a wide range of cells and condi-
tions (Tyson et al., 2012). The data are approximated as a combina-
tion of a Gaussian function with an exponential function to account 
for skewing of the right-side tail. This model uses only three 
parameters that are mathematically and biologically separable, as 
evidenced by the fact that their values are differentially affected by 
various drugs (Tyson et al., 2012). The first two parameters, μ and σ, 
correspond to the mean and SD of the Gaussian component and 
can be interpreted as localization and variability indicators. The third 
parameter, τ, is the mean of the exponential component and corre-
sponds to the right “tail” of the distribution, where a large τ implies 

a more skewed distribution. This analysis of IMTs revealed that cis-
platin treatment resulted in a slight delay in the time of division, with 
a significant difference of approximately 3 h in the mean deviation 
of the Gaussian component (Figure 2A). We further investigated 
whether the delay depended on how long after mitosis cisplatin 
treatment was initiated, reasoning that cells receiving cisplatin early 
in their cell cycle may respond differently than those receiving it 
later (Figure 2B). Indeed, we found that cisplatin treatment soon 
after mitosis, that is, at the start of the next cell cycle, largely pre-
vented cell division (few cells divided when treated at 0–12 h after 
completing the first mitosis; those that divided did so with a delay 
of nearly 20 h; Figure 2B). In contrast, cisplatin addition at later 
stages had no effect, likely because cells had already committed to 
division (Figure 2B, 24–48 h category). When added 12 to 18 h after 
mitosis, cisplatin delayed cell division by 9.6 h (Figure 2B). These 
results reveal a generally suppressive effect of cisplatin on cell divi-
sion, with a G2 population of cells that is insensitive to this effect.

Having established that cisplatin treatment negatively affected 
cell division, we next determined whether undergoing mitosis in the 
presence of cisplatin affected the final cellular outcomes of arrest or 
death. The distribution of these outcomes was not different be-
tween the populations of cells that did and did not undergo mitosis 

FIGURE 2:  Cisplatin treatment at early stages of the cell cycle delays cell division. (A) Representative IMT distributions 
of untreated versus treated populations, measured from the first mitosis before cisplatin addition to the first mitosis 
after treatment (or mock treatment). Distributions were fitted to an EMG model. Legend: μ, mean of the Gaussian 
component of EMG; σ, deviation of the Gaussian component of EMG; τ, mean of the exponential component of EMG. 
A total of 242 IMTs were analyzed in each condition. To compare EMG distributions we used the Mann–Whitney U test, 
a nonparametric test of the null hypothesis that does not require the assumption of normal distributions. The p value of 
the two-sample Mann–Whitney U-test (p < 0.05, p = 1.43 × 10–7) indicates statistical significance in the differences in IMT 
between damaged and control cells. (B) IMT as a function of time between cisplatin treatment and previous division. 
(C) IMT distribution of treated cells that either arrest or die after division. The p value of the two-sample Mann–Whitney 
U-test (p > 0.05, p = 0.9614) indicates no statistical significance in the differences in IMT between cells that “divide and 
arrest” and those that “divide and die.” (D) Time of death after treatment in cells that do (1 division) or do not divide 
(0 divisions) after treatment.
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Death Arrest Ratio

High

  No mitosis 177 59 3.00

  Mitosis 51 17 3.00

Medium

  No mitosis 74 100 0.74

  Mitosis 32 48 0.66

Low

  No mitosis 32 105 0.31

  Mitosis 20 85 0.26

TABLE 1:  Death-to-arrest ratio dependence on mitosis for different 
cisplatin doses.

after cisplatin treatment (Table 1). Cells that arrested, as well as 
those that died, showed equivalent IMTs, indicating that IMT was 
not a predictor of final outcomes (Figure 2C). We next investigated 
whether undergoing division affected the time of cell death. We 
found that the distribution of death times was equivalent between 
the dividing and nondividing populations (Figure 2D). These results 
suggest that undergoing cell division does not influence the choice 
of final cellular outcomes or the timing of the decision. We have 
therefore continued our analysis classifying only two outcomes, ar-
rest or death, regardless of the presence or absence of cell divisions 
preceding these outcomes.

Responses to cisplatin are independent of cell cycle phase
Having established that cell cycle phase at the time of cisplatin 
addition influenced whether cells would divide (Figure 2), we next 
investigated whether cell cycle phase also affects the final out-
comes. To assess cell cycle phase, we created an isogenic U2OS cell 
line carrying an hGeminin-CFP fluorescent nuclear marker, which is 
absent during G1, increases at the onset of S, further accumulates 
through S and G2 and sharply degrades during mitosis (Sakaue-
Sawano et al., 2008; Figure 3A). We verified that in U2OS cells 
hGeminin-CFP was a faithful cell cycle marker and that our analysis 
of cellular Geminin trajectories could separate cells by cycle phase 
(Supplemental Figure S2A). We tracked cell cycle progression in 
individual asynchronously growing cells for 2 d. We then treated 
them with the three different doses of cisplatin as described above 
and annotated their cell fate outcomes during the 3 d following 
treatment (Figure 3B). Upon each cell division, one of the daughter 
cells was randomly selected for further tracking. We used the Gemi-
nin trajectories before treatment to cluster cells based on their cell 
cycle phase (G1, S, or G2) and further sorted each category into two 
cell fate outcomes: arrest or death. We calculated the arrest and 
death ratios and color-coded the bars by the treatment dose (Figure 
3, C and D; Supplemental Tables 1–5). As expected, and observed 
earlier (Figure 1), cisplatin induced cell death in a dose-dependent 
manner (Figure 3C). However, this analysis revealed minor effects 
between cell cycle phase and the final outcome (Figure 3C) or the 
timing of cell death (Supplemental Figure S2B). The minor role of 
cell-cycle on final outcomes agrees with the classification of cisplatin 
as a cross-linker agent, generally considered to be cell cycle–non-
specific agents.

Single-cell proliferation index modulates cellular outcomes
In addition to cell cycle phases, cells also possess a less well-defined 
proliferative state, which has been proposed to contribute to their 

response to chemotherapeutics (Lin, 1973; Valeriote and Putten, 
1975; Stover et al., 2016). Proliferative states are often measured 
by immunohistochemistry of proliferation markers such as Ki76 or 
PCNA, and proliferation has since long been identified as a 
prognostic clinical marker (Tannock, 1978; Tubiana et al., 1984). Our 
live-cell imaging of untreated cells revealed that cells exhibited 
substantial heterogeneity in their proliferative behavior, even in the 
absence of cisplatin treatment. Specifically, cells divided between 0 
and 5 times over the 5 d of imaging (Supplemental Figure S3A), with 
cells dividing fewer times showing a larger rightward skew in their 
distribution of IMTs (τ = 10.97 for cells dividing three times vs. 1.33 
for cells dividing five times), while the mean component of the 
Gaussian distribution, μ, remained stable independent of the num-
ber of cell divisions (Supplemental Figure S3A). To address whether 
proliferation status at the time of cisplatin treatment affected the 
cellular response, we classified cells into nondividers (0 divisions), 
low-proliferative (1 division), and high-proliferative (>2 divisions) 
categories, based on their trajectories within the first 48 h of imag-
ing before cisplatin addition. We named this metric the single-cell 
proliferation index (SSPI; Figure 4A), in analogy to the tumor prolif-
eration index. To determine the stability of the SSPI, we determined 
it over the course of 2 d and compared it with the SSPI that was 
determined during the course of the next 2 d in untreated cells. This 
analysis revealed that while the nondividing state was stable (no 
nondividers divided in the subsequent 2 d; Figure 4B, S3B), some 
cells in the high- and low-SSPI categories switched states (Figure 
4B). Low-proliferation cells were equally likely to switch into each of 
the three proliferation categories, but high-proliferation cells were 
most likely to remain proliferative and showed a low frequency of 
switching into the nondividing class. This trend was also reflected in 
the median number of divisions by each group over time (Supple-
mental Figure S3B). The timescales of cellular states in the absence 
of perturbation resemble the timescales observed in the levels of 
individual proteins. In human cells, protein expression levels fluctu-
ated over the course of less than one to over two generations (Sigal 
et al., 2006). Such variations in protein levels, particularly in those 
regulating the cell cycle, may underlie the observed switching 
between proliferation states.

We next investigated whether proliferation state influenced cell 
fate outcomes in response to cisplatin (Figure 4, C–E, and Supple-
mental Tables 6–8). We excluded the nondividing (ND) category, as 
it contained a negligible fraction of cells (approximately 10 cells, 
representing <2% of the population; see Supplemental Table 6). The 
landscape of outcomes showed a more complex topology than that 
observed across cell cycle phases. High cisplatin doses led primarily 
to cell death for both high- and low-proliferation categories. 
However, at low and medium cisplatin doses, the two proliferation 
categories showed differences in their distribution of outcomes. 
High-proliferation cells were less likely to die than low-proliferation 
cells (death ratios of 0.43 vs. 0.17 at low dose, and 0.58 vs. 0.35 at 
medium dose, for low- and high-proliferation cells, respectively; 
Figure 4D), thus tipping the outcome of high-proliferation cells 
toward arrest (Figure 4E). These results show that at low doses, low-
proliferation cells are 2.5 times more likely to die than high-prolifer-
ation cells (Figure 4D). Note that even though low-proliferation cells 
were more likely than high-proliferation cells both to die and to 
arrest when untreated (Figure 4, D and E), cisplatin addition altered 
these trends and elevated the arrest ratio of high-proliferation cells 
above that of low-proliferation cells (Figure 4E). We next investi-
gated whether proliferation status affected the time of cell death 
and found that high-proliferation cells died slightly later than low-
proliferation cells (Supplemental Figure S3C). Together, our results 
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FIGURE 3:  Cell cycle phase does not affect response to cisplatin. (A) Micrographs over time of 
a single cell carrying a Geminin-CFP fluorescent reporter (first row) with the corresponding 
Geminin trajectory (second row). Raw normalized data (circles) and smoothed normalized data 
(line) are shown. Division events are marked with a gray vertical bar. (B) Single-cell trajectories 
from cells treated with low, medium, and high doses were pooled (n = 825 cells) and clustered 
initially according to the cell cycle phase at the time of cisplatin treatment (red vertical line) and 
further clustered according to the cellular outcomes. Death subgroups were sorted by their time 
of death. (C, D) Bar plots of (C) death and (D) arrest ratios as a function of the cisplatin dose and 
cell cycle phase. Ratio values and sample size numbers for each cell cycle cluster and treatment 
condition are in Supplemental Table 1.

show that highly proliferative cells die later 
and are more resistant to cell death induced 
by low and medium cisplatin doses (Figure 
4F), but they lose this resistance at higher 
cisplatin doses.

Two distinct mechanisms can explain the 
differential resistance observed in high- and 
low-proliferative cells. First, highly proliferat-
ing cells may acquire less damage from 
cisplatin treatment. Alternatively, they may 
receive the same amount of damage as 
low-proliferative cells but resolve it more 
efficiently. To distinguish between these two 
scenarios, we compared the extent of dam-
age induced by cisplatin between low- and 
high-proliferative cells by quantifying the 
levels of cisplatin-induced DNA adducts in 
each group (Supplemental Figure S4, A–C). 
This analysis revealed that the two groups 
acquired similar amounts of cisplatin-
induced damage (Supplemental Figure S4, 
A–C), arguing that the relatively high resis-
tance of high-proliferative cells is not due to 
lower levels of DNA damage following cis-
platin treatment. We next tested whether 
basal cellular damage (pre–cisplatin treat-
ment) can be linked to proliferative index. 
We determined the levels of DNA damage 
by quantifying the number of γH2AX foci, a 
marker for DNA double–strand breaks, in 
untreated cells. We found that higher-
proliferation cells exhibit on average a 
smaller number of DNA double-strand 
breaks (Supplemental Figure S4, D and E). 
This suggests that heterogeneous levels of 
basal DNA damage impact cells’ prolifera-
tive states and their likelihood of dying in 
response to a DNA damage–inducing drug. 
Specifically, cells carrying larger numbers of 
basal DNA breaks proliferate less and 
are more susceptible to dying in response 
to the additional damage induced by 
cisplatin.

Cisplatin dose and proliferation state 
together regulate cellular outcomes
Our results suggested that cisplatin dose 
and proliferation state, but not cell cycle 
phase at the time of treatment, affect cellu-
lar outcomes. To rigorously quantify the 
extent to which these parameters individu-
ally and in combination affect cellular 
outcomes, we used information theory, 
which has been applied in a variety of areas 
of molecular systems biology. Mutual infor-
mation (Box 1) has been used in the field of 
molecular systems biology to analyze the 
extent of cooperativity between genetic in-
teractions in contributing to a phenotype 
(Anastassiou, 2007; Chanda et al., 2007). 
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Signal transduction pathways in mammalian cells resemble proto-
typic information transmission systems that can be described in the 
framework of information theory (Gatenby and Frieden, 2007). 
Mutual information has been used to study how information from 
different concentrations of ligands is transmitted into the activity of 
transcription factors in the MAPK (Voliotis et al., 2014), Ca2+ and 
NFKB (Selimkhanov et al., 2014), and TGFβ/SMAD and p53 (Benary 
et al., 2018) pathways. This information is limited to values below 
one bit (from 0 to 0.4 bits) when the static response is considered 
and is significantly higher (4–5 bits) when the dynamic response is 
considered. Of particular relevance to our approach, mutual infor-
mation has been used to study how the initial state of the cell (i.e., 
the initial level of signaling proteins in the apoptosis pathway) plays 
a role in the death–survival outcome (Palaniappan et al., 2017).

We classified three predictor variables—cisplatin dose, prolifera-
tion state, and cell cycle phase—and determined their individual 
contributions tow cellular outcomes (death or arrest; Figure 4G). In 
the context of mutual information on signaling pathways, Palaniap-
pan et al. (2017) set a cutoff of 0.005 to consider a gene important 
for transmitting information on the outcome, a practice that we 
adopt here. The dose of cisplatin conveyed the highest mutual 
information (I(cisplatin,outcome) = 0.1514), with the prolifera-
tive state holding less information about the cellular outcomes 

(I(prolif.,outcome) = 0.0295). Little to no information was conveyed 
by the cell cycle phase (I(cell cycle, outcome) = 0.0008). Notably, 
even though the cell cycle phase and proliferation state are likely 
not independent of each other (for example, the fraction of G2 cells 
in the low-proliferation group is approximately twice that in the 
high-proliferation group; Supplemental Figure S3D), our analysis 
showed that they provided different amounts of information on 
cellular outcomes.

We next used partial information decomposition (PID) to identify 
unique information, redundancy, and synergy between pairs of pre-
dictor variables in determining cellular outcome (Box 1 and Table 2). 
PID has been used in neuroscience to model a neuron as a neural 
processor with two inputs (Wibral et al., 2017), to investigate how 
multiple neuronal sources contribute to the correct prediction of a 
target variable during training of a neural network (Tax et al., 2017), 
or to examine the spiking activity of distinct electrodes in a neural 
culture (Timme et al., 2014). Applying this model to pairs of input 
variables, we found that measuring cell cycle phase together with 
either of the other two predictor variables (cisplatin dose or SSPI) 
did not provide any unique information on cellular outcome (Figure 
4G and Table 2). In these two cases, the total information provided 
by the combination of cell cycle phase and dose, or cell cycle phase 
and SSPI, reduced to the unique information provided by either 

BOX 1:  Mutual information.

The foundational measure of mutual information is entropy (Cover and Thomas, 2005). The entropy of a discrete random variable X 
measures its uncertainty, that is, how unpredictable its value is, and is defined as:

∑( ) ( ) ( )= −
=

H X p x p xlog
i

n

i i
1

2

where X can take on the values x1, x2, . . ., xn, with the respective probabilities p(x1), p(x2), . . ., p(xn). Entropy is measured in bits, is maxi-
mized when all outcomes are equally likely to occur (the uncertainty is at its greatest), and is equal to zero when the random variable can 
only take one predetermined value (the outcome is entirely predictable). Variables that have a greater number of possible outcomes 
show higher entropy; for example, the entropy of an evenly weighted coin, with two possible outcomes, heads and tails (1 bit) is lower 
than that of a fair die with six possible outcomes (2.59 bits). Mutual information (I) quantifies the amount of information provided about 
one variable (X) by knowing the value of the other (Y). Its physical meaning is “the reduction of the uncertainty of Y due to the knowledge 
of X” and is given by:

( ) ( ) ( )= −I X Y H X H X|Y;

where H(X|Y) is the uncertainty of X given Y (see Supplemental Table 9 for definitions of equations used here). Mutual information is 
always a nonnegative quantity, where high mutual information indicates a large reduction in uncertainty; low mutual information indicates 
a small reduction; and zero mutual information between two random variables means the variables are independent of each other.

When two variables (X1 and X2) both convey mutual information about a third (S), one can wonder whether the prediction of S can be 
improved by simultaneous observation of X1 and X2. Partial information decomposition (PID; Williams and Beer, 2010) determines the 
mechanisms by which two variables interact to provide information on a set of outcomes. First, two variables, X1 and X2, could each 
provide unique information about the outcome. Second, they could provide redundant information, as seen in a situation where X1 and 
X2 are completely or partially overlapping. Redundancy is the information common to all sources, that is, the minimum information that 
any predictor provides, while taking into account that predictors may provide information about different outcomes of S. It accounts only 
for the quantity of information provided, and not for the nature of the information. Finally, X1 and X2 may provide synergistic information 
that is obtained only from the combination of both variables together. This dissection of I({X1, X2}, S) into intuitive components provides 
an insight into how dependencies are distributed among the variables. I({X1, X2},S) is written as:

I X X S X S X S X X S X X S

I X S X S X X S

I X S X S X X S

; ; Unique ; Unique ; Synergy ; ; Redundancy ; ;

; Unique ; Redundancy ; ;

; Unique ; Redundancy ; ;

1 2 1 2 1 2 1 2

1 1 1 2

2 2 1 2

( ) ( ) ( )
( )
( )

{ } ( ) ( ) { } { }
( ) ( ) { }
( ) ( ) { }

= + + +

= +

= +

where each term represents what portion of information is provided 1) redundantly by X1 and X2 (information overlap), 2) uniquely by X1 
or X2 alone (what information X1 provides about S X2 does not, and vice versa), or 3) synergistically by X1 and X2 together (X1 and X2 
provide bonus information about S when both are known simultaneously).
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FIGURE 4:  Single-cell proliferation index pretreatment modulates the response to cisplatin. (A) The number of divisions 
within the first 48 h defines three single-cell proliferation index categories: nondividers (0 divisions), low proliferation 
(1 division), and high proliferation (2 or more divisions). (B) Cells in each proliferation index category, as defined in the 
first 2 d of imaging, were monitored for an additional 2 d, and their proliferation index during this time period is shown. 
(C) Individual division profiles obtained after tracking cells for 5 d and annotating their division events. Left panel 
represents untreated cells, and right panel represents trajectories pooled from cells treated with low, medium, or high 
cisplatin doses, as defined in Figure 3. Each row represents the division activity of a single cell, with each mitotic or 
death event marked by a color transition (color code top left). Cells in each panel are clustered by their proliferation 
index before treatment and then sorted by their time of first mitosis. Cisplatin treatment was initiated after 2 d 
of unperturbed growth. Right side of each panel displays the corresponding single-cell proliferation index 
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Pred. X1 Pred. X2 Target S Unique (X1; S) Unique (X2; S) Redund. ({X1; X2}; S) Synergy ({X1; X2}; S) I({X1; X2}; S)

Cycle Dose Cell out. 0.0 0.1506 0.0008 0.0054 0.1568

Cycle Prol. Cell out. 0.0 0.0287 0.0008 0.0075 0.0368

Prol. Dose Cell out. 0.0 0.1219 0.0295 0.0301 0.1815

The mutual information about a target variable S that is carried together by two predictor variables X1 and X2, I({X1;X2};S), is the sum of its four intuitive components: 
unique information carried by each variable separately, redundant information, and synergistic information.

TABLE 2:  Partial information decomposition: basic quantities of information for different combinations of predictors X1 and X2 (cell cycle state, 
proliferative index, and cisplatin dose) and target variable cellular outcome S.

category. ND: nondivider. (D, E) Death and arrest ratio bar plots grouped by cisplatin dose for cells with low and high 
proliferation index. Sample numbers per proliferation index and treatment condition are in Supplemental Table 1. 
(F) Cellular outcome percentages as a function of proliferative state and cisplatin dose. Thickness of arrows represents 
the ratio of a particular outcome. (G) Information theory calculations indicate synergy between proliferative state and 
cisplatin dose in predicting cellular outcome. Schematics displaying mutual information “I” between predictor variables 
(cisplatin dose, proliferation state, and cell cycle phase) and cell fate outcome. Synergistic and redundant contributions 
between pairs of predictors are also displayed.

dose or SSPI alone. Interestingly, when cisplatin dose and prolifera-
tive index were measured together, only cisplatin dose provided 
unique information on cellular outcome. However, for this combina-
tion of predictor variables, the synergy and redundancy terms repre-
sent a significant portion of the total information conveyed (Figure 
4G and Table 2). First, proliferative index and cisplatin dose may 
provide some overlapping information (Redundancy [prolif., dose] = 
0.0295). Furthermore, some information is provided synergistically 
by the dose and proliferation index (Synergy [prolif., dose] = 0.0301), 
indicating that they are engaged in a complex interaction with 
cellular outcome. That is, the combination of dose and proliferative 
status might provide information on cellular outcome that is not 
available from either alone (synergy). Thus, to better predict the 
cellular outcome after cisplatin treatment, there is added informa-
tion in simultaneously knowing the proliferative state and the cispla-
tin dose. This result is in accordance to our results in Figure 4F, 
where we observe that proliferative state and cisplatin dose together 
confer information on cellular outcome.

Information content on its own does not provide insights into how 
individual input variables influence the different cellular outcomes. By 
combining the results of the information content analysis with the 
ratios of distributions in Figures 3, C and D, and 4, D and E, we found 
that increasing cisplatin dose induced a switch from cell cycle arrest to 
cell death in both low– and high–proliferation index cells (Figure 4, 
D–G). Most interestingly, at low and medium cisplatin doses, the 
proliferative state of a cell influences the balance of cellular outcomes 
between cell cycle arrest and cell death (Figure 4F).

DISCUSSION
DNA damaging agents such as cisplatin are commonly used chemo-
therapeutics that show great variability in responses across and 
within tumors, often with a significant fraction of cells surviving 
treatment. Recent single-cell studies have revealed how nongenetic 
cell-to-cell variability can drive significant phenotypic differences in 
response to identical drug treatment (Snijder and Pelkmans, 2011; 
Paek et al., 2016; Uphoff, 2018), leading to the hypothesis that the 
variability of cellular states might underlie the heterogeneous drug 
responses within a tumor. Here, we present a single-cell based anal-
ysis of two cellular features, the proliferation status and cell cycle 
phase, and determine their relationship with the individual cellular 
outcomes upon chemotherapy.

We first quantified the dynamics of population responses to a 
wide range of cisplatin concentrations. The strength of the DNA 

damage, together with the cellular state, is expected to modulate 
the survival and death response globally. Our time-resolved mea-
surements revealed dose-dependent variations in the kinetics of 
population growth (Figure 1C), the underlying differences in the 
kinetics of death and cell division (Figure 1, D and E), and the effects 
of cisplatin dose on modulating the balance between cell death and 
cell cycle arrest (Figure 1G). Overall, we found that the cell cycle 
phase at the time of cisplatin treatment and/or the execution of cell 
division after treatment had minimal effects on the final cellular out-
comes. The proliferation history leading up to the time of treatment, 
however, influenced cellular outcomes and showed partial synergy 
with the cisplatin dose in modulating the final outcomes. Specifi-
cally, we found that low-SSPI cells were more likely than high-SSPI 
cells to die at low to medium cisplatin doses, a result that was 
surprising in light of established correlations between low prolifera-
tion and resistance to chemotherapeutics (Remvikos et al., 1989; 
Amadori et al., 1997). Various cancer cell lines are known to exhibit 
great phenotypic variability in their response to DNA-damaging 
agents. Future studies comparing the relative contributions of 
proliferation status and cell-cycle phase to drug sensitivity across 
additional cell lines will reveal whether the significance of prolifera-
tion status observed in this study serves as a general paradigm 
for influencing drug sensitivity, or whether in other cell lines 
different aspects of internal cellular states govern the responses to 
DNA damage.

We found that cell cycle phase did modulate the probability of a 
cell dividing after cisplatin, as the G2 population showed the largest 
fraction of cells undergoing mitosis after cisplatin treatment. It is 
likely that the G2 cells that divide soon after treatment are past the 
G2 checkpoint and therefore are initially insensitive to cisplatin and 
proceed to mitosis. Among the population that divided, we also 
detected cells that divided very late, an unusual event for cells in 
other cell cycle phases. We have observed similar phenomena 
following DNA damage by gamma irradiation (Reyes et al., 2018). 
Our results now suggest that G2 cells may be particularly prone 
to this outcome, which can generate catastrophic mitoses with 
genome fragmentation and micronucleus formation.

Intriguingly, we identified proliferation status as a cellular feature 
that operates independent of cell cycle phase to regulate responses 
to cisplatin. We found that low-proliferation cells were most suscep-
tible to cell death, while high-proliferation cells were most likely to 
arrest. This finding was initially surprising to us, as the dominant 
description in the literature is that highly proliferative tumors are 
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more sensitive to chemotherapeutics (Lin, 1973; Valeriote and 
Putten, 1975; Stover et al., 2016). However, we note some key differ-
ences between studies. Many of the previous studies compared pro-
liferation status and drug resistance between fundamentally different 
cell types. For example, the drug resistance of a cell line specifically 
selected for this property may be linked to other changes (Nakamura 
et al., 2015), such as expression of drug importers or exporters (Sid-
dik, 2003), and only indirectly to proliferation rate per se. Similarly, 
cancer stem cells, which are typically slow-growing and drug-resis-
tant, often express unique markers (compared with the total tumor 
population) and may even harbor unique genetic signatures, and 
thus their proliferation state and drug resistance may also be only 
indirectly correlated. Here we have studied naturally occurring het-
erogeneity in a clonal population and found that differences in prolif-
eration rate can influence cellular outcomes. Note that U2OS cells 
are known to exhibit genomic instability, and their populations can 
be highly genetically heterogeneous. It is therefore possible that 
differences in cisplatin sensitivity result from genetic differences, as 
observed in primary cancer cells (Niehr et al., 2018). However, since 
the cells in this work were recently derived from a single-cell clone, 
the probability of heterogeneity resulting from new genetic modifi-
cations is small. Furthermore, our observation that proliferation state 
is dynamic argues against the possibility of distinct genetic subpopu-
lations influencing the response to cisplatin.

In addition to its role in cell death sensitivity, our data show that 
proliferation index also affects time of death (Supplemental Figure 
S3C). Variability in time of death has previously been reported in a 
clonal population of human cancer cells treated with the apoptosis-
inducing ligand TRAIL (Spencer et al., 2009). In this case, the varia-
tion arose from nongenetic heterogeneity in expression of factors in 
the receptor-mediated apoptosis pathway (BCL2 protein family). 
Here, we have observed variation in the extent of basal DNA dam-
age between low- and high-proliferation cells (Supplemental Figure 
S4). It is possible that basal damage status impacts the expression of 
proapoptotic genes, thus affecting the probability and timing of 
death in response to cisplatin treatment. Further studies will be re-
quired to understand the molecular mechanism underlying the link 
between basal DNA damage, proliferative state, and cellular 
outcomes.

Understanding the final cellular outcomes is critical for determin-
ing appropriate chemotherapeutic regimens. We classified cells as 
“proliferative,” “arrested,” or “dead,” based on tracking them for 3 
d post–treatment with cisplatin. Thus, it is possible that cells classi-
fied as “arrested” might die or reenter the cell cycle at later times. 
However, population growth measurements under a wide range of 
doses and monitored 5 d posttreatment do not show signs of recov-
ery past the third day posttreatment (Figure 1C). In addition, single-
cell tracking shows that the fraction of dividing cells plateaus around 
48 h posttreatment (Figure 1E), suggesting that cells are not exiting 
arrest subsequently. It is still possible that arrested cells might 
eventually die. Monitoring the timing and extent of death at late 
timepoints was not possible due to technology and experimental 
limitations of our setup, such as photodamage from imaging and 
overgrowth of cells.

Our results have potentially important implications for interpret-
ing clinical measurements of proliferation. Our data suggest that in 
some circumstances slowly proliferating tumors might in fact be vul-
nerable to therapy. We find that cell cycle position per se does not 
appear to modify cellular outcomes upon treatment, which is consis-
tent with the historical lack of success of strategies designed to 
modify proliferation and cell cycle status in cancer therapy with 
estrogenic recruitment—for example, Bontenbal et al. (2000); 

Paridaens et al. (1993). In the future, we anticipate that analyses 
similar to the one presented here, using more mechanistic live-cell 
markers, could provide potential targets that might be used to alter 
the proliferative state of cancer cells and “prime” them to therapy.

MATERIALS AND METHODS
Cell culture
U2OS cells (from ATCC HTB-96) were cultured in RPMI with l-
glutamine (R8758 SIGMA) supplemented with 10% fetal bovine 
serum (FBS, Capricorn Scientific 12A) and 1% of antibiotic–antimy-
cotic solution (GIBCO 15240096). All cultures were routinely tested 
for mycoplasma. Stable expression of a nuclear marker (mKate2-
NLS) or a cell cycle reporter (CFP-hGeminin) was obtained by 
lentiviral transduction and subsequent clonal selection. In all 
experiments, we used freshly thawed and early passage clonal 
cells (P2-4). Cells were treated with Cisplatin (Sigma PHR1624) 
dissolved in NaCl solution at the indicated concentrations 
(0.1–70 µM). For imaging we used either 12-well plastic plates 
(Corning) or 24-well polymer coverslip coated plates (μ–Plate Ibidi 
coating treatment). For the microscopy experiments we used 
optimized live-cell fluorescence microscopy media (FluoroBrite 
ThermoFisher Scientific) supplemented with 10% FBS, 1% 
antibiotic–antimycotic solution, and l-glutamine 300 mg/l.

Microscopy
Time-lapse imaging was accomplished by a long-term low-resolu-
tion incubator-embedded microscope (Incucyte Essen Bioscience) 
and a high-resolution multichannel fluorescence microscope with 
an environmental chamber for cell culture (Widefield Ti2, Nikon), a 
20× Plan Apo magnification. Analysis of images employed custom 
MATLAB code (Mathworks) and built-in Incucyte software. Results 
in Figure 1, B and Cm, and Supplemental Figure S1 were carried 
on the long-term low-resolution Incucyte incubator-embedded 
microscope. In these experiments, cells were seeded at 5% 
density 24 h before the beginning of the image acquisition. RPMI-
based media was exchanged for FluoroBrite-based medium 1 h 
before the image acquisition started. Cisplatin was added to the 
media 48 h after the beginning of the image acquisition at the 
described doses in a 100-µl cisplatin-media solution (5% of total 
volume), and control cells remained untreated throughout the 
experiment. Two biological replicates per dose from independent 
plates and randomized well positions were used in these experi-
ments. Cells carry the mKate2-NLS nuclear fluorescent marker to 
facilitate nuclei segmentation analysis and counting. Images were 
captured every 30 min. Frame-by-frame nucleus counting was car-
ried out using the Incucyte image analysis software and further 
processed in MATLAB. See the example of representative Incucyte 
movies in the Supplements showing a composite of the bright 
field (gray-scale) and mKate2-NLS nuclear signal (red).

Results presented in Figures 1, D–G, and 2–4 and Supplemental 
Figures S2 and S3 were derived from experiments done in a high-
resolution multichannel wide-field EPI fluorescence Nikon Ti2 micro-
scope equipped with a live-cell incubator (Okolab), LED illumination 
(Lumencore, SpectraX), and sCMOS, PCO camera. Seeding, media 
changes, acquisition frame rate, and cisplatin treatment followed 
the same protocol described above, except that treatment began 
49.5 h after the acquisition started. Control cells remained untreated 
and treated cells received cisplatin doses of 7, 10, and 13 µM, re-
ferred as low, medium, and high, respectively. The results for each 
condition originate from three technical replicates in different wells 
with an average of 12 randomized intrawell image positions per 
well. Cells were tracked from the beginning of the experiment (t = 0) 
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until the last time frame or the time of death. Upon cell division, only 
one of the daughter cells was followed. Cells that left the field of 
view were discarded from the analysis. We tracked a total of 300, 
247, 262, and 316 individual cells for the control, low, medium, and 
high cisplatin doses, respectively. See representative NikonTi2 mov-
ies in the Supplements, showing a composite of the bright field 
(gray scale) and the CFP-hGeminin marker (cyan). Results presented 
in Supplemental Figures S4 and S5 were recorded using the same 
seeding conditions and Nikon Ti2 microscope as described above. 
A high dose of cisplatin (13 µM) was added to the cells at 48 h and 
cells were tracked for 6 h more and immediately fixed for immunos-
taining. We tracked 333 and 323 individual cells for the control and 
high cisplatin dose, respectively.

Immunofluorescence
Cells were fixed for 15 min at room temperature (RT) with 4% para-
formaldehyde at the end of the live imaging recording. Cells were 
washed three times with 1X-PBS and then permeabilized with 0.1% 
Triton-X and blocked with 2% BSA in 1X-PBS. Cells were incubated 
1 h at RT with primary antibody (1:500 dilution), washed three times 
with 1X-PBS, and stained with secondary fluorescent antibodies 
overnight at 4°C (1:2000 dilution). The next day, cells were 
washed three times with 1X-PBS and stained with 4′,6-diamidino-2-
phenylindole (1:2000 dilution) for 2 h at RT, followed by a final wash 
with 1X-PBS. The primary antibodies used were an antiphosphohis-
tone H2A.X (Ser139), clone JBW301 from Sigma-Aldrich and an anti-
cisplatin DNA adducts antibody, clone ICR4 from Merck Millipore. 
The secondary antibodies used were Alexa Fluor 647 goat anti-rat 
and 488 donkey anti-mouse from Invitrogen. Cells were imaged the 
next day using the Nikon Ti2 microscope described previously.

Tracking and cell fate determination
Images were captured using the NIS-Elements AR software and 
exported as .tiff image files for tracking and analysis. Cells were 
tracked using semiautomated custom software developed specifi-
cally for cell fate annotation tracking of individual cells over long time 
scales as described in Reyes et al. (2018). This software provides indi-
vidual cell tracking information, timing of division events, and timing 
of death identified visually as in Paek et al. (2016). Geminin-CFP re-
porter intensity was quantified using the tracking information from 
background subtracted images by averaging 10 pixels around the 
cell nucleus. Cells that died before the time of treatment initiation or 
escaped the field of view were discarded from the calculations of cell 
fate ratio posttreatment. Results presented in Supplemental Figures 
S4D andS5C integrate live and IF single-cell data. Intensities of nu-
clear values from the IF images were obtained using the same code 
from Reyes et al. (2018) from background-subtracted images averag-
ing 20 pixels around the cell nucleus. Violin plots were made using 
the Matlab function distributionPlot.m as described in Jonas (2020).

Survival Kaplan–Meier estimates
In Figure 1, D and E, the fractions of dying and dividing cells were 
computed using the empirical cumulative distribution function 
implemented in the MATLAB “ecdf.m.” Confidence intervals were 
estimated using Greenwood’s formula. Dying fraction uses timing of 
death as the cumulative event. Right censoring was applied to cells 
where death events were not registered within the whole experi-
ment. All tracked cells are considered in this analysis. Dividing frac-
tion uses timing of first division after treatment as the cumulative 
event. Right censoring was applied to cells that did not experience 
a mitotic event nor die within the whole experiment. Only surviving 
cells are considered in this analysis; for example, cells that experi-

enced a mitotic event but later died are not considered within our 
pool. The analysis extends until the last registered event in each 
condition, therefore the plots reach a plateau at different dose-
dependent times.

Final cell fate fractions
Cells’ fates are classified as described in Figure 1F within 3 d after 
treatment initiation. For each group, fractions are calculated as the 
ratio between the number of cells in each cell fate class to the total 
number of cells per treatment condition at the time of treatment 
initiation, so that for each treatment condition all cell fate fractions 
sum up to one (Figure 1G).

Intermitotic time distribution analysis
IMT is calculated as the time difference between consecutive 
manually annotated division events. For the analysis and fit of the 
histograms in Figure 2, we used the toolbox from MATLAB Distrib.m 
to fit distributions to a exponentially modified Gaussian (EMG) 
model (Lacouture and Cousineau, 2008).

Processing and clustering of CFP-Geminin traces
A one-dimensional median filter was applied to the raw geminin 
traces using the MATLAB function “medfilt1.m” with a time window 
of 3 h (smoothed traces). In Figure 3A, second-row traces are nor-
malized using the maximum raw value within the whole experiment 
time (smoothed normalized traces). In Figure 3B, smoothed traces 
from the low, medium, and high cisplatin doses are clustered in 
three groups based on the cross-correlation between traces in a 
time window of 16 h before treatment initiation. Linkage clustering 
with a “ward” minimum variance algorithm and cross-correlation 
distance function was implemented in MATLAB using the functions 
“linkage.m,” “finddelay.m,” and “cluster.m,” respectively. Within 
each cluster traces, were further grouped by their annotated cell 
fates, with death cells sorted by their time of death. Death cells 
before treatment are included in Figure 3B but disregarded for the 
ratio calculations in Figure 3, C and D. All individual smoothed nor-
malized traces from each cluster are plotted in Supplemental Figure 
S2A, first row, as thin gray lines and a single representative trace as 
a thick red line.

Histogram plots in Supplemental Figure S2A, second row, show 
the density histogram of division events with treated (orange) and 
untreated cells (gray) using the clustering from the Geminin traces 
from Figure 3B.

Cell fate ratios
Cell fate ratios are calculated for each treatment dose in combina-
tion with cell cycle phase cluster (Figure 3, C and D) or single-cell 
proliferation index (Figure 4, D and E) as described in the following 
equation, generating 12 ratios:

Cell fate ratio
Total number of cells before treatment

i,j
i,j

i,j
=

Nr. cells in specific cell fate after treatment

subindex i: Control, low medium, and high cisplatin doses.
subindex j: �Cell cycle cluter (G1, S and G2) or proliferation index 

(low, med, and high).

Division profile maps: Cells are clustered by their total number of 
divisions and then sorted by the time of first division. Each division 
event is marked with a color change at the time of division, as shown 
in Figure 4C. Cell death is marked with black and treatment initia-
tion is shown by a vertical orange line.
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Error estimation: In the supplemental tables, ratio errors are 
estimated using the binomial 95% confidence intervals calculation 
as follows:

z
p p

n
Estimated error

ˆ 1 ˆ( )
=

−

p̂: cell fate likehood
n: number of samples in subcluster
z: 1-0.95 for the 95% confidence interval

In the supplemental tables we provide all ratio values and errors and 
a set of tables with the absolute numbers per condition, thus 
providing all the data to explore alternative error calculations and 
statistical tests.

Code availability
The p53Cinema software package for tracking and quantifying sin-
gle-cell data can be downloaded at https://github.com/balvahal/
p53CinemaManual. All additional custom MATLAB code can be 
provided upon request.
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