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Abstract
Difficulties in interpreting machine learning (ML) models and their predictions limit the practical applicability of and confi-
dence in ML in pharmaceutical research. There is a need for agnostic approaches aiding in the interpretation of ML models 
regardless of their complexity that is also applicable to deep neural network (DNN) architectures and model ensembles. To 
these ends, the SHapley Additive exPlanations (SHAP) methodology has recently been introduced. The SHAP approach 
enables the identification and prioritization of features that determine compound classification and activity prediction using 
any ML model. Herein, we further extend the evaluation of the SHAP methodology by investigating a variant for exact 
calculation of Shapley values for decision tree methods and systematically compare this variant in compound activity and 
potency value predictions with the model-independent SHAP method. Moreover, new applications of the SHAP analysis 
approach are presented including interpretation of DNN models for the generation of multi-target activity profiles and 
ensemble regression models for potency prediction.

Keywords  Machine learning · Black box character · Structure–activity relationships · Compound activity · Compound 
potency prediction · Multi-target modeling · Model interpretation · Feature importance · Shapley values

Introduction

Major tasks for machine learning (ML) in chemoinformatics 
and medicinal chemistry include predicting new bioactive 
small molecules or the potency of active compounds [1–4]. 
Typically, such predictions are carried out on the basis of 
molecular structure, more specifically, using computational 
descriptors calculated from molecular graph representations 
or conformations. For activity prediction, ML models are 
trained to systematically associate structural patterns, rep-
resented in more or less abstract forms, with known biologi-
cal activities of small molecules. Classification models are 
derived for predicting class labels of test compounds (e.g., 
active/inactive or highly/weakly potent) whereas regression 

models predict numerical potency values. Supervised ML 
can also be applied to predict other molecular properties.

Understanding model decisions is generally relevant for 
assessing the consistency of predictions and detecting poten-
tial sources of model bias. Interpretability is also crucial for 
extracting knowledge from modeling efforts. Accordingly, 
there is high interest in better understanding the basis of 
correct ML predictions or failures [5–9]. For example, in 
structure–activity relationship (SAR) analysis, explainable 
model decisions help to identify chemical changes that cor-
relate with dependent variables and result in defined activ-
ity states or potency values. Having access to such model-
intrinsic information enables knowledge-based validation of 
models and hypothesis generation [9]. In addition to model 
accuracy, interpretability of predictions is a major criterion 
for the acceptance of computational approaches in pharma-
ceutical research.

A shortcoming of many ML approaches is the difficulty to 
rationalize predictions. Lack of interpretability might result 
from intrinsic black box character of ML methods such as, 
for example, neural network (NN) [10] or support vector 
machine (SVM) [11] algorithms. Furthermore, it might also 
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result from using principally interpretable models such a 
decision trees (DTs) as large ensembles classifiers such as 
random forest (RF) [12]. For a given method, lack of inter-
pretability applies regardless of whether it is used for object 
classification or as an algorithmic variant for the prediction 
of numerical values. For example, while SVM is applied for 
classification support vector regression (SVR) is used for 
value prediction [13] and both variants yield models with 
black box character.

Interpretation of ML predictions can be attempted in a 
model-specific or model-independent (agnostic) manner. For 
example, feature weighting is a model-specific approach to 
identify descriptor contributions that determine predictions 
of ML models [7, 14]. However, while feature weighting 
is straightforward to apply to simple models, such models 
typically have limited predictive performance and thus also 
limited relevance and need for interpretation.

Notably, model interpretation can be globally attempted 
or at the level of individual predictions. Feature weighting 
approaches typically rely on a global assessment of weights 
or importance values for a given model and training data set. 
On the other hand, model decisions can also be explained 
focusing on individual predictions and their feature contri-
butions. By analyzing multiple predictions, general feature 
trends might be detected.

As a model-independent approach, sensitivity analysis 
can be used to investigate the influence of systematic fea-
ture value alterations on model performance [15]. Sensitiv-
ity analysis has been applied to ML models including NNs 
[16] but becomes quickly computationally infeasible with 
increasing model dimensionality [9]. For practical purposes, 
sensitivity analysis is only applicable as a local adaptation 
by applying perturbations to individual features and exam-
ining their influence on model performance [9, 17]. Model-
specific approaches require finding an appropriate compro-
mise between model performance and interpretability, taking 
performance criteria for individual models into account 

[18]. By contrast, this is not the case for model-independent 
approaches, hence providing a substantial advantage. How-
ever, currently there is no agnostic approach for ML model 
interpretation available that would be generally applicable 
and serve as a standard.

Recently, we have introduced a new methodology for ML 
model interpretation in chemoinformatics and medicinal 
chemistry, which is generally applicable to ML approaches 
of any complexity [19]. The Shapley Additive exPlana-
tions (SHAP) method [19, 20] is based upon the Shapley 
value concept [20, 21] from game theory [22, 23] and can 
be rationalized as an extension of the Local Interpretable 
Model-agnostic Explanations (LIME) approach [8]. Herein, 
we further evaluate the SHAP methodology by comparing 
local approximations and exact Shapley value calculations 
and report novel applications including the interpretation of 
potency value predictions and multi-target modeling.

Materials and methods

Compounds and activity data

For model building and interpretation, different compound 
data sets were investigated. Binary classification and regres-
sion models were generated for 10 activity classes reported 
in Table 1. In addition to activity classes, a large set of 
kinase inhibitors was assembled, as further detailed below.

Compounds and activity data were extracted from 
the ChEMBL database [24] and filtered as follows. Only 
compounds tested in target-based direct binding assays with 
a maximum ChEMBL assay confidence score of 9 were con-
sidered. For binary activity prediction, classification mod-
els were used to distinguish between active and inactive 
compounds. Therefore, inactive compounds were required 
as training and test instances. Assumed inactives were ran-
domly selected from the ZINC database [25]. For training 

Table 1   Compound activity 
classes

For 10 activity classes, the CHEMBL identifier (ID), target name, number of compounds, and the average 
and interquartile range (IQR) of the pKi value distribution are reported

CHEMBL ID Target # Compounds Mean pKi IQR pKi

245 Muscarinic acetylcholine receptor M3 646 7.9 2.4
4860 Apoptosis regulator Bcl-2 620 8.5 3.3
231 Histamine H1 receptor 607 7.2 1.7
223 Alpha-1d adrenergic receptor 467 7.5 1.7
1889 Vasopressin V1a receptor 426 7.2 1.8
3798 Calcitonin gene-related peptide type 1 receptor 414 7.8 2.3
3473 C–C chemokine receptor type 3 386 7.1 1.5
4616 Ghrelin receptor 386 7.2 1.0
287 Sigma opioid receptor 345 7.4 1.3
268 Cathepsin K 331 6.9 2.0
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and testing of classification models, random samples of 1000 
compounds each were drawn from ZINC.

Activity classes

For activity classes used for potency value prediction, 
only equilibrium constants (pKi values) were considered 
as potency measurements. For each compound, the mean 
of all available pKi values was calculated, provided these 
values fell within the same order of magnitude (otherwise, 
the compound was omitted). For compounds with single or 
multiple potency measurements, a final pKi value of at least 
5 was required to exclude very weakly potent compounds 
from modeling. The selected activity classes contained at 
between 331 and 646 compounds (Table 1), which was con-
sidered a reasonable size for model building and evaluation.

Kinase inhibitors

The kinase inhibitor data set used herein was assembled pre-
viously [26]. To obtain a large number of kinase inhibitors, 
in this case, IC50 values were selected as potency measure-
ments. In total, the data set contained 19,030 inhibitors of 
103 human kinases.

For our analysis, these inhibitors were divided into target-
based highly potent (pIC50 ≥ 8) and weakly potent (pIC50 ≤ 6) 
inhibitors (compounds with intermediate potency values 
were omitted) to control the potential influence of boundary 
effects on predictions. The inhibitors formed 11,120 highly 
potent and 11,252 weakly potent compound-kinase interac-
tions, with an activity annotation density of ~ 1.1% of all 
theoretically possible inhibitor-kinase interactions. On the 
basis of the applied potency criteria, the final data set con-
tained 739 multi-kinase inhibitors.

Molecular representation

Model interpretation inherently depends on the interpretabil-
ity of the descriptors or features that are used to represent 
compounds. Herein, the extended-connectivity fingerprint 
of diameter 4 (ECFP4) was used as molecular representa-
tion [27]. ECFP4 encodes layered atom environments using 
integers produced by a hashing function. From each com-
pound-dependent feature set, a folded version with a con-
stant size of 1024 bits was obtained by modulo mapping. 
Folded ECFP4 encodes the presence (bit set on) or absence 
(bit set off) of layered atom environments accounting for 
molecular topology.

During ECFP4 generation, the correspondence between 
structural patterns and bit indices was recorded and stored 
for visualization. For each compound, atom environments 
were stored as SMARTS patterns for further analysis and 
visualization. This made it possible to map selected ECFP4 

features back onto compounds. Fingerprint calculations were 
implemented using Python scripts based on the OEChem 
toolkit [28].

Model building and validation protocol

For all compound sets, data splitting was based upon com-
putationally determined analog series [29]. Accordingly, an 
identified analog series was either added to the training or 
test set, thereby ensuring that training and test sets did not 
contain structural analogs from given series (which might 
facilitate “easy” predictions). For activity classes, com-
pounds were divided into 70% training and 30% test data; 
for kinase inhibitors, 75% training and 25% test data were 
used. For classification models, random samples of 1000 
compounds each were drawn from ZINC for training and 
testing, as stated above.

Cross-validation was performed using training data to 
select best hyperparameters for each ML model, as further 
specified below for each algorithm. Once hyperparameters 
were determined, a final model was trained for test set 
predictions.

Model performance was estimated on the external test 
set using multiple metrics. For classification results, area 
under the ROC curve (AUC), Matthew’s correlation coef-
ficient (MCC) [30], and balanced accuracy (BA) [31] were 
calculated. MCC and BA are defined on the basis of true 
positive (TP), true negative (TN), false positive (FP), and 
false negative (FN) instances.

To evaluate regression models, the mean absolute error 
(MAE), mean squared error (MSE), and coefficient of 
determination (R2) were calculated. MAE, MSE, and R2 are 
defined below by where n is the number of compounds, yi 
and ŷi are the measured and predicted pKi values for com-
pound i, respectively, and  is the mean.

MCC =
TP × TN − FP × FN

√
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Machine learning algorithms

Decision trees

A decision tree (DT) is a supervised ML method that infers 
a sequence of binary decision rules. DT can be applied to 
classification and regression problems. Starting from a root 
node, the DT structure divides training data into subsets to 
optimize class label separation. DT is recursive partitioning 
algorithm, which iteratively generates child nodes that might 
be further divided into node pairs. Since the decision path 
from the root to the terminal or leaf nodes records features 
selected for predictions, DT represents an interpretable ML 
method. However, DTs are frequently prone to overfitting 
and hardly ever used as individual models for practical appli-
cations. Instead, they are typically combined to yield ensem-
ble classifiers. In-house Python scrips based on scikit-learn 
[32] were used to generate all DT-based models.

Random forest

RF is one of the most popular ensembles of DTs [12]. Gener-
ation of the RF ensemble is based upon bootstrap aggregat-
ing and feature bagging to reduce the variance of individual 
trees. These approaches consider distinct compound subsets 
for training different DTs and random feature subsets for 
node splitting. Consensus predictions across all DTs forming 
an RF are determined and for RF regression, the average of 
predicted values is taken.

Herein, the number of DTs per RF was set to 300 and 
three hyper parameters were optimized via internal cross-
validation including the maximum number of features 
considered at each split point (square root, log2) and the 
minimum number of samples required per internal (2, 8, 16) 
and leaf (1, 5, 10) nodes. For other hyperparameters, default 
values from scikit-learn [32] were used.

Extremely randomized trees

The extremely randomized trees (ExtraTrees) method is 
algorithmically related to RF and also based on a DT ensem-
ble [33]. In this ensemble variant, the algorithm fully rand-
omizes the choice of features and their values for node split-
ting. Moreover, ExtraTrees does not use a bootstrap sample 
but the entire compound training set. The main motivation 
behind this algorithmic variant is further reducing DT-based 
variance. Hyperparameter optimization corresponded to RF.

Gradient boosting

The gradient boosting (GB) method builds sequential DT 
models focusing on the errors of the previous trees [34, 35]. 
The prediction of each new DT aims to further improve 

ensemble performance. Thus, at each step, a DT is added 
to the GB model to minimize prediction errors via gradi-
ent descent. Here, GB regression models were built using 
average accuracy as a first approximation and subsequently 
fitting individual DTs to the model pseudo-residuals using 
least squares. The learning rate weights the prediction of the 
residuals of each individual DT and represents a hyperpa-
rameter. It was optimized via internal cross-validation (with 
candidate values of 0.001, 0.01, 0.1, 0.2). Other optimized 
hyperparameters included the maximum depth of the trees 
(4, 6, 8, 10), the minimum number of samples required for 
a leaf node (1, 5) and for sub-diving an internal node (2, 8), 
and the consideration of stochastic GB (with candidate val-
ues for the subsampling fraction of 1.0, 0.75, and 0.25) [35].

Feedforward deep neural networks

A deep neural network (DNN) consists of a series of con-
nected units organized in sequential layers [10, 36, 37]. The 
basic DNN architecture includes an input layer, multiple 
hidden layers, and an output layer. The units are the neu-
rons (basis functions). Neurons within the same layer act in 
parallel and transform input values received from the pre-
vious layer into a scalar value. Gradient descent is used to 
minimize the loss and backpropagation [37] to calculate the 
gradient of the cost function. For multi-target activity pre-
diction, multi-task DNNs (MT-DNNs) with multiple output 
neurons were generated. The number of hidden layers and 
neurons per layer were selected across different architectures 
via cross-validation (with options [200, 100], [2000, 1000], 
and [2000, 1000, 100]). The learning rate was optimized 
with candidate values of 0.01 and 0.001. The batch size and 
dropout rate were set to 256 and 25%, respectively. Finally, 
the rectified linear unit (ReLU) was selected as the activa-
tion function and the number of epochs was set to 500. For 
internal validation, the best model was retained. DNN mod-
els were implemented with TensorFlow [38] and Keras [39].

Principles of the SHAP methodology

Shapley values

The Shapley value (SHAP) concept was originally devel-
oped to estimate the importance of an individual player in 
a collaborative team [20, 21]. This concept aimed to dis-
tribute the total gain or payoff among players, depending 
on the relative importance of their contributions to the final 
outcome of a game. Shapley values provide a solution to 
the assignment of a fair or reasonable reward to each player 
and represent a unique result characterized by the follow-
ing natural properties or axioms: local accuracy (additivity), 
consistency (symmetry), and nonexistence (null effect) [21].
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In the context of activity predictions, Shapley values 
can also be rationalized as a fair or reasonable allocation 
of feature importance given a particular model output [19]. 
Features contribute to the model’s output or prediction with 
different magnitude and sign, which is accounted for by 
Shapley values. Accordingly, Shapley values represent esti-
mates of feature importance (magnitude of the contribution) 
as well as the direction (sign). Features with positive sign 
contribute to the prediction of activity, whereas features with 
negative sign contribute to the prediction of inactivity (i.e., 
negative contribution to activity prediction).

In particular, the importance of a feature i is defined by 
the Shapley value in Eq. 1:

Here f (S) corresponds to the output of the ML model to be 
explained using a set S of features, and N is the complete 
set of all features. The final contribution or Shapley value of 
feature i ( �i ) is determined as the average of its contributions 
across all possible permutations of a feature set. Accord-
ingly, features are individually added to the set and the 
change in model output reveals their relevance. Importantly, 
this formalism considers feature orderings, which influence 
the observed changes in a model’s output in the presence of 
correlated features.

Local explanations

Interpretable ML models enable rationalization of their deci-
sions. Thus, understanding the reasons why a prediction is 
made by a complex model reduces or eliminates its black 
box character. For the explanation of individual predictions, 
a global understanding of the ML model is not essential. 
Instead, local approximations or explanations are sufficient 
to rationalize model decisions. Explanations of individual 
decisions were proposed by Ribeiro et al. and designated as 
Local Interpretable Model-agnostic Explanations (LIME) 
[8]. The LIME approach aims to find a simple model that 
locally approximates a complex ML model in the vicinity of 
a given test instance or prediction that should be explained. 
In this case, the test instance is an active or inactive com-
pound. Such local explanatory models might be defined as a 
linear function of binary variables following Eq. 2:

where x� ∈ {0, 1}|N| , and �i ∈ R [8]. Thus, a suitable local 
explanatory model is obtained by minimizing a loss function 
and penalizing model complexity through a regularization 
term according to Eq. 3:

(1)𝜙i =
1

|N|!
∑

S⊆N�{i}

|S|!(|N| − |S| − 1)!
[
f (S ∪ {i}) − f (S)

]

(2)g
(
x�
)
= �0 +

|N|∑

i=1

�ix
�
i

Here f  is the original ML model, �x is a kernel function, and 
Ω the regularization term.8 The kernel function defines simi-
larity with respect to the instance x to explain and therefore 
determines model locality.

These feature attributions from LIME might be expressed 
as Shapley values, which provide a LIME solution meet-
ing the axioms listed above. Given the computational costs 
associated with determining exactly Shapley values accord-
ing to Eq. 1, a model-independent approximation can be 
considered [19, 20].

Model‑independent SHAP: kernel function

The model-independent SHAP approach or kernel SHAP is 
based upon an extension of LIME. Specifically, the param-
eters in Eq. 3 (i.e., loss, kernel, and complexity) are set fol-
lowing the Shapley value formalism. Thus, kernel SHAP 
approximates feature contributions as Shapley values while 
the original LIME approach defines locality for an instance 
to be explained heuristically. Since kernel SHAP approx-
imates Eq. 1, it is subject to sampling variability. Kernel 
SHAP requires a background data set for training. Feature 
absence is simulated by substituting feature values with 
prevalent values of training data. Then, a weighted linear 
regression model is trained as an explanation model g on 
the basis of artificial samples generated by setting features 
on or off, which corresponds to considering different feature 
sets. The coefficients from the model g are the SHAP values 
determining feature importance.

Model‑dependent SHAP: decision trees

For decision tree-based models, an algorithm for the exact 
calculation of SHAP values has recently been reported [40]. 
Herein, this algorithm is adapted for compound activity and 
potency predictions.

Results and discussion

Model interpretability generally depends on estimating the 
contribution of individual features (independent variables) 
to predictions. Complex non-linear models hinder interpre-
tation but are often used in activity prediction and QSAR 
analysis. Accordingly, agnostic methods for consistent esti-
mation of feature importance regardless of model complex-
ity are highly desired. To these ends, the SHAP methodol-
ogy was introduced and proof-of-concept was established 
by analyzing class label predictions of active vs. inactive 
compounds using ML approaches of different complexity 

(3)�(x) = argmin
g

L
(
f , g,�x

)
+ Ω(g)
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including RF, SVM, and DNN [19]. Herein, we evaluate 
a recent methodological variant for exact calculation of 
Shapley values using tree-based methods and present new 
applications of the SHAP approach including interpretation 
of DNN models for the generation of multi-target activity 
profiles of compounds and regression models for potency 
prediction.

Comparison of kernel and tree SHAP

Although model-independent kernel SHAP is generally 
applicable to ML models, it only approximates the theoreti-
cally optimal solution. By contrast, the tree SHAP approach 
yields Shapley values according to Eq. 1 having no variabil-
ity. The algorithm computes exact SHAP local explanations 
in polynomial instead of exponential time [40].

The tree SHAP approach was applied herein to rationalize 
predictions of compound potency values and multi-target 
activity. Initially, the kernel and tree SHAP variants were 
systematically compared to evaluate the accuracy level of 
local kernel SHAP approximations in the context of activity 
prediction. Since the calculation of exact SHAP values is 
currently only available for tree-based models, two ensem-
ble methods based upon decision trees were considered for 
comparison including RFs and ExtraTrees. First, global 
performance of RF and ExtraTree models was assessed 
for the 10 activity classes. Table 2 reports average model 
performance across these classes using different metrics (as 
defined in the “Materials and methods” section). Classifica-
tion models for binary activity predictions and regression 
models for potency value predictions reached overall high 
performance levels and displayed low variability for differ-
ent training sets.

Given their high performance, these models provided 
a sound basis for comparing the kernel and tree SHAP 
approaches. Figure 1 shows the distribution of correlation 
coefficients calculated for absolute kernel and tree SHAP 
values across the 10 activity classes. For classification 
(regression) models, the mean correlation coefficient values 
were 0.83 (0.82) and 0.84 (0.83) for RFs and ExtraTrees, 
respectively. Thus, high correlation between approximated 

and exactly determined importance values was observed for 
both classification and regression models.

A feature importance ranking was also generated for the 
kernel and tree SHAP approaches. For different numbers of 
highly ranked features, the median number of features shared 
by the two SHAP variants was determined. For the 10 activ-
ity classes, median values were obtained for 40 comparisons 
using RFs and ExtraTrees for classification and regression. 
Table 3 reports the number of common features for varying 
numbers of highly ranked features, revealing a consistently 
high degree of feature overlap.

As an additional control, the variability of kernel SHAP 
results was further assessed by calculating the correlation 
coefficient for kernel and tree SHAP for three activity classes 
over five independent trials. For kernel SHAP, these trials 

Table 2   Performance of tree-
based models

Reported is the mean performance (standard deviation) over 10 activity classes for decision tree-based 
classification and regression models using different metrics. For classification models, area under the ROC 
curve (AUC), balanced accuracy (BA), and Matthew’s correlation coefficient (MCC) values are given. For 
regression models, the mean absolute error (MAE), mean squared error (MSE), and coefficient of determi-
nation (R2) are reported

Method Classification Regression

AUC​ MCC BA MAE MSE R2

RF 0.996 (0.006) 0.949 (0.048) 0.961 (0.004) 0.577 (0.077) 0.587 (0.142) 0.787 (0.073)
ExtraTrees 0.996 (0.006) 0.957 (0.041) 0.967 (0.030) 0.560 (0.073) 0.566 (0.138) 0.792 (0.072)

Fig. 1   Comparison of kernel and tree SHAP. For 10 activity classes, 
distributions of correlation coefficient (r) values for kernel and tree 
SHAP calculations, corresponding to approximated and exact SHAP 
values, respectively, are reported in boxplots. Black horizontal lines 
indicate median values. Results are shown for classification (activity 
prediction, top) and regression (potency value prediction, bottom) 
models using RF (blue) and ExtraTrees (red)
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involved distinct random seeds, which influenced the gen-
eration of artificial samples for local approximations. Thus, 
while tree SHAP did not display variability across these tri-
als, the use of different background data sets in kernel SHAP 
might influence the results. The comparison was carried out 
for classification models. The mean correlation coefficients 
for RFs and ExtraTrees were 0.73 or greater, with very low 
standard deviations ranging from 0.002 to 0.009.

Taken together, the findings in Fig. 1 and Table 3 indi-
cated the reliability of local approximations from kernel 
SHAP, compared to exact tree SHAP solutions, and hence 
the utility of the generally applicable model-independent 
approach for the activity and potency prediction tasks inves-
tigated herein.

Compound potency prediction

The model-dependent exact SHAP variant was then applied 
to explain the output values of regression models using tree-
based algorithms.

Interpretation of gradient boosting regression

A GB regression model was trained to predict compound 
potency values of muscarinic acetylcholine receptor M3 
ligands (CHEMBL ID: 245). This model predicted pKi val-
ues for test compounds with MAE, MSE, and R2 values of 
0.53, 0.52, and 0.73, respectively, and thus yielded prom-
ising results. The tree SHAP analysis framework enabled 
rationalizing these predictions. Figure 2 shows an exemplary 
SHAP-based explanation for the prediction of a compound 
with a pKi of 10.0. This compound was the third most potent 

compound in the test set and was predicted by the model 
with an error of less than one pKi unit. Figure 2a illustrates 
the SHAP feature ranking including positive and negative 
contributions. Each arrow corresponds to a given feature and 
its length is proportional to the estimated feature importance, 
i.e., the SHAP value. The expected value corresponds to the 
average of pKi values across the training set. The sum of all 
SHAP values and the expected value (7.7) represents the pKi 
value predicted by the model. This visualization indicates if 
there are individual features with large contributions such as 
the four top-ranked features (#1 to #4).  Figure 2b shows the 
iterative mapping of these features having the largest SHAP 
values on the test compound that strongly contributed to the 
prediction of high compound potency. As can be seen, these 
features defined substructures of the test compound.

To confirm that the model was indeed relying on prior-
itized features, systematic addition and removal of features 
was investigated. For feature addition and elimination, a 
zero-vector and the original compound fingerprint were con-
sidered as initial vectors, respectively. Then, features were 
added and removed randomly or according to the SHAP 
importance ranking. As a control for SHAP-based feature 
contributions, random selection of features was carried out 
by considering all features (random all), or only present 
features (random present), i.e., bits that were set on. After 
removal of five features the predicted pKi value decreased 
by 2.23, 0.04, and 0.18 for SHAP, random all, and random 
present rankings, respectively. For random removal, reported 
values correspond to the average across 500 independent 
trials. Moreover, the addition of five individual features led 
to an increase in the predicted pKi value of 1.72, 0.01, and 
0.16 units for SHAP, random all, and random present rank-
ings, respectively. Hence, in contrast to random selections, 
features prioritized by SHAP made large contributions to the 
prediction of high potency.

Interpretation of random forest regression

Predictions from RF regression models were also interpreted 
applying the tree SHAP approach. The potency of apoptosis 
regulator Bcl-2 inhibitors (CHEMBL ID: 4860)  was pre-
dicted by RF with MAE, MSE, and R2 values of 0.57, 0.57, 
and 0.78, respectively. Figure 3 shows the SHAP analysis 
for an exemplary inhibitor. This test compound was a highly 
potent inhibitor of Bcl-2, with a pKi of 10.7. For this com-
pound, the RF regression model predicted a nearly accurate 
pKi of 10.3. Figure 3a illustrates the presence of positive 
and negative feature contributions. The expected pKi value 
was 8.4 and the summation of all SHAP values yielded the 
output prediction of the RF model. Figure 3a shows that in 
this case, compared to the example in Fig. 2, many features 
contributed positively to the accurate potency prediction and 
more features were required to rationalize the prediction, as 

Table 3   Top-ranked features 
common to kernel and tree 
SHAP

Reported is the median num-
ber of features shared by ker-
nel and tree SHAP rankings 
at varying numbers (#) of top-
ranked features. The median 
value was obtained for 40 
comparisons, resulting from 
combinations of 10 activity 
classes, two approaches (RF and 
ExtraTrees), and two prediction 
tasks (classification and regres-
sion)

# Top-ranked 
features

Common 
features 
(Median)

5 4
10 9
20 19
30 28
40 36
50 45
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shown in Fig. 3b. Hence, SHAP analysis revealed intrinsic 
differences in model anatomy for comparably accurate pre-
dictions. In order to compare feature importance in closely 
related molecules, SHAP analysis was also applied to com-
pounds from the same analog series (structural analogs). 
Three analogs from the same series were present in the test 
set.  Figure 3c shows the top-ranked features from SHAP 

analysis for these compounds. Similar features were con-
sistently prioritized. The five and 10 most relevant features 
(i.e., with largest SHAP values) corresponded to very similar 
structural patterns for all analogs. This indicates the consist-
ency of ranking of individual features in structurally analo-
gous compounds. This RF regression model was trained to 
predict compounds from other analog series, i.e. structurally 

Fig. 2   Interpretation of GB-based compound potency prediction. a 
For an exemplary prediction, a feature importance ranking is shown 
including features with positive (red) and negative (blue) contribu-
tions to the prediction of the high potency value. Sequential arrows 
on the left are proportional to the feature contributions or SHAP val-

ues (shown on the pKi scale). The summation of the expected value 
(7.7, gray) and all feature contributions yield the predicted pKi value 
(9.6). Numbers in white preceded by # indicate top-ranked features. b 
From the top to the bottom, top-ranked features with positive contri-
butions are iteratively mapped onto the test compound
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different compounds from the training set. By contrast, local 
models are typically trained on given analog series or struc-
turally homogeneous data sets. In this case, the regression 
model prioritized corresponding structural features in ana-
logs from the same series.

We re-emphasize that SHAP-based feature prioritization 
identifies features that determine ML predictions. Features 
that are decisive for predictions may or may not be respon-
sible for specific activities. While correspondence between 
features that determine predictions and biological activities 
or SARs is frequently observed, there is no guarantee that 
features determining predictions are indeed activity-relevant. 

However, in the case of the Bcl-2 inhibitors shown in 
Fig. 3c, substructures delineated by top-ranked features such 
as 2-amino-3-chloro-pyridine moiety or the sulfonamide are 
indeed of critical importance for activity.

Comparison of tree‑based methods

SHAP results were also compared for parallel application 
of two tree ensemble algorithms. For cathepsin K inhibi-
tors (CHEMBL ID: 268), RF and GB regression models 
were generated. For RF (GB), compound potency was 
predicted with MAE, MSE, and R2 values of 0.56 (0.57), 

Fig. 3   Interpretation of RF-based compound potency prediction. a 
Feature contributions to an exemplary prediction are depicted accord-
ing to Fig. 2. The expected value (8.4, gray) and all feature contribu-
tions yield the predicted pKi value (10.3). b Top-ranked features with 

positive contributions are mapped onto the test compound. c Top-5 
and -10 ranked features are mapped onto three analog from the same 
series
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0.55 (0.58), and 0.71 (0.70). The most potent compound 
in the test set had an experimental pKi of 11.4. For this 
compound, the RF and GB models predicted pKi values of 
10.7 and 11.0, respectively, hence yielding another accu-
rate prediction for a highly potent compound. Figure 4 
compares the interpretation of RF- and GB-based predic-
tions. As shown in Fig. 4a, both models included many 
features with positive contributions to the prediction and 
only few with negative contributions. In both cases, the 
same top-5 features were identified, albeit with varying 
model-dependent importance values. Figure 4b shows 
the mapping of the top-1 feature (index 302) and top-5 
features onto the test compound. These features deline-
ated a coherent substructure in the test compound. Feature 
elimination also confirmed the strong positive influence 
of features prioritized by SHAP on the prediction of high 
compound potency.

Multi‑target activity prediction

As a methodologically distinct application, MT-DNNs were 
trained for predicting highly and weakly potent inhibitors 
of different kinases and predictions were interpreted. The 
feasibility of such predictions was demonstrated previously 
[41]. The architectures of MT-DNN models contained mul-
tiple output neurons, each of which represented a different 
prediction task (target). Accordingly, models were derived 
to account for all 103 human kinases for which inhibitors 
were available. Each output neuron provided a binary clas-
sification output. Rationalizing predictions of multi-kinase 
activity of inhibitors was of special interest. MT-DNN pre-
dictions were interpretable using the model-independent 
kernel SHAP approach. To interpret predictions for indi-
vidual targets, kernel SHAP calculations were carried out for 
each output neuron of the MT-DNN, as illustrated in Fig. 5. 
Then, multiple SHAP visualizations were combined for the 
comparative interpretation of activity predictions against 
different kinases. In the following, exemplary predictions 

Fig. 4   Comparative interpretation of RF- and GBM-based potency 
prediction. In a, positive (red) and negative (blue) feature contribu-
tions are compared for RF- and GBM-based regression models. The 
predicted pKi values are shown in bold and different colors for RF 

(yellow) and GBM (orange). White numbers give indices of top-
ranked features. b The top-1 and top-5 ranked features are mapped 
onto the compound. These features are common to both models

Fig. 5   SHAP-based interpreta-
tion of MT-DNN predictions. 
Each output neuron facilitates 
activity prediction of a different 
target (Tx). A SHAP-based 
explanation model is generated 
for each node/target. For a given 
test compound, each output 
prediction is rationalized
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of highly potent inhibitors of multiple kinases are discussed 
and model errors analyzed.

Figure 6 rationalizes predictions for exemplary multi-
kinase inhibitors. Figure 6a shows a test compound that 
formed six highly potent and five weakly potent interactions 
with different kinases. The figure compares the SHAP analy-
sis for two of these targets including vascular endothelial 
growth factor receptor 2 kinase (CHEMBL target ID: 279) 
and serine/threonine Aurora-B (ID: 2185) kinase. The com-
pound was correctly predicted to be highly potent against 
both targets with probabilities of 0.98 and 1.00, respectively. 
Interestingly, features that negatively contributed to the 
predictions defined the same substructure for both kinases 
whereas features that mostly determined the correct predic-
tion of high potency against these targets corresponded to 
only partly overlapping superstructures. For these kinases, 
the training sets differed and the models emphasized differ-
ent structural features for classification as a highly potent 

inhibitor. Figure 6b shows the corresponding analysis for 
another exemplary compound with high potency against 
vascular endothelial growth factor receptor 2 kinase (ID: 
279) and tyrosine protein kinase LCK (ID: 258). Here, fea-
tures that positively or negatively influenced the predictions 
also delineated different substructures in these compounds. 
We note that the top-1 negative feature is not highlighted 
on the compound. In this case, the absence of a structural 
feature characteristic of highly potent training compounds 
had a negative effect on the prediction, hence decreasing the 
probability of activity. In fact, two of three features that con-
tributed negatively corresponded to atom environments that 
were absent in the test compound (SMILES [CH]:C(:[CH])
NC(:N):N and C:C([NH]):N:C:N). By contrast, all features 
with positive contributions were present in the compound 
and are mapped and highlighted in the figure. The poten-
tially critical role of feature absence for model decisions 
revealed by SHAP analysis is further analyzed below.

Fig. 6   Interpretation of MT-DNN activity predictions. In a and b SHAP analysis is shown for two inhibitors that were highly potent against two 
kinases. The top-1 and top-3 positive and negative features are mapped onto the compound and colored according to their contributions
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Insights into model errors

SHAP analysis also helps to better understand model errors 
and reveals reasons for inaccurate predictions. For example, 
the same GB regression model that correctly predicted the 
highly potent compound in Fig. 2 actually failed to predict 
the potency value of the most potent compound in the test 
set. Its pKi value was 10.5 but the GB model underestimated 
its potency by 3.3 units. In Fig. 7 this compound is shown 
and an explanation for the model error is provided. SHAP 
analysis identified features making strong positive or nega-
tive contributions. The top-5 positive and negative features 
were mapped. In contrast to positive features, four of the 
top-5 negative features were not detected in the test com-
pound. Thus, their absence made negative contributions to 
potency prediction. These features were prevalent in highly 
potent training compounds and their absence in the test com-
pound was heavily penalized by the GB model. Had these 
features been present, their contributions would have been 
strongly positive, essentially leading to correct prediction of 

the high potency value. Without SHAP analysis, this type of 
error could not be rationalized.

Furthermore, an incorrect classification of a MT-DNN 
model was analyzed. In Fig. 6a, two correct predictions 
of high potency against different kinases were interpreted 
for an inhibitor. This compound was also highly potent 
against ribosomal protein S6 kinase 1 (ID: 4501). In this 
case, however, the MT-DNN model failed and predicted a 
weakly potent inhibitor, with a cumulative probability of 
only 0.09. As shown in Fig. 8, SHAP analysis identified 
many features that negatively contributed to this predic-
tion, including features that were present in the inhibitor 
(and defined substructures) and others that were absent. 
Hence, in this case, multiple features with negative contri-
butions were present in the test compound while features 
learned by the model to make positive contributions were 
absent, thus rationalizing the incorrect prediction. In these 
examples, the absence of features that were frequently 
detected in highly potent training was responsible for pre-
diction errors. These findings illustrate the complexity of 

Fig. 7   Rationalizing an error of a GB regression model. For a com-
pound with high potency against muscarinic acetylcholine receptor 
M3, the potency value was ~ 1000-fold under-predicted by the GB 
model. SHAP identifies features making strong positive contributions 

to the prediction that are mapped onto the compound (left). By con-
trast, features with strongest negative contributions to potency predic-
tion are absent in the compound. The corresponding atom environ-
ments are shown on the right

Fig. 8   Rationalizing an MT-DNN classification error. A highly potent 
inhibitor of ribosomal protein S6 kinase 1 was incorrectly predicted 
to be weakly potent against this target. SHAP analysis identifies a 
variety of features with strong negative contributions to the predic-

tion. The top-6 ranked negative features are mapped onto the inhibi-
tor. Three of these features are present in the compound, but the three 
others are absent. The corresponding atom environments are dis-
played
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ML model decisions and also emphasize that learned fea-
tures driving predictions are often model-specific.

Conclusion

The SHAP methodology enables the interpretation of ML 
models and their predictions, yielding feature importance 
values for individual predictions from any ML model. 
Hence, SHAP analysis sheds light on the black box nature 
of many ML approaches. Once numerical values indicat-
ing the magnitude and direction of feature contributions to 
predictions have been determined, features can be mapped 
on test compounds providing intuitive visualizations of 
feature contributions. The kernel SHAP method was 
originally introduced for evaluating binary classification 
models. It utilizes local approximations that enable the 
application of the approach to ML models of any complex-
ity including deep learning architectures; a unique char-
acteristic of SHAP. For models based on DT ensembles, 
the recently developed tree SHAP algorithm makes it pos-
sible to calculate exact Shapley values, which represents 
the most critical step for the derivation of an explanation 
model. Therefore, we have been interested in further inves-
tigating the SHAP methodology, with two major goals. 
First, our kernel SHAP method for the assessment of com-
pound activity prediction was compared in detail to the 
tree SHAP algorithm using DT-based ensemble classifiers 
defining its applicability domain. Local approximations we 
implemented make SHAP analysis generally applicable to 
ML models and comparing the local approach with tree 
SHAP made it possible to determine the accuracy level of 
local approximations. Second, advanced applications for 
SHAP were investigated including the interpretation of 
compound potency prediction using ML regression mod-
els and multi-target predictions using MT-DNNs, which 
represent complex ML scenarios. In direct comparisons, 
kernel and tree SHAP analysis were found to yield very 
similar results in the assessment of activity and potency 
predictions, with high correlation between prioritized fea-
tures. These findings provided substantial support for the 
validity of the generally applicable kernel SHAP approach. 
Furthermore, we found that SHAP analysis yielded mean-
ingful explanations of compound potency and multi-tar-
get predictions, revealing different model characteristics 
responsible for individual predictions and reasons for 
success or failure of a given model. For practical ML 
applications in drug discovery, such insights are of criti-
cal relevance. Taken together, the results of our analysis 
encourage further applications of the SHAP approach to 
better understand ML efforts and improve model quality.
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