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Abstract: Dietary vitamin E (VE) supplementation is a method to produce VE-enriched meat and
improve meat lipid oxidative stability. We aimed to study the effect of the VE supplementation
duration on meat lipid oxidative stability, VE retention, and antioxidant enzymes’ activity, and
explore its relationship with the mitogen-activated protein kinases (MAPK)-nuclear factor-erythroid
2-related factor 2 (Nrf2) signaling pathway in broilers slaughtered after electrical stunning. A total
of 240 male 18-day-old Arbor Acres Plus broilers were distributed to four treatments, with six
replicates in each treatment, and ten broilers per replicate. Broilers were fed with a basal diet (no
supplementation of VE) or VE diet (200 IU/kg VE, DL-α- tocopherol) for one (W1), two (W2), or
three (W3) weeks before electrical stunning (130 mA, 60 Hz, for 1s) and slaughter. The VE retention
was positively and linearly affected (p < 0.01) by the VE feeding duration at one to three weeks before
slaughter, and negatively (all p < 0.01) related to the thiobarbituric acid reactive substance (TBARS)
content in both breast and thigh muscles at d 0, d 2, and d 6 postmortem. The VE retention was
negatively (p < 0.05) related to the gene expression of c-Jun N-terminal kinases 1 (JNK1) and 2 (JNK2),
Nrf2 in breast muscles, and JNK1 and p38 MAPK in thigh muscles. In conclusion, dietary vitamin E
supplementation at 200 IU/kg for three weeks before electrical stunning and slaughter improved
lipid oxidative stability via increasing VE retention, rather than the regulation by gene expression of
the MAPK-Nrf2 signaling pathway in skeletal muscles of broilers.

Keywords: VE; MAPK; JNK; p38; Nrf2; GST; redox; lipid oxidation; meat; electrical stunning

1. Introduction

Vitamin E (VE) supplementation in feed is one method to improve the antioxidant
capacity and reduce lipid oxidation in the reproductive system, eggs, and offspring of
chicken [1]. The VE has proved to be an effective antioxidant that protects unsaturated
fatty acids against lipid peroxidation, and prevents membrane destabilization, cellular
dysfunction [2], and the formation of undesirable sulfur compounds in raw meat [3].
Adding VE in feed enhances immunity, disease resistance, and the structural integrity of
immune organs [4], and it improves meat quality via reducing lipid and protein oxidation
in the early postmortem of animals [5,6]. Meat stability could be improved via feeding high
concentrations of VE for two weeks before slaughter [7]. A supplement of VE in the forms
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of DL-α- or α- tocopherol acetate at 200 mg/kg feed for 2 to 3 weeks [8], 42 days [9], or
6 weeks [10] reduced thiobarbituric acid reactive substance (TBARS) in the broiler muscle
and improved VE retention in the muscles. Electrical stunning is a widely used method in
the world to make chickens unconscious and to relieve pain during slaughter. Electrical
stunning could affect the production of reactive oxygen species (ROS) in muscle [11]
and lipid oxidative stability during meat storage [11–13]. Previous studies of our team
observed that electrical stunning with 130 mA, 60 Hz before slaughter decreased meat lipid
peroxidation. We hypothesized that the supplementation of VE in feed for one to three
weeks before electrical stunning (with 130 mA, 60 Hz) and slaughter could further improve
meat lipid oxidative stability via increasing VE retention in skeletal muscles of broilers.

Nowadays, studies show that VE has both antioxidant and non-antioxidant effects
through working on specific signal transduction enzymes, transcription factors, and mem-
brane receptors at the molecular level [2]. The mitogen-activated protein kinases (MAPK)-
nuclear factor-erythroid 2-related factor 2 (Nrf2) signaling pathway is reported to play
an important role in antioxidant modulation in animals. Studies showed that VE has
the biochemical activity to modulate signaling pathways (such as Nrf2), inflammatory
molecules, apoptotic regulators, cytokines, kinases (e.g., MAPK), and antioxidant en-
zymes [14]. Tian et al. reported that VE could reduce fluorosis-induced oxidative stress and
cell apoptosis through the suppression of c-Jun N-terminal kinases (JNK) and extracellular
signal-regulated protein kinase (ERK) phosphorylation [15]. The VE has a therapeutic
effect on lipid and glucose homeostasis through the activation of the Nrf2/carboxylesterase
1 (CES1) signaling pathway [16]. Vitamin E could protect rats from cadmium-induced
sub-chronic liver injury via the activation of the Nrf2 pathway and the suppression of
oxidative stress [17]. Vitamin E enhances the immunity and structural integrity of im-
mune organs in grass carp associated with nuclear factor kappa-B (NF-κB), a target of
rapamycin (TOR) and Nrf2 signaling [4]. The Impairment of the blood–testis barrier caused
by di-(2-ethylhexyl) phthalate exposure could be alleviated by vitamin E and vitamin C
through the inhibition of the oxidative stress-mediated p38 MAPK (p38) signaling pathway
in rats [18]. VE also plays a critical role in the modulation of NF-κB, receptor activator
of NF-κB/receptor activator of NF-κB ligand, MAPK, and oxidative stress signaling in
bones [19]. Most previous studies focused on the effects of vitamin E on superoxide dismu-
tase (SOD) and glutathione peroxidase (GPx) activities; however, the effects of vitamin E
on the downstream targets of oxidative stress signaling need further study [19]. During
our previous study, we observed that gas stunning with different CO2 concentrations [20]
and electrical stunning with 130 mA, 60 Hz before slaughter affected gene transcriptions
in the MAPK-Nrf2 signaling pathway in the muscle of broilers [12,21]. However, the
changes in those antioxidant molecules played a limited role in lipid oxidation during
storage [12,20,21], which was possibly due to a fast death of broilers after stunning (approx-
imately 3 min). We hypothesized that adding VE to broiler diets for one to three weeks may
improve lipid oxidative stability through increasing VE retention and the up-regulation
of gene transcriptions in the MAPK-Nrf2 signaling pathway in the skeletal muscles of
broilers.

We aimed to study the effect of the VE feeding duration on meat lipid oxidative
stability, VE retention, and antioxidant enzyme activity, and explore its relationship with
the MAPK-Nrf2 signaling pathway.

2. Materials and Methods
2.1. Birds and Treatment

Supplementation of VE at 200 IU/kg feed was proved to alleviate lipid oxidation in
chicken eggs [1] and meat [8–10]. Thus, the concentration of 200 IU/kg feed was selected
in this trial. A total of 240 male day-old Arbor Acres Plus broilers were reared in cages
until 17-days old with a normal diet containing 20 IU/kg VE. The VE for treatment diet
was provided from DL-α- tocopherol (50%) with 400 mg/kg in feed (i.e., 200 mg/kg VE
in feed). Birds fasted for 8 h at the age of 17 days, and birds with similar bodyweight
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at 18-days old were randomly distributed to four treatments, with six replicates in each
treatment, and ten broilers per replicate. Two diets were fed to broilers from 18 to 38 days.
One was a basal diet with no supplementation of VE. The other was a treatment diet with
VE supplementation at 200 IU/kg in feed. Birds from the control group were fed with the
basal diet from 18 days to 38 days. Other birds were fed with the treatment diet for one
(W1), two (W2), or three (W3) weeks before electrical stunning and slaughter. The diet
composition and nutrient levels are shown in Table 1, and details of treatments are shown
in Table 2. Birds had free access to feed and drinking water. The temperature, humidity,
light, and immunization procedures were carried out according to the Arbor Acres Broiler
Management Guide [22].

Table 1. Composition and nutrient levels of basal diets (air-dry basis, %).

Ingredients
Feed Composition

d 0–17 d 18–38

Corn 63.00 55.90
Soybean 31.74 37.93

Soybean oil 1.82 2.23
Limestone 1.36 1.19

Dicalcium phosphate 1.30 1.87
Lysine hydrochloride 0.05 0.05

DL-methionine 0.07 0.17
Salt 0.35 0.35

Choline 0.23 0.23
Vitamin premix 1 0.02 0.02
Mineral premix 2 0.20 0.20
Nutrient levels 3

Metabolizable energy, MJ/kg 12.22 12.39
Crude protein, % 22.60 20.30

Lysine, % 1.24 1.08
Methionine, % 0.48 0.36

Methionine + Cystine, % 0.82 0.68
Calcium, % 0.94 0.86

Non-phytate phosphorus, % 0.43 0.34
1 Vitamin premix supplied following vitamins for each kg of feed: vitamin A, 1,400 IU; D3, 185IU; E, 20 IU during
d 0–17 and 0 IU in basal diet during d 18–38; K3, 1.0 mg; B1, 2.04 mg; B2, 8.13 mg; B6, 3.39 mg; B12, 1.0 mg; biotin,
0.25 mg; pantothenic acid, 10.2 mg; folic acid, 0.57 mg; niacin, 32.67 mg. 2 Mineral premix supplied following
minerals for each kg of feed: Mn, 200 mg; Zn,151 mg; Cu, 11 mg; Fe 150 mg; Se, 0.35 mg; I, 1.0 mg. 3 Nutrient
levels are calculated values.

Table 2. Treatment details.

Treatments 1
Dietary VE Content (IU/kg) VE Feeding

Duration
Electrical Stunning

(Alternative Current)d 0–17 d 18–24 d 25–31 d 32–38

Control 20 0 0 0 None 130 mA, 50 Hz, 1 s
W1 20 0 0 200 One week 130 mA, 50 Hz, 1 s
W2 20 0 200 200 Two weeks 130 mA, 50 Hz, 1 s
W3 20 200 200 200 Three weeks 130 mA, 50 Hz, 1 s

1 Control, W1, W2, and W3 represent the basal diet (without adding DL-a-tocopherol), or a feed added with 200 IU/kg DL-a-tocopherol for
one, two, or three weeks, respectively, before the slaughter of broilers. VE content in the diet of d 0–17, the basal diet of d 18–38, and the
treatment diet of d 18–38, respectively, contained vitamin E of 22.99, 1.53, and 217.74 IU/kg in feed (measured values).

On day 38, one bird per replicate was selected (bodyweight 2.0 ± 0.2 kg). All of the
selected birds were stunned with an alternating current of 130 mA, 60 Hz, for 1s in a water
bath. Stunning parameters were set via an alternating current transformer (TDGC2-0.5 kVA,
Hongbao Electric Co., Ltd., Zhejiang Yueqing, China). Stunning and slaughter were carried
out according to our previous study [12]. The process of this study was approved by
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the Animal Care and Use Committee of the Yangzhou University with protocol NO. of
YZUDWSY 2018-07-17.02.

2.2. Sampling

Blood was harvested in procoagulant tubes during bleeding from the jugular vein and
carotid artery on the left side of the neck. Serum was collected after centrifuging at 1800× g
at 4 ◦C for 10 min. Four pieces of meat (2.00 ± 0.20 g) were, respectively, taken from the
left Pectoralis Major (breast muscle) and Musculus Iliofibularis (thigh muscle), stored at 4
(±0.25) ◦C for 0, 2, 4, 6 days, and then stored at −20 (±1) ◦C for measurement of TBARS
and antioxidant capacity. Duplicate samples (0.20 ± 0.05 g) from the right side of Pectoralis
Major and Musculus Iliofibularis were collected with sterilized scissors and tweezers and put
into 0.50 mL DNase /RNase free plastic tubes, frozen in liquid nitrogen, and transferred to
−80 ◦C for measuring of gene expression.

Approximately 20.0 (±3.0) g muscle sample was taken from the right side of Pectoralis
Major and Musculus Iliofibularis, and stored at −80 ◦C for determination of VE. Two kilo-
grams of feeds were taken during feed processing using a multipoint method, further
reduced to 0.10 kg via quartering method, and stored at −80 ◦C for VE measurement.

2.3. Determination of α-Tocopherol (VE) in Feed and Muscles

15.0 g muscle was cut into small dices, crushed with a high-speed universal grinder
(FW 100, Taisite Instrument Co., Ltd., Tianjin, China), dried with a freeze dryer (SCIENTZ-
12N, Ningbo Xinzhi Freeze Drying Equipment Co., Ltd., Ningbo, China) at −70 ◦C for
72 h, and smashed for the second time with the same grinder. Feed samples (10.0 g) were
smashed twice via the above grinder. Feed and muscle powder were sieved by 0.28 mm
sieve, respectively, harvested in a sealing bag, and stored at −20 ◦C until analysis.

Feed was then measured via the method described in GB/T 17812-2008 [23]. Briefly,
put feed powder (1.50 g) into an anaerobic tube, add with 6 mL ethanol, 1ml 10% L-ascorbic
acid, and 2 mL KOH solution (KOH/water = 1:1, g/mL), fill with nitrogen, seal, mix using
a vortex, give it a water bath (70 ◦C) for 30 min, and cool on ice. Transfer the saponification
solution into a 50 mL tube with 2% NaCl (20 mL). Add 10 mL anhydrous ether, shake for
2 min, keep still for layering, and take the upper organic phase into a 50 mL centrifuge tube.
Add anhydrous ether (5 mL) to extract α-tocopherol once again. Mix the upper organic
phase (extracting solution) from the two extraction processes in a 50 mL centrifuge tube.
Add 10 mL of water to wash ether, centrifuge at 2500× g at 4 ◦C for 10 min, take 5 mL of
the upper organic phase, dry with nitrogen, dissolve with methanol to 1ml, and filter via
membrane (0.45 µm) for further analysis. Extraction of α-tocopherol from muscle samples
was similar to feed samples. The minor differences were that 0.50 g muscle was processed
with 1mL 5% L-ascorbic acid and 15 mL anhydrous ether.

The α-tocopherol in feed and muscle extractions were measured via HPLC (E2695
of Waters, Milford, CT, USA) equipped with a chromatographic column (Zorbox sb-c18),
with an inner diameter as 250 × 4.6 × 5 µm. The mobile phase was methanol/water at
98%:2%, with a flow rate of 1mL/min. The detection was carried out at 300 nm wavelength
with an injection of 50 µL extraction. The standard curve and working curve were made
according to the national standard (GB/T 17812-2008) [23]. Concentration of α-tocopherol
was expressed as µg/g dry matter.

2.4. Lipid Oxidation and Antioxidant Capacity in Muscles and Serum

The TBARS was determined to represent lipid oxidation using a malondialdehyde
(MDA) kit [12]. The contents of TBARS at d 0, d 2, d 4, and d 6 postmortem were recorded
as TBARSd0, TBARSd2, TBARSd4, and TBARSd6. Protein contents and enzyme activities of
SOD and glutathione S-transferase (GST) at d 0 and d 2 were measured according to our
previous study [12,21] using protein kit (A045-2), total SOD kit (A001-3), and GST kit (A004)
bought from Nanjing Jiancheng Bioengineering Institute (Nanjing, China). Measurement
details were performed upon the instructions of the kits. For each variable, samples of all
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of the treatments were determined in one batch. The results of SOD and GST activity at
d 0 and d 2 were recorded as SODd0, SODd2, GSTd0, and GSTd2, respectively. Serum uric
acid was measured according to Xu et al. [21] using the uric acid kit (Shanghai Rongsheng
Biopharmaceutical Co., Ltd., Shanghai, China). The TBARS, GST, and SOD of serum
were measured using the same methods and commercial kits for muscles. Samples were
determined in seven months.

2.5. Gene Expression

The gene expression of the MAPK-Nrf2 signaling pathway was measured using
the method described in [12,20]. These molecules contained c-Jun N-terminal kinase 1
(JNK1), c-Jun N-terminal kinase 2 (JNK2), p38, Nrf2, the alpha 3 isozymes of glutathione
S-transferase (GSTA3), the theta 1 isozymes of glutathione S-transferase (GSTT1), Cu/Zn-
superoxide dismutase (SOD1), and Mn-superoxide dismutase (SOD2). The gene expression
of β-actin was stable in the treatment of dietary VE; therefore, β-actin was chosen as a
housekeeping gene in the present study. Primer sequences and annealing temperatures
for real-time quantitive PCR were designed according to [20]. Results were normalized to
β-actin mRNA levels based on the 2−∆∆CT method [24].

2.6. Statistical Analysis

Raw data were organized using Microsoft Excel 2016 of Microsoft Corp. (Beijing,
China). Data were analyzed via the SPSS software (Ver. 20.0) for Windows from SPSS,
Inc. (Chicago, IL, USA). Normal distribution of data was tested by Kolmogorov-Smirnov
(K-S) tests. One-way ANOVA was applied to data analysis and means were separated
by Duncan’s multiple range tests. Correlation between variables was analyzed with the
bivariate Pearson’s correlation coefficients. Regression between variables was analyzed via
linear regression. Results were expressed as means and SEM. The difference is significant
if a p-value is lower than 0.05. Figures were created with OriginPro 8 SR1 (OriginLab
Corporation, Northampton, MA, USA). Multiple figures were combined with Adobe
Photoshop CC 2019 (Adobe Systems Inc., San Jose, CA, USA).

3. Results
3.1. VE Retention

The VE content in both the breast and thigh muscles was greater (p < 0.01) in treatment
W3 than W2 (p < 0.01), which is more (p < 0.01) than W1 and the control (p < 0.01, Figure 1A).
The duration of feeding VE affected VE accumulation in both the breast (Figure 1B) and
thigh muscles (Figure 1C) in both linear (p < 0.01) and quadratic (p < 0.01, figure not shown)
manners during the first three weeks.

3.2. Lipid Oxidative Stability

Feeding VE for one to three weeks decreased TBARS at the day of slaughter (all
p < 0.01) and during meat storage from d 2 to d 6 postmortem (all p < 0.01 except for d 4 in
breast muscle, p = 0.07) in both the breast and thigh muscles of broilers as compared with
the control (Figure 2A,B). The W3 consistently resulted in the lowest level (all p < 0.05) of
TBARS in both breast and thigh muscles during six days of storage.
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Figure 2. Effect of vitamin E (VE) feeding durations on lipid oxidative stability in muscles of broilers
slaughtered after electrical stunning. Control, W1, W2, and W3 represent the basal diet (without
adding VE) or feed added with 200 IU/kg VE for one, two, or three weeks before the slaughter
of broilers. TBARS, thiobarbituric acid reactive substance (µmol malondialdehyde/100 g protein).
a–d Means with no common superscripts within a group of columns differ significantly (p < 0.05).
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The TBARS remained at a relatively higher level and experienced an irregular increase
or decrease during the storage of six days in the control and W1 in muscles (p < 0.05 or
p < 0.01, Figure 2C,D). A supplementation of VE for two weeks resulted in a peak of TBARS
on d 2 and a decrease in TBARS on d 4 and 6 in both breast (p < 0.05) and thigh (p < 0.01)
muscles. Lipid oxidation was more stable in W2 (p > 0.05) and was the most stable in W3,
where TBARS decreased from d 0 to d 2 (p < 0.01) and stayed at a low level between d 4
and d 6 (p > 0.05) in the muscles.

3.3. Antioxidant Capacity

Feeding VE for two weeks decreased the activity of serum SOD and GSTd0 in thigh
muscles as compared to one week (p < 0.01, Figure 3A,C). Feeding VE for three weeks
had a recovery of serum SOD and a further decrease in GSTd0 in the thigh muscle. The
activity of GST was higher in W2 and W3 than in the control and W1 at d 2. Serum TBARS,
serum uric acid, GSTd0–2, and SODd0–2 in the breast muscle, as well as SODd0–2 in the thigh
muscle, remained at the same level among treatments (p > 0.05, Figure 3A–C).

Foods 2021, 10, x FOR PEER REVIEW 7 of 15 
 

 

 
Figure 2. Effect of vitamin E (VE) feeding durations on lipid oxidative stability in muscles of broilers 
slaughtered after electrical stunning. Control, W1, W2, and W3 represent the basal diet (without 
adding VE) or feed added with 200 IU/kg VE for one, two, or three weeks before the slaughter of 
broilers. TBARS, thiobarbituric acid reactive substance (μmol malondialdehyde/100g protein). a–d 

Means with no common superscripts within a group of columns differ significantly (p < 0.05). 

 
Figure 3. Effect of vitamin E (VE) feeding durations on antioxidant status in muscles of broilers 
slaughtered after electrical stunning. Control, W1, W2, and W3 represent the basal diet (without 
adding VE) or feed added with 200 IU/kg VE for one, two, or three weeks before the slaughter of 
broilers. TBARS, thiobarbituric acid reactive substance. SODd0, SODd2, GSTd0, and GSTd2, respec-
tively, represent the activity of total superoxide dismutase and glutathione S-transferase at 0 d and 
2 d postmortem; unit of TBARS, uric acid, SOD, and GST were μmol malondialdehyde/100g protein, 
μmol/mg protein, U/mg protein, and μmol/mg protein. a–c Means with no common superscripts 
within a group of columns differ significantly (p < 0.05). 
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slaughtered after electrical stunning. Control, W1, W2, and W3 represent the basal diet (without
adding VE) or feed added with 200 IU/kg VE for one, two, or three weeks before the slaughter of
broilers. TBARS, thiobarbituric acid reactive substance. SODd0, SODd2, GSTd0, and GSTd2, respec-
tively, represent the activity of total superoxide dismutase and glutathione S-transferase at 0 d and 2
d postmortem; unit of TBARS, uric acid, SOD, and GST were µmol malondialdehyde/100 g protein,
µmol/mg protein, U/mg protein, and U/mg protein. a–c Means with no common superscripts within
a group of columns differ significantly (p < 0.05).

3.4. MAPK-Nrf2 Signaling Pathway

The JNK2 mRNA expression in breast muscle was up-regulated after feeding VE
for one week, but recovered to the control level after two weeks (Figure 4A). The gene
expression of Nrf2 in the thigh muscle was up-regulated by VE supplementation for two
weeks, but recovered to the control level at the third week (Figure 4B). Feeding VE for three
weeks suppressed (p = 0.05) mRNA expression of p38 in thigh muscle. The duration of VE
feeding had no influence (p > 0.05) on other genes of the MAPK-Nrf2 pathway in the breast
or thigh muscle compared to the control group.
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Figure 4. Effect of VE feeding durations on gene expressions of the mitogen-activated protein kinases
(MAPK)-nuclear factor-erythroid 2-related factor 2 (Nrf2) signaling pathway in muscles of broilers
slaughtered after electrical stunning. Control, W1, W2, and W3 represent the basal diet (without
adding VE) or feed added with 200 IU/kg VE for one, two, or three weeks before the slaughter
of broilers. JNK1, c-Jun N-terminal kinase 1; JNK2, c-Jun N-terminal kinase 2; p38, p38 mitogen-
activated protein kinases, or p38 MAPK; Nrf2, nuclear factor-erythroid 2-related factor 2; GSTA3
and GSTT1, the alpha3 and theta 1 isozymes of glutathione S-transferase, respectively; SOD1 and
SOD2, Cu/Zn- and Mn-superoxide dismutase, respectively. Results were normalized to β-actin
mRNA levels. a–b Means with no common superscripts within a group of columns differ significantly
(p < 0.05).

3.5. Correlations among Variables

The feeding duration strongly and positively affected (all p < 0.01) VE retention in
both breast and thigh muscles (Table 3). In the breast muscle, VE retention was positively
related to the activity of GSTd2 (p < 0.05), but negatively related to TBARS at d 0, d 2, and d
6 (all p < 0.01), and gene expressions of JNK1 (p < 0.05), JNK2 (p < 0.01), and Nrf2 (p < 0.05).
In the thigh muscle, VE retention was positively related to the activity of GSTd2 (p < 0.01),
but negatively related to GSTd0 (p < 0.01), TBARS from d 0 to d 6 postmortem (p < 0.05 or
<0.01), and the gene expression of JNK1 and p38 in thigh muscles (p < 0.05).

The feeding duration of VE was negatively related to the TBARS content in both
breast (p < 0.01) and thigh muscles (p < 0.05 or < 0.01) from d 0 to d 6, excepted for the
TBARSd4 of the breast muscle (p > 0.05, Table 4). The TBARSd0 and TBARSd4 levels were
positively (both p < 0.05) correlated with SODd2 activity in the thigh muscle. The TBARSd2
was negatively correlated with GSTd0 (p < 0.05) and GSTd2 (p < 0.01) in the breast muscle
and GSTd2 (p < 0.01) in the thigh muscle. The TBARSd2 was positively related to the
mRNA expressions of JNK2 (p < 0.01) and Nrf2 (p < 0.05) in the breast muscle, and GSTd0
activity (p < 0.01) in the thigh muscle. The TBARSd6 was positively (p < 0.05) related to
mRNA expressions of JNK1 and GSTA3 in the thigh muscle. However, TBARS at the day
of slaughter was not related to any mRNA expression in the genes of the MAPK-Nrf2
pathway (all p > 0.05).
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Table 3. Correlation coefficients between vitamin E (VE) retention and other variables in broiler
muscles.

Items 1 Variables 2
VE Retention

Breast Muscle Thigh Muscle

VE Feeding duration 0.94 ** 0.92 **
TBARSd0 −0.53 ** −0.42 *

TBARS TBARSd2 −0.72 ** −0.85 **
TBARSd4 −0.33 −0.44 *
TBARSd6 −0.60 ** −0.51 *

SODd0 −0.04 −0.14
Enzyme activity SDDd2 −0.07 −0.07

GSTd0 0.22 −0.72 **
GSTd2 0.40 * 0.58 **

MAPKs genes
JNK1 −0.49 * −0.43 *
JNK2 −0.52 ** −0.23
p38 0.01 −0.44 *

Nrf2 gene Nrf2 −0.45 * 0.03

Antioxidant genes

SOD1 −0.10 −0.25
SOD2 −0.16 0.06

GSTA3 −0.21 −0.14
GSTT1 −0.30 0.11

1 MAPK, mitogen-activated protein kinase; Nrf2, nuclear factor-erythroid 2-related factor 2; 2 TBARSd0, TBARSd2,
TBARSd4, and TBARSd6, thiobarbituric acid reactive substance at 0, 2, 4, 6 d postmortem. SODd0, SODd2,
GSTd0, and GSTd2, respectively, represent total superoxide dismutase and glutathione S-transferase at 0 and 2
d postmortem; JNK1, c-Jun N-terminal kinase 1; JNK2, c-Jun N-terminal kinase 2; p38, p38 mitogen-activated
protein kinases, or p38 MAPK; GSTA3 and GSTT1 alpha3 and theta 1 isozymes of glutathione S-transferase,
respectively; SOD1 and SOD2, Cu/Zn- and Mn-superoxide dismutase, respectively. * and **, respectively, indicate
a correlation significance at the 0.05 level or 0.01 level (n = 24, two-tailed).

Table 4. Correlation coefficients between TBARS and antioxidant variables in broiler muscles.

Tissues Items 1 Variables 2 TBARS

TBARSd0 TBARSd2 TBARSd4 TBARSd6

Breast muscle

VE Feeding duration −0.56 ** −0.76 ** −0.37 −0.68 **

Enzyme activity

SODd0 −0.15 −0.07 −0.19 0.24
SDDd2 −0.07 −0.13 −0.09 0.17
GSTd0 −0.19 −0.42 * −0.26 −0.14
GSTd2 −0.21 −0.51 ** 0.12 −0.20

MAPKs genes
JNK1 0.02 0.29 0.35 0.09
JNK2 0.01 0.65 ** 0.31 0.06
p38 0.02 0.10 0.33 0.10

Nrf2 gene Nrf2 0.11 0.45 * 0.29 0.10

Antioxidant
genes

SOD1 −0.15 0.07 0.17 0.05
SOD2 −0.06 0.15 0.15 −0.14

GSTA3 0.03 −0.06 0.25 −0.09
GSTT1 0.30 0.37 0.21 0.38

Thigh muscle

VE Feeding duration −0.62 ** −0.92 ** −0.59 ** −0.57 **

Enzyme activity

SODd0 0.33 0.22 0.23 0.09
SDDd2 0.47 * 0.24 0.44 * 0.05
GSTd0 0.22 0.51 ** 0.09 0.27
GSTd2 −0.16 −0.78 ** −0.34 −0.27
JNK1 0.11 0.25 0.22 0.49 *

MAPKs genes
JNK2 0.11 0.12 0.34 0.28
p38 0.27 0.28 0.12 0.30
Nrf2 0.01 −0.22 −0.20 0.06

Nrf2 gene SOD1 0.03 0.05 0.36 0.30

Antioxidant
genes

SOD2 0.02 −0.34 −0.13 0.05
GSTA3 0.14 0.01 0.31 0.45 *
GSTT1 0.27 −0.18 0.15 0.25

1 MAPK, mitogen-activated protein kinase; Nrf2, nuclear factor-erythroid 2-related factor 2; 2 SODd0, SODd2, GSTd0, and GSTd2, respectively,
represent total superoxide dismutase and glutathione S-transferase at 0 d and 2 d postmortem; JNK1, c-Jun N-terminal kinase 1; JNK2,
c-Jun N-terminal kinase 2; p38, p38 mitogen-activated protein kinases, or p38 MAPK; GSTA3, alpha3 isozymes of glutathione S-transferase;
GSTT1, the theta 1 isozymes of glutathione S-transferase; SOD1, Cu/Zn-superoxide dismutase; SOD2, Mn-superoxide dismutase. * and **,
respectively, indicate a correlation significance at the 0.05 level or 0.01 level (n = 24, 2-tailed).
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4. Discussion
4.1. VE Retention

The duration of VE feeding increased VE retention in both breast and thigh muscles
in a time-dependent, linear, and quadratic manner in the first three weeks. Consistent with
our study, the feeding duration of VE directly affected the content of VE deposited in the
muscle cell membranes [25]. A gradual increase in the VE content was observed in both
the breast and thigh muscle from one to three weeks before slaughter [8]. Increasing the VE
content enhanced the VE content in a linear style in the breast meat regardless of VE sources
in the diet [26]. Dietary supplementation with vitamin E increased the concentrations of
VE in the breast muscle [27], some other tissues, and plasma [28]. VE is a potential agent
to protect humans from cancer, diabetes, lipid disorder, radiation damage, and allergic,
cardiovascular, bone, eye, liver, inflammatory, and neurological disease [14,17,19]. The
present study indicated that a supplementation of VE at 200 IU/kg in feed for three weeks
before slaughter may be an effective way to produce natural VE in chicken meat as human’s
functional food.

4.2. Lipid Oxidative Stability

Feeding VE for one to three weeks, especially for three weeks, decreased TBARS in
both the breast and thigh muscles of broilers at the day of slaughter and during six days’
cold storage. Similar to our study, a VE supplement of 200 mg/kg feed for 2 to 3 weeks [8]
and six weeks [9,10] reduced lipid oxidation in both breast and thigh meat. However, a
supplement of VE for a short period (12 days) did not affect meat lipid oxidation [29]. Lipid
oxidation was decreased by dietary E in chickens exposed to heat stress [6] or ochratoxin
A-induced stress [27]. This antioxidant effect could be caused by VE alone [26,28,30] or by
VE with butylated hydroxyanisole [5] or selenium [3].

In the present study, lipid oxidative stability was improved in muscles from broiler
fed VE at 200 IU/kg feed for two (thigh muscle) or three weeks (breast and thigh muscles)
during six days of storage. Consistent with our study, a higher level of dietary VE in broiler
diets resulted in better lipid oxidation stability in meat [31]. In the present study, the feeding
duration of VE positively related to VE retention, and the latter was negatively related to
the TBARS content in breast and thigh muscles during the storage for six days. The TBARS
decreased as the storage time was prolonged in the breast meat of W2 and W3, for the
first four days of the control, and the last five days of W1. A possible reason might be that
TBARS was further metabolized to be smaller molecules (such as acetate, methylglyoxal,
acetaldehyde, CO2 and H2O, and D-lactate,) or to have a chemical reaction with proteins
and DNA in order to form bigger adducts [32]. In the control group, TBARS underwent
an increase on d 6 in raw breast meat. This increase was advanced to d 2 in the breast
meat of W1, but no increase in TBARS was observed in W2 and W3. Increasing VE in the
diet improves the content of monounsaturated fatty acids (MUFA) and polyunsaturated
fatty acids (PUFA) in breast and thigh meat [30,33]. These unsaturated fatty acids are
sensitive to lipid oxidation and might be one reason for the higher TBARS on d 6 of
the control and d 2 of W1, where VE accumulation was not enough to prevent lipid
peroxidation. In addition, the transcriptional expression of oxidative sensitive JNK2 was
up-regulated in W1. These data indicated that supplementing VE for one week might
stimulate oxidative stress in the muscle, which exacerbated lipid oxidation during the first
two days of storage. Enzyme activities of both antioxidases and oxidases are reduced by
the proteolysis, crosslink, or breakdown of protein as the storage time increases [34,35].
However, a non-enzymatic system is still efficient in driving lipid peroxidation without the
involvement of oxidases [36]. Vitamin E is present in the membrane components of the
cell in order to prevent peroxide formation [37]. A higher VE retention in muscles could
enhance the non-enzyme antioxidant capacity of meat, which may explain why TBARS
was not increased in W2 or W3 during storage. Thus, a greater VE retention in muscles and
its non-enzyme antioxidant effect might be the reason why chickens fed VE for a longer
time had better lipid oxidative stability.
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4.3. Antioxidant Capacity

The SOD plays a vital role in the ability of VE to prevent oxidative damage [38]. In
the present study, the activity of serum SOD was increased by feeding VE for two weeks,
but recovered in the third week. VE selectively increased SOD in some tissues [39]. The
activity of SOD was enhanced by VE in carp injected with bacteria [4], and in chicken
fed naturally contaminated diets with ochratoxin A [27]. However, the SOD activity in
the blood was reduced in mice gavage with VE [40], or not affected in chickens fed with
different VE isomers and doses [28] or in rat testis [15]. Data indicated that the serum SOD
might be spared by a higher antioxidant capacity induced by a greater VE accumulation
in the body at W2. However, a new balance of serum SOD was reached after feeding VE
for three weeks. The SODd2 activity was positively correlated with TBARS at d 0 and d 4,
indicating that an increase in TBARS at the day of slaughter may stimulate an increase in
SODd2; however, when the broilers were dead, the residual SOD activity in the muscle in a
cold environment (4 ◦C) was not enough to cope with the lipid oxidation on d 4.

The GST is one class of phase II detoxifying enzymes that helps to maintain cell
integrity, oxidative balance, and prevention against DNA damage via catalyzing the conju-
gation of glutathione (GSH) to various electrophilic substrates [41]. Feeding VE for two and
three weeks reduced the GST in the thigh muscle on the day of slaughter compared with
the control and feeding VE for one week. However, VE retention positively affected the
activity of GSTd2 in breast and thigh muscles. The reason might be that dietary VE results
in higher values of the antioxidant capacity of lipid-soluble compounds [28]. Dietary VE in
feed increases non-enzymatic antioxidants in the muscle [27]. Similarly, VE prevented a
fluoride-induced decrease in the GSH level [15] and alleviated oxidative damage via en-
hancing the activity of GPx and glutathione reductase (GR) in carp injected with bacteria [4].
This indicated that the increase in VE retention reduced the need for antioxidant-related
enzymes when chickens were alive. When muscles were stored at a low temperature, the
VE retention in the tissue may have superiority over the antioxidant enzyme in fighting
against lipid oxidation, preventing the GST from depletion, which leads to a higher activity
of GSTd2.

4.4. MAPK-Nrf2 Signaling Pathway

MAPK-Nrf2 is a potential way to regulate oxidative damage and lipid peroxidation
in cells [42,43]. The JNK1, JNK2, and p38 are members of MAPKs, and they phospho-
rylate transcription factors (e.g., Nrf2) either bound or unbound to DNA [44]. Via the
phosphorylation and activation of Nrf2 by p38 MAPK, Nrf2 translocate to the nucleus,
up-regulating phase II enzymes (e.g., GST) to fight against oxidative injury [45]. The GSTA
and GSTT gene families mainly catalyze the conjugation of various electrophiles produced
from oxidative stress with reduced GSH in cytosolic [46]. Stunning broilers with 130 mA,
60 Hz may reduce the oxidative stress and improve the lipid oxidative stability of the
muscle during storage from 1 to 9 d [12]. Although gene expressions in the MAPK-Nrf2
pathway were affected by gas stunning [20] or electrical stunning [12,21], lipid oxidative
stability during storage was not correlated with mRNA expression. In the present study, all
of the groups were stunned with 130 mA, 60 Hz. Thus the difference in mRNA expression
among groups could be attributed to the effect of dietary VE.

Feeding the broiler with VE for a short period (one to two weeks) up-regulated the
gene expression of JNK2 and Nrf2, whereas feeding VE for a longer time (three weeks)
down-regulated these mRNAs to the control level. The VE could up-regulate the Nrf2
mRNA level to ameliorated oxidative stress in carps facing oxidative damage induced by
bacteria [4], in mice with nonalcoholic fatty liver disease induced by fructose [16], or in
rats with sub-chronic liver injury induced by cadmium [17]. Although the over-generation
of ROS leads to cellular peroxidation and the pathogenesis of multiple diseases, a proper
physiological level of ROS is necessary for cellular functions [19]. A reduced generation of
ROS below physiological levels may impair their action as second messengers, leading to
reduced adipocyte differentiation, lipid transport, and adipogenesis [40]. Therefore, long-
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term and high doses of VE may bring side effects. For instance, mice were insulin-resistant
after receiving VE gavage for 14 weeks [40]. Consistent with our study, Alcala et al. [40] also
observed a reduction in the Nrf2 mRNA expression followed by increases in the VE deposit
in retroperitoneal white adipose tissue of mice gavage with VE. Four weeks’ treatment
with VE decreased the RNA expression of JNK1 and reduced c-jun phosphorylation in
the hypercholesterolemia-induced atherosclerosis model of rabbits [47]. The data of our
study indicated that the gene expression of the JNK-Nrf2 signaling pathway might be
up-regulated by VE supplementation for a short time, but may be down-regulated by
adding VE for three weeks in order to maintain a balance in broilers.

The VE retention was negatively related to the TBARS and gene expressions of JNK1,
JNK2, and Nrf2 in the breast muscle and JNK1 and p38 in the thigh muscle. Consistently,
the mRNA expressions of JNK2 and Nrf2 were positively related to TBARSd2 in the breast
muscle, and JNK1 and GSTA3 were positively related to TBARSd6 in the thigh muscle. Lipid
oxidation was consistently controlled by VE through the suppression of molecules in the
p38-Nrf2-ARE signaling pathway in rat testis challenged by di-(2-ethylhexyl) phthalate [18].
The JNK and p38K were observed to be activated by a high-fat diet but to be inhibited by
the addition of walnuts (a source of VE) in feed [48]. In other studies, JNK and Nrf2 were
also down-regulated by VE addition in the conditions of various challenges [4,15,47,49].
One reason may be that a longer VE feeding duration increased the VE retention, leading
to a reduction in lipid oxidation in the muscle tissue, which reduced the need for the
MAPK-Nrf2-induced antioxidant system. Another reason might be that the activation of
MAPKs by ROS is also an indicator of stress, which leads to apoptosis [50]. Preventing the
over-activation of this pathway or regulating these molecules to the control level is good
for the physical balance in broilers. In agreement with this deduction, cell apoptosis was
suppressed by VE via the down-regulation of MAPK (ERK and JNK) pathways [15]. The
activation of NF-κB and interleukin secretion were suppressed by VE in endothelial cells
that were cultured exposed to lipopolysaccharide (LPS)/peptidoglycan G [47]. The VE may
protect the body from lipid disorders, inflammatory diseases, and other diseases [14,17,19],
via up-regulating the MAPK-Nrf2-related genes in the first two weeks, but down-regulating
them to a normal level on the third week in the present study.

Lipid oxidation on the day of slaughter was not related to any mRNA expression
in the genes of the MAPK-Nrf2 pathway. This indicated that this pathway may have a
limited effect on the protection of muscular lipid oxidation when broilers are alive. During
storage, TBARSd2 or TBARSd6 were positively related to the mRNA expressions of JNK2,
Nrf2, JNK1, and GSTA3, indicating MAPKs and Nrf2 genes are sensitive to oxidative
imbalance and tried to protect muscles via up-regulating the mRNA expressions. However,
the antioxidant effect of the MAPK-Nrf2-related enzymes was trivial when muscles were
stored at a low temperature [12,20,21]. Traber and Atkinson suggest that almost all of the
biological activities of VE result from its antioxidant function to protect polyunsaturated
fatty acids and membrane qualities [51]. The addition of VE in feed can increase the
concentrations of non-enzymatic antioxidants, e.g., vitamin C, retinol, total tocopherols,
and the VE equivalent in broiler muscles [27]. VE, as one of the non-enzyme antioxidants,
may have a more stable function than the MAPK-Nrf2 pathway mediated antioxidant
enzymes in protecting muscles from lipid oxidation during cold storage.

5. Conclusions

The VE supplementation duration enhanced the VE retention in muscles in a linear
and quadratic manner in broilers three weeks before electrical stunning and slaughter. This
is an effective way to produce VE-enriched meat and improve meat lipid oxidative stability
via feeding broiler with 200 IU/kg VE in feed for three weeks. Data from the present
study did not support our hypothesis that VE might improve meat lipid oxidative stability
through the up-regulation of gene expressions in the MAPK-Nrf2 signaling pathway.
Although a long-term supplementation of VE in feed suppressed the gene expression of the
MAPK-Nrf2 signaling pathway, it enhanced lipid oxidative stability at the day of slaughter
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and during cold storage via increasing the non-enzyme antioxidant effect through VE
retention in the skeletal muscles of broilers slaughtered after electrical stunning.
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