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a b s t r a c t

We create and analyze a mathematical model to understand the impact of condom-use
and sexual behavior on the prevalence and spread of Sexually Transmitted Infections
(STIs). STIs remain significant public health challenges globally with a high burden of some
Sexually Transmitted Diseases (STDs) in both developed and undeveloped countries.
Although condom-use is known to reduce the transmission of STIs, there are a few
quantitative population-based studies on the protective role of condom-use in reducing
the incidence of STIs. The number of concurrent partners is correlated with their risk of
being infectious by an STI such as chlamydia, gonorrhea, or syphilis. We develop a
Susceptible-Infectious-Susceptible (SIS) model that stratifies the population based on the
number of concurrent partners. The model captures the multi-level heterogeneous mixing
through a combination of biased (preferential) and random (proportional) mixing pro-
cesses between individuals with distinct risk levels, and accounts for differences in
condom-use in the low- and high-risk populations. We use sensitivity analysis to assess
the relative impact of high-risk people using condom as a prophylactic intervention to
reduce their chance of being infectious, or infecting others. The model predicts the STI
prevalence as a function of the number of partners of an individual, and quantifies how
this distribution of effective partners changes as a function of condom-use. Our results
show that when the mixing is random, then increasing the condom-use in the high-risk
population is more effective in reducing the prevalence than when many of the partners
of high-risk people have high risk. The model quantifies how the risk of being infected
increases for people who have more partners, and the need for high-risk people to
consistently use condoms to reduce their risk of infection.
© 2017 KeAi Communications Co., Ltd. Production and hosting by Elsevier B.V. This is an
open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

There are approximately 19.7 million new Sexually Transmitted Infections (STIs) every year in the United States of America
(Satterwhite et al., 2008). More than half of the people in the U.S. will have an STI at some point in their lifetime (Koutsky,
1997). Mathematical models can provide frameworks to understand the underling epidemiology of STI and how they are
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correlated to the social structure of the infectious population (Del Valle, Hethcote, Hyman,& Castillo-Chavez, 2005; Del Valle,
Hyman, Hethcote,& Eubank, 2007; Hyman & Li, 1997a, 1997b). Transmission-based models can help the medical community
to understand and to anticipate the spread of diseases in different populations, and help them to evaluate the potential
effectiveness of different approaches for bringing an epidemic under control.

We develop and analyze a continuous risk-based transmission model that can be used to understand the spread of STIs in
the adolescents and young adult population. The model predicts the impact of people having different number of concurrent
partners or using prophylactics, such as condoms, on the rate the infection spreads. These new equations extend our previous
two-risk group STI model for the spread of Chlamydia in heterosexual populations (Azizi, Xue, & Hyman, 2016).

The sexually active population is divided into the susceptible population (S), and the infectious population (I). Once a
person has recovered from infection, they are again susceptible to infection. That is, the model has an S/I/S (SIS) structure.
Using this model, we study the impact of variations in number of partners, mixing patterns in selecting partners, and
condom-use to determine optimal STI prevention policies. We study how the number of partners of an individual, and
how often they use condoms, affect the spread of STIs.

Chlamydia, gonorrhea, syphilis, and chancroid are highly infectious STIs where the number of partners an infectious
person has is one of themost important risk factors in spreading the infection. In our risk-based integro-differential model,
the risk is defined based on the number of partners a person has per year. The distribution of risk behavior for a popu-
lation, such as the fraction of the population having multiple partners, affects the spread of STIs. Also, the number of partners
that their partners have (their partner's risk) affects the spread of an STI and must be accounted for in the model. Our model
accounts for a broad range of risk behavior, defined as the number of partners per year, that is captured as a continuous
variable.

We use the terms low-risk and high-risk to differentiate between people with only a few partners per year (<3) and those
with high number of partners per year (>3). This model could also be used to include separate core high-risk groups, such as
sex workers. However, in the young adult population being modeled, sex-workers are not believed to be a major factor in the
spread of highly infectious STIs, like chlamydia.

The risk of contracting STI is primarily a function of a person's risk, the probability that a partner is infectious, and the use
of prophylactics (e.g. condoms). We use the selective mixing model developed by Busenberg & Castillo-Chavez, (1991) to
capture the heterogenous mixing among people with different number of partners. Our model is closely related to the STI
models for the spread of the HIV/AIDS in heterosexual networks (Hyman& Stanley,1988,1989) that distribute the population
based on their risk, such as the number of partners (Hyman, Li, & Stanley, 2001, 2003; Hyman & Stanley, 1988, 1989).

Chlamydia and gonorrhea are transmitted when infected semen or vaginal fluids contact mucosal surfaces. Male latex
condoms can, if used correctly, block the discharge of semen or protect the male urethra against exposure to vaginal se-
cretions (Centers for Disease Control Prevention & et al., 2002, p. 2007). Condoms can greatly reduce (but not eliminate) the
risk of STI, and are the primary strategy for STI prevention in sexually active individuals worldwide (Centers for Disease
Control Prevention & et al., 2002, p. 2007; Mann, Stine, & Vessey, 2002). The condom-use parameter is an aggregated
measure that accounts the effectiveness of condoms to prevent spread of infection when used appropriately or
inappropriately.

The parameters in the model, such as the distribution of risk, are estimated based on recent surveys (Beadnell et al., 2005;
Lescano et al., 2006) and from a pilot study of the number of partners for young sexually active people living in New Orleans.
We use local sensitivity analysis to identify the relative importance of condom-use and illustrate how this analysis can be used
to prioritize individual-level behavioral strategies based on their predicted effectiveness.
2. Mathematical model

We assume a closed steady-state population NðrÞ ¼ Sðt; rÞ þ Iðt; rÞ of people with risk r2½r0; r∞� is divided into Sðt; rÞ, and
Iðt; rÞ, where Sðt; rÞ (Iðt; rÞ) is the number of susceptible (infectious) people with risk r at time t. The susceptible population
becomes infectious at the rate l per year, and infectious population recovers with constant rate g to again become susceptible.
We assume both susceptible and infectious people leave the population at the migration rate m per year and that people
maintain the same risk r while in the modeled population.

Our integro-differential equation model for the spread of STIs is

vSðt; rÞ
vt

¼ mðNðrÞ � Sðt; rÞÞ � lðt; rÞSðt; rÞ þ gIðt; rÞ;
vIðt; rÞ
vt

¼ lðt; rÞSðt; rÞ � gIðt; rÞ � mIðt; rÞ;
Sð0; rÞ ¼ S0ðrÞ; Ið0; rÞ ¼ NðrÞ � S0ðrÞ;

(2.1)

where initial distributions of the susceptible and infectious population are given at time t ¼ 0.
Note that this model does not distinguish between men and women and is appropriate for homosexual STIs or infections

when the distribution of risk and infection incidence in men and women is approximately the same. This also requires that
the probability of transmitting the infection from an infectious man to a susceptible woman is approximately the same as the
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probability of transmission from an infectious woman to a susceptible man. This is a reasonable assumption for some STIs,
such as chlamydia, syphilis, and gonorrhea. In the absence of symmetry in the transmission parameters or in the risk behavior
in men and women, then the model would need to be extended to a two-sex bipartite model.

We model a population of 15e25 year-old sexually active individuals and assume that individuals enter and leave the

modeled population only through aging, that is migration rate is defined as m ¼ ½ð24� 15Þyears ��1 ¼ 1=ð10 yearsÞ. We also
assume that everyone aging into the population is susceptible to infection, and that people do not change their risk while in
the modeled population. To properly account for changes in risk behavior as the population ages, it would require adding an
additional variable (age) and is beyond the scope of our simplemodel. The risk behavior is distributed in away that number of
people with risk r decreases as risk r increases, that is there are fewer individuals with many partners. We also assume that
there is an exponential distribution for the recovery rate of infectious population with an average infection period 1=g years.

2.1. Transmission rate

The force of infection, or transmission rate, lðt; rÞ, for susceptible person with risk r at time t, is the rate that susceptible
people with risk r become infectious through sexual contact. Here a contact is any sexual activity that can transmit the disease
between individuals. The mixing among people with different risks determines if a susceptible person with risk r can be
infectious by someone infectious with risk r0 .

We define lðt; rÞ as the integral of the rate of disease transmission at time t from each infectious personwith risk r0 , Iðt; r0Þ,
to the susceptible one by

lðt; rÞ ¼
Zr∞
r0

~lðt; r; r0Þdr0: (2.2)
The rate of disease transmission from the infectious persons with risk r0 to the susceptible individuals with risk r, ~lðt; r; r0Þ,
is defined as the product of three factors:

~lðt; r; r0Þ ¼
0@ Number of r0 � risk

partners of susceptible
with risk r; per year

1A 0@ Probability of
disease transmission

per partner

1A 0@ Probability that
partner with risk r0

is infectious

1A
¼ pðr; r0Þ bðr; r0Þ PIðt; r0Þ ;

where

� pðr; r0Þ is the partnership mixing function defined as the number of sexual partners per year that a person with risk r has
with a person with risk r0 , and

� bðr; r0Þ is the probability of disease transmission per partner to a susceptible person with risk r from their infectious
partner with risk r0 , and

� PIðt; r0Þ is the probability that a person of risk r0 is infectious. Here we assume that there is random mixing among in-
dividuals with the same risk, PIðt; r0Þ ¼ Iðt;r0Þ

Nðr0Þ .
2.2. Partnership formation

In order to compute p(r,r’), we define a mixing distribution function rðr; r0Þ, which captures the mixing between people of
different risks and is defined as the fraction rðr; r0Þ of partners of a person with risk r who have risk r0 . The distribution
function rðr; r0Þ is the expected distribution of partners and is typically estimated based on inaccurate survey data or other
assumptions. It cannot be as the actual mixing function pðr; r0Þ since it usually will not satisfy the balance condition that the
total number of people with risk rwith partners of risk r0 must equal the total number of people with risk r0 with partners of
risk r. The partnership mixing function pðr; r0Þmust satisfy the balance condition NðrÞpðr; r0Þ ¼ Nðr0Þpðr0; rÞ and is defined as a
function of rðr; r0Þ.

We assume that rðr; r0Þ is a linear combination of randomly selected partners with the random mixing distribution
rrmðr; r0Þ and partners based on their preference with the biased mixing distribution rbmðr; r0Þ. These mixing distribution
functions rrm and rbm are normalized to have unit integral. Feng, Hill, Curns,& Glasser, (2016) used a similar model to account
for multi-level mixing of people within a specified group and among the general population.

2.2.1. Random mixing distribution
When the mixing is random (sometimes called proportional mixing), then individuals with risk r do not show any

preference for their partners based on risk. The random mixing function for the probability that a person of risk r picks a
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partner with risk r0 is defined by the ratio of total number of partners for all people with risk r0 , r0Nðr0Þ, to total number of

partnerships,
Z r∞

r0
uNðuÞdu. Thus, the random mixing distribution

rrmðr; r0Þ ¼
r0Nðr0ÞZ r∞

r0
uNðuÞdu

; (2.3)

is independent of the risk r of the person seeking a partnership.

2.2.2. Biased mixing distribution
In our biased (associative or preferential) mixingmodel, we assume homophily (love of the same) where peoplewith risk r

prefer to have partners with similar risk. We also assume that people at high risk have partners with a broader range of risk
than people at low risk. That is, the standard deviation, sðrÞ, for the distribution of risk of partners of a personwith risk r is an
increasing function of r. This is in agreement with the study by Lescano et al., (2006) that observed the casual and long-term
partners of people with many partners are mostly casual partners with few contacts (sexual contacts) per partnership. They
also observed that the partners of people with few partners are more often longer term relationships with more contacts per
partnership.

We define the biased mixing distribution rbmðr; r0Þ for the probability that a person with risk r prefers to have a partner
with risk r0 from the range r02½r � sðrÞ; r þ sðrÞ�:

rbmðr; r0Þ ¼

(
�jr0 � rj þ s rð Þ

s rð Þ2
jr0 � rj � s rð Þ

0 elsewhere;

(2.4)

which satisfies the condition
Z ∞

�∞
rbmðr; r0Þdr0 ¼ 1: Fig. 1 shows how the biased function rbm is wider for the higher risk

groups.

2.2.3. Combination of random and biased mixing distributions
We assume people choose some of their partners based on their preference (biased mixing) and other partners are chosen

randomly from the whole population (random mixing). We define the preference level ε as fraction of partners of a person
with risk r are selected preferentially and the rest are selected randomly, then we can express the mixing distribution as a
convex combination of rrm and rbm:

rðr; r0Þ ¼ εrbmðr; r0Þ þ ð1� εÞrrmðr; r0Þ: (2.5)
Fig. 1. Plot of the triangle (hat) biased mixing function rbmðr; xÞ for r ¼ 1;3;10. As the risk r increases, the mixing function becomes fatter and shorter to capture
the effect that partners of higher-risk people have a broader range of risk than that of lower-risk people. This is similar to the mixing function used by Hyman &
Stanley, (1988).
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When ε ¼ 0 the mixing is random, and when ε ¼ 1 it is purely biased mixing. Otherwise, a personwith risk r chooses an ε

fraction of his/her partners with a hat distribution of people with risk r02½r � sðrÞ; r þ sðrÞ�, and chooses the other partners
randomly from all risk value groups.

2.2.4. Partnership mixing function
The partnership function pðr; r0Þ is the number of partners a person with risk r has with someone of risk r0 per year. A

person with risk r wants to have rrðr; r0Þ partners with risk r0 , therefore, all individuals with risk r want to have rrðr; r0ÞNðrÞ
partners with risk r0 . On the other hand, all individuals with risk r0 want to have r0rðr0; rÞNðr0Þ partners with risk r. The balance
condition states that if people of risk r have Pðr; r0Þ partners with risk r0 , then the peoplewith risk r0 must have Pðr0; rÞ ¼ Pðr; r0Þ
partners with risk r. We define actual number of partnership between people with risk r and people with risk r0 as harmonic
average of rrðr; r0ÞNðrÞ and r0rðr0; rÞNðr0Þ:

Pðr; r0Þ ¼ 2
rrðr; r0ÞNðrÞ � r0rðr0; rÞNðr0Þ
rrðr; r0ÞNðrÞ þ r0rðr0; rÞNðr0Þ : (2.6)
The distribution Pðr; r0Þ is a compromise for the actual number of partnerships between all peoplewith risk r and all people
with risk r0 . Therefore, the actual number of partners that a person with risk r has with people of risk r0 is

pðr; r0Þ ¼ Pðr; r0Þ
NðrÞ : (2.7)
Remark: Harmonic average of two values is closer to the smaller one and this compromiseweights the decision on forming
a sexual partnership towards the person who is less interested to make partnership.

2.3. Probability of transmission per partner

The probability per partner, bðr; r0Þ, that a susceptible person of risk r is infected by an infectious partner of risk r0 depends
upon the number of contacts (sexual acts) between the two risk groups, Aðr; r0Þ, and frequency of condom-use in their
contacts, Cðr; r0Þ.

2.3.1. Sexual contacts per partnership between risk groups
We define Aðr; r0Þ as the total number of sexual contacts per person per year between the a personwith risk r and a partner

with risk r0. Since there must be the same as the number of sexual contacts between person of risk r0 with partner of risk r, the
balance condition, Aðr0; rÞ ¼ Aðr; r0Þ must hold.

Suppose a personwith risk r desires to have, on average, aðrÞ sexual contacts per partner per year. We assume that aðrÞ is a
decreasing function of r:

aðrÞ ¼ r0
r
amax; (2.8)

where amax is the total number of sexual contacts per year.
Since the number of desired sexual contacts per partner for people of risk r is not necessarily equal to the number of

desired sexual contacts per partnership for people of risk r0 , aðrÞsaðr0Þ, there should be a compromise for the sexual contact
balance condition to hold. We define the actual number Aðr; r0Þ of sexual contacts per person between the people in risk
groups r and r0 as

Aðr; r0Þ ¼ 2
aðrÞaðr0Þ

aðrÞ þ aðr0Þ : (2.9)
Equation (2.9) satisfies the balance condition, and when there is a conflict, the harmonic average results in the actual
number of sexual contacts to be closer to the smaller number desired by the two individuals.

2.3.2. Condom-use as a function of risk
We assume that person with risk r desires to use a male-latex condom in cðrÞ fraction of their sexual contacts. We

acknowledge that increased condom-use might have an effect on the risk behavior, however, this is not investigated in this
work. We assume that higher-risk people are more likely to use condoms than the lower-risk people (Beadnell et al., 2005;
Lescano et al., 2006). Therefore, we define cðrÞ as increasing function of r. We observed that the function
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cðrÞ :¼ a
r

c þ r
; (2.10)
�
0

�
is a good approximation to survey data and interpolates between the case where people have no partners (hence no condom-
use), limr/0cðrÞ ¼ cð0Þ ¼ 0, and the limit where people have many partners and use-condoms a ¼ limr/∞cðrÞ fraction of
contacts.

We define the actual fraction of times that a person of risk r uses a condom when having sex with a person of risk r0 as
Cðr; r0Þ ¼ Cðr0; rÞ which is computed by taking an appropriate average of cðrÞ and cðr0Þ. The average will depend if the pref-
erence (final decision) is closer to the desired condom-use of the person who prefers to use condoms fewer times, or the
person who prefers to use condoms more often.

2.3.2.1. Preference to low condom-use. In this case, we assume that a person who is less likely to use condom is more likely to
convince the other to not to use condom. We approximate this situation for partners with risk r and r0 to use a condom in

Clðr; r0Þ ¼
2cðrÞcðr0Þ
cðrÞ þ cðr0Þ ; (2.11)

fraction of their contacts.

2.3.2.2. Preference to high condom-use. In this case, a personwho ismore likely to use condom ismore probable to convince the
other one to use condom. We approximate this situation by taking the harmonic average of the fraction of contacts people do
not use condom (1� cðrÞ and 1� cðr0Þ), and therefore, they use condoms in

Chðr; r0Þ ¼ 1� 2ð1� cðrÞÞð1� cðr0ÞÞ
2� cðrÞ � cðr0Þ ; (2.12)

fraction of their contacts.

2.3.3. The probability of transmission with condom-use
We define bnc and bc as the probabilities of transmission per contact for not using and using a condom, and we assume

these probabilities are gender-independent, because unlike the heterosexual transmission of HIV/AIDS, the probability of
highly infectious STIs (like chlamydia and gonorrhea) transmission from an infected man to a woman is approximately the
same as from an infected woman to a man (Althaus et al., 2011; Quinn et al., 1996; Turner, AdamsGayGhani, Mercer, &
Edmunds, 2006). If the condom is 99% effective in preventing the infection from being transmitted, then probability of
transmission when using a condom-use is bc ¼ 0:01bnc.

To determine the probability of a susceptible person with risk r being infected by their infectious partner with risk r0

depends on the number of contacts, Aðr; r0Þ, and how often they use condoms. If someone uses a condom in Cðr; r0Þ fraction of
contacts, then they have a total of Cðr; r0ÞAðr; r0Þ contacts with condoms and ð1� Cðr; r0ÞÞAðr; r0Þ contacts without condom per
unit time. The person with risk r does not catch infection from their partner during a condom contact with probability

ð1� bcÞCðr;r
0ÞAðr;r0Þ, and for when not using a condom this probability is ð1� bncÞð1�Cðr;r0ÞÞAðr;r0Þ. Combining these, the probability

of a susceptible being infected after one contact by infectious partner with risk r0 is

bðr; r0Þ ¼ 1� ð1� bcÞCðr;r
0ÞAðr;r0Þð1� bncÞð1�Cðr;r0ÞÞAðr;r0Þ

: (2.13)
3. Parameter estimation

The model parameters (collected in Table 1), the distribution of risk in the population, and the frequency of condom-use
were estimated from recent studies on sexual behavior.

3.1. Population distribution

A sample of 616 people between ages 15� 25 years old reside in Orleans Parish were asked about their number of
concurrent partners (Kissinger, 2014). This data (in agreement with other recent studies (Colgate, Stanley, Hyman, Layne, &
Qualls, 1989)) show that the partner distribution often follows an inverse cubic power law, N rð Þfr�3, for r> r0. The value of
NðrÞ is chosen for the function to agree with the total population size,

R
NðrÞdr, being modeled.

3.2. Condom-use

The distribution of risk and condom-use were estimated based on surveys for the sexually active adolescents and young
adult populations (Beadnell et al., 2005; Lescano et al., 2006; Reece, Herbenick, SchickSanders, Dodge, & Fortenberry, 2010).



Table 1
Model parameters: parameter values are chosen for all simulations unless indicated otherwise.

Parameter Description Units Baseline value RefR
NðrÞdr Total Population size # of People 10;000 Assumed

amax Max number of sexual contacts per year Contact� Year�1 209 Assumed
g Per capita recovery rate for human from

the infectious state to the susceptible state
Year�1 1.43 (Kretzschmar, Welte,

Van den Hoek, & Postma, 2001)
bnc Probability of transmission per no-condom contact dimensionless 0.11 (Kretzschmar et al., 2001)
bc Probability of transmission per condom contact dimensionless 0.001 Assumed
m Migration rate Year�1 0.10 Assumed
r0ðr∞Þ Minimum(maximum) number of partners per year People� Year�1 1ð50Þ Assumed
ε Preference Level dimensionless 0.60 Assumed
a Fraction of contacts condom-used by high-risk people dimensionless 0.70 Estimated
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Reece et al., (2010), CDC studied rates of condom-use among sexually active individuals in the U.S. population and observed
that adolescents reported condom-use during 79:1% of the past 10 vaginal intercourse events. Similar studies (CDC) in
sexually active high school students in the U.S. reported that during 1991, 46%, during 2003, 63%, and in 2013, 59% of the
students used condoms at their most recent sexual intercourse.

Beadnell et al., (2005) surveyed 8� 12 th grade students in a large urban northwest school district annually for seven
years. They observed that the younger students were more likely to use condoms and also the students with more partners
were more likely to use condoms: the students withmany partners used condoms, on average, in 68% of their sexual contacts,
while the students with few partners used condoms in 49% of their sexual contacts. The condom-use function (Eq. (2.10)) is in
close agreement with their observations (Table 2) with parameters the a ¼ 0:69 and c0 ¼ 1:35:

cðrÞ ¼ 0:69
r

1:35þ r
: (3.1)
A simple check shows this function is in close agreement with the survey data: cð2Þ ¼ 0:41, cð4:7Þ ¼ 0:50, cð5:4Þ ¼ 0:58,
and cð7:4Þ ¼ 0:60.

4. Numerical simulations

Since the total population is constant, we scale our results using proportions. We display our numerical simulations in
terms of the nondimensional variables defined by dividing each variable by the steady-state zero-infection equilibrium the
total population of individuals with the risk r, NðrÞ. That is, we present the numerical simulations in terms of the fraction of

the population at risk r, i.e susceptible sðt; rÞ :¼ Sðt;rÞ
NðrÞ and infectious iðt; rÞ :¼ Iðt;rÞ

NðrÞ . We define I�ðrÞ as the number of and i�ðrÞ as
the fraction of the people that is infectious at the endemic steady state. In the numerical simulations, all the parameters are
fixed with the baseline values given in Table 1, unless specifically stated.

4.1. Basic reproduction number

The basic reproduction number R 0 is the number of secondary infections created when a newly infectious person is
introduced into a population at the disease-free equilibrium.WhenR 0 >1 and if a small infectious fraction is introduced into
the population, then the STI can grow. When the population is distributed as a function of risk, then it is possible to define a
basic reproduction number for each value of risk, or a singleR 0 for the entire population based on the dominant eigenvalue of
next generation operator. Using a single R 0 is useful when studying the impact that changes in the biased mixing and
condom-use parameters have on the early growth of an epidemic.

We follow Diekmann, Heesterbeek, &Metz, (1990) and define the basic reproduction number as the spectral radius of the
next generation operator defined as

KðrÞ ¼ Sðt; rÞ
Zr∞
r0

tpðr; r0Þbðr; r0ÞIðt; r0Þdr0: (4.1)
Here t ¼ 1=ðmþ gÞ is average time that a person is infectious and tpðr; r0Þbðr; r0Þ is the expected number of people with risk
rwill be infectious by a single infectious person with risk r0. Thus, the next generation operator, KðrÞ, is number of secondary
cases for over all the infectious people with risk r0 , Iðt; r0Þ, and is found by integrating over all possible risk groups. That is, KðrÞ
is the number of secondary cases with risk r that arises from all the infectious people Iðt; r0Þ. The basic reproduction number
R 0 is the dominant eigenvalue of KðrÞ.



Table 2
The average fraction of condom-use by high school students with different risks and different ages, the result of survey conducted in a large urban northwest
high school (Beadnell et al., 2005).

15� 16 years old 16� 17 years old 17� 18 years old

Risk r Fraction of condom-use Risk r Fraction of condom-use Risk r Fraction of condom-use

1.2 0.42 1 0.42 1 0.39
5.4 0.58 2 0.42 2 0.38

7.4 0.60 4.7 0.50
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We first partition our integro-differential equation model 2.1 into subdomains for different risk groups,

½r0; r∞� ¼ ∪n
i¼1½ri�1; ri�, where rn ¼ r∞ and define the populations on for each risk group as IiðtÞ ¼

Z ri

ri�1

Iðt; r0Þdr0 and

SiðtÞ ¼
Z ri

ri�1

Sðt; rÞdr. The equations can then be expressed as

dSi tð Þ
dt

¼ mðNi � Si tð Þ Þ � li tð ÞSi tð Þ þ gIi tð Þ;

dIi tð Þ
dt

¼ li tð ÞSi tð Þ � gIi tð Þ � mIi tð Þ;

where li ¼
P
j

Z ri

ri�1

p
�
ri; rj

�
b
�
ri; rj

�
Ijdrj; i¼1;:::;n:

We divide the equations by NðrÞ and approximate the next generation operator KðrÞ with the n-by-n next generation
matrixK based on assuming the populations are approximately constant within each risk group and that the population is at
the zero-infection equilibrium, si ¼ 1. The entries of K are defined by

kij ¼
Zri
ri�1

tp
�
ri; rj

�
b
�
ri; rj

�
drj: (4.2)
The basic reproduction number R 0 defined as the dominant eigenvalue of K , is calculated numerically.
Fig. 2 illustrates how R 0 increases as the amount of biased mixing (ε) increases. When a new infection is introduced into

the population, if there is even a slight amount of random mixing, someone in the high-risk population will quickly become
infected (Hyman & Stanley, 1988). Once this happens, then if the mixing is highly-biased (large ε) these infected high-risk
people will infect other high-risk people and the epidemic will grow rapidly (large R 0). If the mixing is close to random
Fig. 2. Basic reproduction R 0 versus preference level ε for different condom-uses. The impact of a on R 0 depends on mixing, for more biased mixing a has more
impact on preventing the infection, however for less biased mixing, the impact of a decreases. As a decreases R 0 increases much faster at bigger εs than smaller
ones.
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mixing (small ε), then many of the secondary infections from the early high-risk infected people will have low-risk and the
epidemic will grow slower (smaller R 0). The extreme sensitivity of R 0 to a also is an indication of the importance of
educating high-risk individuals in consistent condom-use to prevent infecting others, and the need of the low-risk population
in using condoms to protect themselves from infection.
Fig. 3. Surface plots of fraction of the population infectious, i�ðr;aÞ, at steady state versus r and a, for preference levels (a) ε ¼ 0:1, (c) ε ¼ 0:6, and (e) ε ¼ 0:9.
Slices of the 3D surfaces versus r, i�ðrÞ, for different a values and preference levels (b) ε ¼ 0:1, (d) ε ¼ 0:6, and (f) ε ¼ 0:9. When a<0:95, the i� increases with risk
r. When high-risk people use condoms most of the time, a>0:95, then i� decreases in the higher-risk groups as a function of r.
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4.2. Endemic equilibrium

The fraction of the population that are infectious at the endemic equilibrium infection, i�, depends upon the distribution of
risk, NðrÞ, the mixing between people of different risk behaviors, as measured by ε in equation (2.5), and the fraction of the
contacts condom used by high-risk people, as measured by a in equation (2.10).

Fig. 3a e 3f plot the endemic infection distribution as a function of the risk (number of partners): 1) Random mixing
(ε ¼ 0:1) where 90% of the partners are chosen randomly form the population, 2) Balancedmixing (ε ¼ 0:6) where all but 60%
of the partners have similar risk behavior, and 3) Highly biasedmixing (ε ¼ 0:9) where all but 90% of the partners have similar
risk behavior. For all values of risk, the fraction of the population infectious at steady state, i�, decreases as condom-use, a,
increases.

In Fig. 3a, 3c, and 3e, the a axis is between a ¼ 1where the high-risk population uses condoms all the time, to a ¼ 0where
condoms are never used. The fitted value a ¼ 0:69 agrees with Beadnell et al., (2005) studies. For low condom-use (small
values of a), i� increases with r indicating that a higher percentage of the high-risk people are infectious than the low-risk
people. For most values of condom-use, a<0:95, having more partners (increase one's risk r), increases the likelihood of
being infectious.

However, when the high-risk people use condoms most of the time, a � 0:95, while the lower-risk population only uses
condoms occasionally, this trend is reversed. This effect is strongest when the mixing is highly biased (ε ¼ 0:9) i.e when most
of a person's partners have very similar risk. We note that although this is mathematically consistent with our model, it is in
an unrealistic parameter range for the population.

The effectiveness of condom-use in reducing the prevalence is shown in Fig. 4 through the changes in fraction of the total
population infectious as a function of a, ði�T ¼ R

I� rð Þdr= R N rð ÞdrÞ for different preference levels ε. We found a threshold for a
to drops the epidemic down, and this threshold increases as mixing level ε increases. For example when level of mixing is ε ¼
0:1 (Random mixing), to drop the prevalence drastically, a needs to be around 70%, however, for when ε ¼ 0:6 (Combined
mixing) this threshold is a ¼ 0:9, but for ε ¼ 0:9 (Highly biased mixing) threshold disappears which means condom-use by
high-risk individuals does not have impact on controlling the prevalence. The reason is when people mix more randomly,
then high-risk people have many partners with different risks, therefore, using more condom by them save this many
partners with different risks, however, whenmixing tends to bemore biased, ε ¼ 0:9, most of the partners of high-risk people
are themselves high-risk, which this case this group does not take heavy toll on the prevalence, no mater what fraction of
their contact they use condom.
4.3. Condom-use scenarios

We compare three condom-use scenarios to quantify their impact on reducing the prevalence of the STI at the endemic
equilibrium.

� NCU ¼ no condom-use: The unrealistic case where condoms are never used is included as a reference case.
� SCU ¼ some condom users: The population is divided into condom users and non-users where in each risk group, bc
fraction of NðrÞ of the people use condom all the time, while ð1� bcÞ fraction of them never use a condom.

� FCU ¼ fraction condom users: Everyone uses a condom with probability c in each contact. That is, cðrÞ ¼ c is constant
Fig. 4. Total fraction of the population that is infectious i�T ¼ R
I�ðrÞdr= R NðrÞdr decreases as condom-use a increases for randommixing ε ¼ 0:1, combined mixing

ε ¼ 0:6, and highly biased mixing ε ¼ 0:9 in partnership selection. Note that when people tend to pick partners randomly, ε ¼ 0:1, and the population uses
condoms most of the time, a>0:8, then condom-use is an effective way to control the epidemic.



Fig. 5. The prevalence of STI as a function of time for different Scenarios: NCU ¼ no condom-use, SCU ¼ sometime condom user, FCU ¼ fraction condom user,
RCU ¼ risk-based condom-use where bc ¼ c ¼ 0:37 and a ¼ 0:74 and ε ¼ 0:8.
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� RCU ¼ risk-based condom-use: The condom-use is a function of risk based on the function cðr;aÞ in equation (2.10) and
the scaling parameter a is chosen so that the average condom-use is 〈cðr;aÞ〉 ¼ c:

To study the influence of different scenarios on the total prevalence, we recorded prevalence at time t for each of
them. In Fig. 5, the prevalence for all scenarios are shown as a function of time t for bc ¼ c ¼ 0:37. When condoms are
never used (NCU), the prevalence tends to iðtÞ/i�T ¼ 0:18. The prevalence is reduced the most for SCU when bc ¼ 0:37% of
population uses condoms all times. In this case, we observe a reduction of 7% of prevalence at steady state. The reason is
that condom-use comes by contact, and when bc ¼ 37% of population use condoms in all their contacts, then 37% of
population are rarely infectious. On the other hand, for Scenario FCU, i.e when all people use condom c ¼ 0:37 of the
contacts, the reduction of prevalence is very weak, almost 0:5%, and this is because the model is applied for highly in-
fectious STIs, that is the chance of catching or transmitting the infection by one contact is high, therefore, even if
all people use condom partially, there is a high chance of infection transmission in the contacts which condom is not
used.

In the Scenario RCU, i.e using Equation (2.10), when c ¼ 0:37which results a ¼ 0:75, the prevalence at steady state reduces
by 2%. In this Scenario, people on average use a condom in 37% of their contacts, however, high-risk people are more likely to
us a condom. As we observe, for this Scenario, the growth of infection is slower than the other Scenarios and it takes more
time (around 10 years) to reach steady state. This is because, high-risk individuals, who are mostly responsible of spreading
infection, use condom more and then transmit or catch infection less than the other Scenarios, therefore, it takes time for
them to transmit or catch infection.

5. Discussion and conclusions

We developed a simple continuous-risk SIS transmission model for the spread of highly infectious STIs with biased mixing
partnership selection to investigate the impact that condoms can have in controlling diseases spread. The model incorporates
functions describing mixing patterns as well as condom-use by individuals based on their risk. The mixing between people of
different risks was modeled as a combination of random mixing and biased mixing, where people may prefer partners of
similar risk (Hyman & Stanley, 1989). Our model includes the observed correlation between condom-use and the number of
partners among adolescents and young adults (Beadnell et al., 2005; Kabiru & Orpinas, 2009; Lescano et al., 2006) where
people with higher number of partners are more likely to use condoms. We fitted an increasing function of risk for condom-
use to the information provided in Beadnell et al., (2005). We assumed that people with more partners (higher risk r) were
less picky about the risk of their partners than people with fewer partners. We modeled this increased acceptance of the risk
of the partners by increasing the standard deviation of risk of the partners as the square root of risk. Other factors, such as
alcohol or drug use (Desiderato& Crawford, 1995), that can affect sexual activity and condom-use are not directly included in
the model.

The model investigates the role of the risk-structure and importance of homophily in the mixing between people with
different risk on the spread of the epidemic. The parameters for the model are chosen to be appropriate for the spread of
chlamydia in a cohort of young adults (15� 25 years old) in the New Orleans metropolitan area. We do not include sexual
structure or aging in the model. These limitations restrict the applicability of the model to situations where the mixing
patterns, the transmission rates, and infection prevalence is about the same in men and women. The transmission pa-
rameters chosen in our simulations are for highly infectious STIs, such as chlamydia and gonorrhea, and conclusions are
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only valid for these types of situations. We formulated this simplified model because it is easier to analyze and can
provide insight into the dynamics of the more complex models that also account situations where these assumptions do
not hold.

The endemic infection equilibrium is more sensitive to the rate that the people with bigger risk r, where there are fewer
contacts per partnership, use condoms than it is for people with smaller risk r, where there are more contacts per part-
nership. When the probability of infection is high for a single contact, as it is in our simulations, then the number of people
an infectious person infects is more correlated to the number of partners that he/she has unprotected sex with, than the
number of contacts they have. Our model assumes that people with fewer partners have more contacts per partnership
than people with more partners. The risk of infection is high for a single contact where condoms are not used, then even
failing to use condoms a few times in a partnership is enough to pass on the infection. That is, the model indicates
increasing the fraction of times that people with many partners use condoms could be an effective strategy in mitigating an
STI.

The current model does not distinguish betweenmen andwomen. In heterosexual populations, this approximation is only
appropriatewhen themixing betweenmen andwomen is symmetric and the infection prevalence is approximately the same
in both men and women. We are extending the model to a heterosexual mixing model, similar to our previous model where
we only included two risk groups (Azizi et al., 2016). The heterosexual model can be used to more closely match partnership
studies that show, on average, a sexually active manwill have more partners than a sexually active woman in the adolescents
and young adult population. It can also be used to study the relative effectiveness of increasing the screening formen, women,
or both sexes for STIs when there are limited resources.

The simulations quantified the rate that highly infectious STIs like chlamydia spread through a population based on
different distributions of condom-use as a function of the population risk. We estimated the impact of condom-use by higher
risk individuals on the distribution of endemic equilibrium.We found that for almost all amount of condom-use, havingmore
partner increases the likelihood of being infectious, the infection prevalence is greatest in the higher risk populations and it is
always a goodmitigation strategy to increase condom-use in these populations tomitigate an epidemic. This effect is stronger
when people select most of their partners preferentially.

We also observed that the total prevalence does not drop drastically unless the mixing tends to be more random and high-
risk individuals use condom in at least 70% of their contacts. However, when the mixing tends more toward biased mixing,
prevalence at steady state looses its sensitivity to condom-use. Our simulations, also, demonstrate that when level of biased
mixing is low, then it is also an effectivemitigation strategy to increase condom-use in the lower risk populations, as shown in
Fig. 4.

We derived the basic reproduction number R 0 using the next generation approach (Diekmann et al., 1990) and used
simulations to show the early growth of the epidemic depends on mixing pattern and condom-use. For very biased mixing,
when people pick their partners to have similar risk, then condoms are effective approaches to mitigate the spread of the STI.
However, when the population mixed more randomly, then condom-use is less effective in controlling the epidemic.

We created a model with a symmetry in the parameters and behaviors for men and womenwhich is appropriate for some
STIs like chlamydia, syphilis, and gonorrhea and also it is appropriate for homosexual STIs. The model has a flexibility to be
extended for heterosexual population with different parameter values and behaviors by men and women, two-sex bipartite
model (Hyman & Stanley, 1994). The model in this paper is not appropriate for spread of HIV/AIDS where the prevalence and
transmission rates betweenmen and women are low and asymmetrical. Also, the prevalence of HIV/AIDS in men and women
is a strong function of age in the 15� 25 year-old age group and should be accounted for in a heterosexual HIV/AIDS model.

We recognize that a more realistic approach is needed for guiding public health policy. This realistic model would track
behavior change and mixing based on a person's age. For example, when an individual is infected and treated, then they are
more likely to change their behavior to prevent being infected again. Behavior change is an important assumption which
could be added in this model by including risk-based partial derivative terms. This extension would make the model
significantly more complex and would not be as good as using an agent-based model that can follow the infection status of
each individual.

The analysis and simulations of our continuous-risk model has led us in creating a more appropriate model for studying
the impact of screening, contact tracing, partner treatment, condom-use, and behavior change in controlling the spread of
STIs (Azizi & Hyman, 2017). We are formulating a stochastic (Monte Carlo - Markov Chain) agent-based bipartite disease-
transmission network-model where the men and women are the network nodes and sexual contact are represented by
edges between the nodes. The network captures the distributions for number of partners that men and women have, and the
correlations between the number of partners that a person has and the number of partners their partners have. These
partnership distributions, and the transmission parameters, are based on survey data for the 15� 25 year-old African
American community in New Orleans.

Unlike the continuous-risk model, the network model can track an individual's behavior change, such as condom-use
after being treated for infection, the affect of aging on number of partners a person has, or the differences in condom-use
between primary and casual partners. Unfortunately, the complexity of the network model makes the mathematical
analysis far more difficult than the continuous-risk model described in this paper. Our future research will be guided by
combining the mathematical analysis of the simplified model, described in this paper, with simulations of the more
realistic agent-based model to help guide in the public health efforts mitigating the spread of chlamydia as a highly
infectious STI.
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