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Abstract 

Background:  The global spread of the novel coronavirus pneumonia is still continuing, and a new round of more 
serious outbreaks has even begun in some countries. In this context, this paper studies the dynamics of a type of 
delayed reaction-diffusion novel coronavirus pneumonia model with relapse and self-limiting treatment in a tempo‑
ral-spatial heterogeneous environment.

Methods:  First, focus on the self-limiting characteristics of COVID-19, incorporate the relapse and self-limiting treat‑
ment factors into the diffusion model, and study the influence of self-limiting treatment on the diffusion of the epi‑
demic. Second, because the traditional Lyapunov stability method is difficult to determine the spread of the epidemic 
with relapse and self-limiting treatment, we introduce a completely different method, relying on the existence condi‑
tions of the exponential attractor of our newly established in the infinite-dimensional dynamic system to determine 
the diffusion of novel coronavirus pneumonia. Third, relapse and self-limiting treatment have led to a change in the 
structure of the delayed diffusion COVID-19 model, and the traditional basic reproduction number R0 no longer has 
threshold characteristics. With the help of the Krein-Rutman theorem and the eigenvalue method, we studied the 
threshold characteristics of the principal eigenvalue and found that it can be used as a new threshold to describe the 
diffusion of the epidemic.

Results:  Our results prove that the principal eigenvalue �∗ of the delayed reaction-diffusion COVID-19 system with 
relapse and self-limiting treatment can replace the basic reproduction number R0 to describe the threshold effect of 
disease transmission. Combine with the latest official data and the prevention and control strategies, some numerical 
simulations on the stability and global exponential attractiveness of the diffusion of the COVID-19 epidemic in China 
and the USA are given.

Conclusions:  Through the comparison of numerical simulations, we find that self-limiting treatment can significantly 
promote the prevention and control of the epidemic. And if the free activities of asymptomatic infected persons are 
not restricted, it will seriously hinder the progress of epidemic prevention and control.
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Background
Many self-limiting diseases are contagious, such as influ-
enza, chickenpox, hepatitis A, acute hepatitis B, Ebola 
virus and Norovirus are self-limiting epidemics. On 
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February 10, 2020, at the COVID-19 epidemic preven-
tion and control press conference held in Hubei Province, 
Zhang Dingyu, president of Wuhan Jinyintan Hospital, 
introduced that novel coronavirus pneumonia is actu-
ally a self-limiting disease. As early as 1835, American 
medical scientist Jacob Bigelow noticed such diseases. 
In his paper “Self-Limited Diseases”, he pointed out that 
some diseases exhibits the characteristics of “self-limit-
ing”, and these diseases are limited by their own nature, 
rather than external influences. Self-limiting disease does 
not mean that you can stop seeking medical attention. 
Instead, it reminds the public to maintain adequate rest 
and adequate nutritional intake to improve immunity, 
and under the premise of personal protection, there is no 
need to panic about diseases.

The global outbreak of the novel coronavirus pneu-
monia has entered a stage of normalization and has not 
yet been effectively controlled [5–7, 10, 14]. The degree 
of activity of the new crown virus is highly depend-
ent on temperature. As the northern hemisphere enters 
a cold winter, the epidemic situation in many countries 
has shown a momentum of secondary outbreaks. Peo-
ple infected with novel coronavirus pneumonia are now 
divided into four stages: mild, normal, severe, and criti-
cal. People with mild infections can recover quickly 
with oxygen therapy, symptomatic treatment and 

immunotherapy while being quarantined at home or in 
the hospital. Last year, many football and basketball play-
ers (such as Zidane, Wu Lei, Gobert) were once infected 
with a mild new crown virus. Due to their superior physi-
cal fitness, they recovered faster than ordinary people 
after targeted treatment. How to better prevent and con-
trol the diffusion of novel coronavirus pneumonia has 
become a hot spot on the global medical community. 
Although the theoretical research on the infection of the 
novel coronavirus pneumonia epidemic has been car-
ried out for more than a year. However, from the current 
research results, most of the researches are still based on 
ordinary differential equations. In Algehyne’s study [1], 
a new mathematical SQIR model for COVID-19 formed 
by taking into account the impact of quarantine has been 
examined. Although authors performed a detailed analy-
sis of the local and global stability of the model, but they 
ignored the huge impact of the exposed population on 
the infection of the COVID-19 epidemic. The authors 
of [2] used actual data to study the evolution of fatalities 
arising from coronavirus COVID-19 worldwide. Bentout 
et  al. [4] forecast the progress of the COVID-19 in the 
USA, the United Arab Emirates and Algeria by an age-
structured model. Shahzad et al. [15] developed the mod-
els for coronavirus disease at different stages with the 
addition of more parameters due to interactions among 

Table 1  Parameter description of self-limiting novel coronavirus pneumonia epidemics

Parameter Description

S (x, t) Density of susceptible individuals at location x and time t

E (x, t) Density of patients with incubation period, asymptomatic infections, and items carrying the 
virus at location x and time t

L (x, t) Density of individuals undergoing self-limiting treatment at location x and time t

I1(x , t) Density of individuals with mild and common infections at location x and time t

I2(x , t) Density of Severe and high-risk patients in home at location x and time t

R (x, t) Density of temporary restorers at location x and time t

Q (x, t) Density of completely cured individuals at location x and time t

�(x , t) Total recruitment scale into this homogeneous social mixing community at location x and time t

βi(x , t), i = 1, 2 Effective contact ratio at location x and time t

δi(x , t), i = 1, 2 Self-limiting treatment ratio at location x and time t

α(x , t) Success ratio of the self-limiting treatment at location x and time t

θ(x , t) Failure ratio self-limiting treatment at location x and time t

γ (x , t) Incidence ratio at location x and time t

ω(x , t) Deterioration rate at location x and time t

φ(x , t) Temporary recovery ratio at location x and time t

ρi(x , t), i = 1, 2 Relapse ratio at location x and time t

σ(x , t) Complete cure ratio at location x and time t

µ(x , t) Natural mortality ratio at location x and time t

ηi(x , t), i = 1, 2, 3 Disease-related death ratio at location x and time t

dS(x), dE (x), dL(x), Diffusion ratio at location x

dI1 (x), dR(x)
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the individuals. Then, some key computational simula-
tions and sensitivity analysis are investigated. Appadu’s 
study [3] gave a comparison of some existing forecast-
ing methods about COVID-19, while Das et al. [10] gave 
a comparison of different intervention strategies for the 
prevention and control of Corona Virus Disease 2019 epi-
demic in their article. These results, whether discussing 
the global stability of the model or predicting the devel-
opment of the epidemic, ignore the strong dependence of 
the Corona Virus Disease 2019 epidemic on spatial diffu-
sion, heterogeneous environment and population flow. In 
2020, we present a method of global exponential attrac-
tor in the reaction-diffusion infectious disease model in 
spatial heterogeneous environment to study the spread 
trend and long-term dynamic behavior of the COVID-
19 epidemic [22]. In 2021, we study a reaction-diffusion 
COVID-19 model with home quarantine, standard con-
tact rate, time delay and relapse in the temporal-spatial 
heterogeneous environment. Except for the diffusion 
coefficient, other coefficients of this model are temporal-
spatial heterogeneous [23].

The novel coronavirus pneumonia epidemic has spread 
globally for more than a year. China is undoubtedly the 
country with the most successful epidemic prevention 
and control among the populous countries. Currently, 
asymptomatic infections, imported cases, imported cold-
chain food packaging and other items that carry the virus 
are the main sources of new confirmed cases in China. 
With the intervention of nucleic acid detection methods 

and the successful development of vaccines, a substan-
tial breakthrough has been made in the global prevention 
and control of the Corona Virus Disease 2019. Nucleic 
acid testing is currently the fastest and most effective 
method to find asymptomatic infections. The injection of 
vaccines can enhance the immunity, resistance and self-
healing ability of susceptible individuals. novel coronavi-
rus pneumonia epidemic is highly dependent on climate, 
temperature and humidity, and the mobility and density 
of the population will also affect the spread of the disease. 
The new crown virus is unusually active in winter and 
early spring and is prone to large-scale outbreaks. Large-
scale personnel gathering and population movement will 
increase the possibility of infection. Therefore, during the 
Spring Festival of 2021, the Chinese government advises 
people to reduce travel and encourages everyone to 
spend the Lunar New Year where they work. It is known 
to all that Corona Virus Disease 2019 has an incuba-
tion period, and the infected person cannot be detected 
immediately afterwards. Through the above description, 
we find that it is necessary to add factors such as self-
limiting, temporal-spatial heterogeneous, time delay, 
asymptomatic infection and virus-carrying items into the 
model. Considering these factors can make our model 
more consistent with the diffusion of the Corona Virus 
Disease 2019. However, the more factors considered, the 
greater the number of equations in the system, and the 
greater the coupling relationship between the equations, 

Fig. 1  Transfer diagram for the self-limiting novel coronavirus pneumonia epidemics with relapse in temporal-spatial heterogeneous environment
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which makes theoretical research and reasoning more 
difficult.

Different from the previous results that discussed the 
dynamics of the infectious disease model, the model in 
this article has increased the coupling between the equa-
tions because of the addition of relapse and self-limiting 
treatment. Therefore, the basic reproduction number R0 
commonly used to describe the transmission capacity of 
infectious diseases is not enough to accurately describe 
the infection capacity of the novel coronavirus pneumo-
nia epidemic with self-limiting treatment and relapse. At 
this time, we need to find another parameter with thresh-
old characteristics to measure the infection of Corona 
Virus Disease 2019. Through theoretical derivation, we 
find that the principal eigenvalue �∗ of the system has this 
threshold characteristic. Since we have added self-limit-
ing treatment and temporal-spatial heterogeneous envi-
ronment to the model, the number of equations in the 
system has increased and all coefficients are related to 
the temporal-spatial heterogeneous environment, which 
greatly increases the technical difficulty of constructing 
Lyapunov functionals. It is difficult to find a suitable Lya-
punov functional to prove the global asymptotic stability 
of the novel coronavirus pneumonia model with self-
limiting treatment in the temporal-spatial heterogeneous 
environment.

Methods
Construction of a model for the diffusion of novel 
coronavirus pneumonia
First, we construct a delayed reaction-diffusion and self-
limiting novel coronavirus pneumonia epidemic model 
with relapse and bilinear contact in a temporal-spatial 
heterogeneous environment. The parameter description 
and infection mechanism diagram as shown in Table  1 
and Fig. 1.

(1)





∂S
∂t = ∇ · (dS(x)∇S)+�(x, t)− β1(x, t)SE − β2(x, t)SI1(x, t − τ )

+ α(x, t)L− µ(x, t)S,
∂E
∂t = ∇ · (dE(x)∇E)+ β1(x, t)SE + β2(x, t)SI1(x, t − τ )+ ρ2(x, t)R

− [δ1(x, t)+ γ (x, t)+ µ(x, t)]E,
∂L
∂t = ∇ · (dL(x)∇L)+ δ1(x, t)E + δ2(x, t)I1 − [α(x, t)+ θ(x, t)+ µ(x, t)]L,
∂I1
∂t = ∇ ·

�
dI1(x)∇I1

�
+ γ (x, t)E + θ(x, t)L+ ρ1(x, t)R

− [δ2(x, t)+ ω(x, t)+ µ(x, t)+ η1(x, t)]I1,
∂I2
∂t = ω(x, t)I1 − [φ(x, t)+ µ(x, t)+ η2(x, t)]I2,
∂R
∂t = ∇ · (dR(x)∇R)+ φ(x, t)I2 − [ρ1(x, t)+ ρ2(x, t)+ σ(x, t)+ µ(x, t)+ η3(x, t)]R,
∂Q
∂t = σ(x, t)R− µ(x, t)Q, x ∈ �, t > 0,
∂S
∂n

=
∂E
∂n

=
∂L
∂n

=
∂I1
∂n

=
∂I2
∂n

=
∂R
∂n

=
∂Q
∂n

= 0, x ∈ ∂�, t > 0,
S(x, s) = S0(x, s) ≥ 0,E(x, s) = E0(x, s) ≥ 0, L(x, s) = L0(x, s) ≥ 0,
I1(x, s) = I10(x, s) ≥ 0, I2(x, s) = I20(x, s) ≥ 0,R(x, s) = R0(x, s) ≥ 0,
Q(x, s) = Q0(x, s) ≥ 0, x ∈ �,−τ ≤ s ≤ 0.

Here, � is a bounded domain in Rm(m ≥ 1) and the 
boundary ∂� is smooth, dS(x), dE(x), dL(x), dI1(x),

dR(x) ∈ C
1(�) are the space-dependent positive con-

tinuous uniformly bounded diffusion coefficient, 
�(x, t),β1(x, t),β2(x, t), ρ1(x, t), ρ2(x, t),α(x, t), γ (x, t),µ(x, t),

δ1(x, t), δ2(x, t), γ (x, t), θ(x, t),ω(x, t), σ(x, t), η1(x, t), η2(x, t) 
and η3(x, t) are positive Hölder continuous func-
tions about the total recruitment scale, rates of con-
tact, relapse, incidence, quarantined, recovery, 
natural death and disease-related death respectively. 
∂S
∂n

=
∂E
∂n

=
∂L
∂n

=
∂I1
∂n

=
∂I2
∂n

=
∂R
∂n

=
∂Q
∂n

= 0 denotes 
that the change ratio on the boundary is equal to 0. 
β1(x, t)SE and β2(x, t)SI1(x, t − τ ) are Lipschitz continu-
ous functions of S, E and I1 in the open first quadrant. In 
this manuscript, we assume that on � , the initial value 
S0,E0, L0, I10, I20,R0 and Q0 are nonnegative continu-
ous functions, and 

∫
�
I10(x, s)dx > 0,

∫
�
I20(x, s)dx > 0 . 

Because severely infected patients I2 are treated in the 
hospital and the population in compartments Q is cured, 
so we do not consider the diffusion of them in this article. 
Specific parameters described in Table 1.

Results
Novel coronavirus pneumonia transmission model (1) has 
a disease-free equilibrium E0(x) = (S0(x), 0, 0, 0, 0, 0, 0) . 
In order to further study the long-term dynamic behav-
ior of the delayed diffusive self-limiting epidemics model 
in temporal-spatial heterogeneous environment, we 
demand to prove the existence of principal eigenvalues of 
novel coronavirus pneumonia transmission model (1). If 
τ is equal to 0, linearizing the second, the third, the forth, 
the fifth and the sixth equations of novel coronavirus 
pneumonia transmission model (1) at disease-free equi-
librium, we get
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Let E = e�tχ(x), L = e�tκ(x), I1 = e�tϕ(x), I2 = e�tψ(x),

R = e�tξ(x),Q = e�tζ (x) , eq. (2) can be rewritten as

Denote �(x) = (χ(x), κ(x),ϕ(x),ψ(x), ξ(x), ζ (x))T ,

and

where

(2)





∂E
∂t

= ∇ · (dE(x)∇E)+ β1(x, t)S
0E + β2(x, t)S

0I1 + ρ2(x, t)R

− [δ1(x, t)+ γ (x, t)+ µ(x, t)]E,
∂L
∂t

= ∇ · (dL(x)∇L)+ δ1(x, t)E + δ2(x, t)I1 − [α(x, t)+ θ(x, t)+ µ(x, t)]L,

∂I1
∂t

= ∇ ·

�
dI1 (x)∇I1

�
+ γ (x, t)E + θ(x, t)L+ ρ1(x, t)R

− [δ2(x, t)+ ω(x, t)+ µ(x, t)+ η1(x, t)]I1,

∂I2
∂t

= ω(x, t)I1 − [φ(x, t)+ µ(x, t)+ η2(x, t)]I2,

∂R
∂t

= ∇ · (dR(x)∇R)+ φ(x, t)I2 − [ρ1(x, t)+ ρ2(x, t)+ σ(x, t)+ µ(x, t)+ η3(x, t)]R,

∂Q
∂t

= σ(x, t)R− µ(x, t)Q, x ∈ �, t > 0,

∂S
∂n

=
∂E
∂n

=
∂L
∂n

=
∂I1
∂n

=
∂I2
∂n

=
∂R
∂n

=
∂Q
∂n

= 0, x ∈ ∂�, t > 0.

(3)





�χ(x) = ∇ · (dE(x)∇χ(x))+ β1(x, t)S
0χ(x)+ β2(x, t)S

0ϕ(x)+ ρ2(x, t)ξ(x)

− [δ1(x, t)+ γ (x, t)+ µ(x, t)]χ(x),

�κ(x) = ∇ · (dL(x)∇κ(x))+ δ1(x, t)χ(x)+ δ2(x, t)ϕ(x)

− [α(x, t)+ θ(x, t)+ µ(x, t)]κ(x),

�ϕ(x) = ∇ ·

�
dI1(x)∇ϕ(x)

�
+ γ (x, t)χ(x)+ θ(x, t)κ(x)+ ρ1(x, t)ξ(x)

− [δ2(x, t)+ ω(x, t)+ µ(x, t)+ η1(x, t)]ϕ(x),

�ψ(x) = ω(x, t)ϕ(x)− [φ(x, t)+ µ(x, t)+ η2(x, t)]ψ(x),

�ξ(x) = ∇ · (dR(x)∇ξ(x))+ φ(x, t)ψ(x)

− [ρ1(x, t)+ ρ2(x, t)+ σ(x, t)+ µ(x, t)+ η3(x, t)]ξ(x),

�ζ (x) = σ(x, t)ξ(x)− µ(x, t)ζ (x), x ∈ �, t > 0,
∂χ
∂n

=
∂κ
∂n

=
∂ϕ
∂n

=
∂ψ
∂n

=
∂ξ
∂n

=
∂ζ
∂n

= 0, x ∈ ∂�, t > 0.

D(x) =




dE(x) 0 0 0 0 0
0 dL(x) 0 0 0 0
0 0 dI1(x) 0 0 0
0 0 0 0 0 0
0 0 0 0 dR(x) 0
0 0 0 0 0 0




M(x, t) =
�
mij(x, t)

�

=




m11(x, t) 0 β2(x, t)S
0 0 ρ2(x, t) 0

δ1(x, t) m22(x, t) δ2(x, t) 0 0 0
γ (x, t) θ(x, t) m33(x, t) 0 ρ1(x, t) 0
0 0 ω(x, t) m44(x, t) 0 0
0 0 0 φ(x, t) m55(x, t) 0
0 0 0 0 σ(x, t) − µ(x, t)



,

m11(x, t) = β1(x, t)S
0
− [δ1(x, t)+ γ (x, t)+ µ(x, t)],

m22(x, t) = −[α(x, t)+ θ(x, t)+ µ(x, t)],
m33(x, t) = −[δ2(x, t)+ ω(x, t)+ µ(x, t)+ η1(x, t)],
m44(x, t) = −[φ(x, t)+ µ(x, t)+ η2(x, t)],
m55(x, t) = −[ρ1(x, t)+ ρ2(x, t)+ σ(x, t)+ µ(x, t)+ η3(x, t)]

and mij(x) ≥ 0, i �= j, x ∈ � . Therefore, eq. (3) can be 
rewritten as

According to the Krein–Rutman theorem, we can get 
that eq. (4) exists a real eigenvalue �∗ and a correspond-
ing eigenvector
�∗(x) = (χ∗(x), κ∗(x),ϕ∗(x),ψ∗(x), ξ∗(x), ζ∗(x)) satisfy-

ing �∗(x) >> 0 for all x ∈ � . By [16, Theorem  2.2], we 

(4)

{
��(x) = ∇ · (D(x)∇�(x))+M(x, t)�(x), x ∈ �,
∂�
∂n

= 0, x ∈ ∂�.
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can further study the principal eigenvalue of delayed sys-
tem as follows:

Lemma 1  System (1) exists a principal eigenvalue �∗ 
associated with a strictly positive eigenvector, and for any 
τ ≥ 0 , �∗ and �∗ have the same sign.

By Lemma 1, we can get that there exists a principal 
eigenvalue �∗ of system (1) and a corresponding eigen-
vector �∗(x) = (χ∗(x),ϕ∗(x),ϕ∗(x),ψ∗(x), ξ∗(x), ζ ∗(x)) 
satisfying �∗(x) >> 0 for all x ∈ � under the Neumann 
boundary conditions.

Persistence of the novel coronavirus pneumonia epidemic
Here, we use the global exponential attractor theory to 
study the long-term dynamic behavior of the delayed 
reaction-diffusion self-limiting epidemic model in tem-
poral-spatial heterogeneous environment.

Since then, we denote that H = L
2(�) , H1= H

1
0(�) ∩ C

2,1(�),
H

7
= H×H×H×H×H×H×H and 

H
7
1 = H1×H1×H1×H1×H1×H1×H1 . Note that H7 and 

H
7
1 are Banach spaces equipped with norm

and

For any given continuous function f on �× (0,+∞) , we 
denote

For the spatial heterogeneous diffusion coefficients, we 
also denote that

∥∥∥(S,E, L, I1, I2,Q,R)T
∥∥∥
H7

: = �S�H + �E�H + �L�H + �I1�H

+ �I2�H + �Q�H + �R�H

∥∥∥(S,E, L, I1, I2,Q,R)T
∥∥∥
H

7
1

:= �S�H1
+ �E�H1

+ �L�H1
+ �I1�H1

+ �I2�H1
+ �R�H1

+ �Q�H1
.

f ∗ = sup
x∈�,t>0

f (x, t) and f∗ = inf
x∈�,t>0

f (x, t).

Next, we first investigate the existence, positivity and 
boundedness of the global solution of the novel coronavi-
rus pneumonia transmission model (1).

Theorem 2  For each (S0(x),E0(x), L0(x), I10(x), I20(x),R0(x),

Q0(x)) ∈ C(�× [−τ , 0]), novel coronavirus pneumonia 
system (1) exists a positive and bounded global solution 
(S(x, t),E(x, t), L(x, t), I1(x, t), I2(x, t),R(x, t),Q(x, t)) ∈ C

2,1(�× (−τ ,∞)).

Proof  Since

is a symmetrical sectorial operator and all eigenvalues of 
L are

where

be quasimonotone and satisfy the locally Lipschitz con-
ditions, then by [17, Theorem  11.3.5] and [20, Theo-
rem 2.3], we can deduce that novel coronavirus pneumo-
nia transmission model (1) exists a global solution

(S(x, t),E(x, t), L(x, t), I1(x, t), I2(x, t),R(x, t),Q(x, t)) ∈ C
2,1

(�× (0,∞)) . The same as the method in [21, Lemma 2.1 
and Theorem 2.2] , we can prove that the global solution 
of the novel coronavirus pneumonia transmission model 
(1) is positive. Next, we consider the following total pop-
ulation at time t. Define

(dS)∗ = inf
x∈�

dS(x), (dE)∗ = inf
x∈�

dE(x), (dL)∗ = inf
x∈�

dL(x),

(
dI1

)
∗
= inf

x∈�
dI1(x), (dR)∗ = inf

x∈�
dR(x).

L =(∇ · (dS(x)∇),∇ · (dE(x)∇),∇ · (dL(x)∇),

∇ ·

(
dI1(x)∇

)
, 0,∇ · (dR(x)∇), 0

)

0 > �1 ≥ �2 ≥ ... ≥ �k > ..., �k → −∞ (k → ∞),

G(S,E, L, I1, I2,R,Q) :=
(
g1(S,E, L, I1, I2,R,Q), g(S,E, L, I1, I2,R,Q),

g3(S,E, L, I1, I2,R,Q), g4(S,E, L, I1, I2,R,Q), g5(S,E, L, I1, I2,R,Q)

g6(S,E, L, I1, I2,R,Q), g7(S,E, L, I1, I2,R,Q)
)T

,

g1(S,E, L, I1, I2,R,Q) = �(x, t)− β1(x, t)SE − β2(x, t)SI1(x, t − τ )

+ α(x, t)L− µ(x, t)S,
g2(S,E, L, I1, I2,R,Q) = β1(x, t)SE + β2(x, t)SI1(x, t − τ )+ ρ2(x, t)R

− [δ1(x, t)+ γ (x, t)+ µ(x, t)]E,
g3(S,E, L, I1, I2,R,Q) = δ1(x, t)E + δ2(x, t)I1 − [α(x, t)+ θ(x, t)+ µ(x, t)]L,
g4(S,E, L, I1, I2,R,Q) = γ (x, t)E + θ(x, t)L+ ρ1(x, t)R

− [δ2(x, t)+ ω(x, t)+ µ(x, t)+ η1(x, t)]I1,
g5(S,E, L, I1, I2,R,Q) = ω(x, t)I1 − [φ(x, t)+ µ(x, t)+ η2(x, t)]I2,
g6(S,E, L, I1, I2,R,Q) = φ(x, t)I2 − [ρ1(x, t)+ ρ2(x, t)+ σ(x, t)

+µ(x, t)+ η3(x, t)]R,
g7(S,E, L, I1, I2,R,Q) = σ(x, t)R− µ(x, t)Q
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Take the derivative of U(t) to get

According to the Gronwall’s inequality in differential 
form [21, Lemma 2.2], we can obtain that

So U(t) ≤ max
{
U(0), �

∗
|�|

µ∗

}
 , where

Hence, U(t) =
∫
�
(S + E + L+ I1 + I2 + R+ Q)dx is 

bounded. By the positivity of the solution of the novel 
coronavirus pneumonia transmission model (1), we 
obtain that

U(t) =

∫

�

[S(x, t)+ E(x, t)+ L(x, t)+ I1(x, t)

+I2(x, t)+ R(x, t)+ Q(x, t)]dx.

dU (t)

dt
=�

Ω

[
�

�t
S(x, t) +

�

�t
E(x, t) +

�

�t
L(x, t) +

�

�t
I1(x, t) +

�

�t
I2(x, t)

+
�

�t
R(x, t) +

�

�t
Q(x, t)

]
dx

=�
Ω

{
∇ ⋅

(
dS(x)∇S

)
+ ∇ ⋅

(
dE(x)∇E

)
+ ∇ ⋅

(
dL(x)∇L

)

+ ∇ ⋅

(
dI1

(x)∇I1
)
+ ∇ ⋅

(
dR(x)∇R

)

+ Λ(x, t) − �(x, t)S − �(x, t)E − �(x, t)L −
[
�(x) + �1(x)

]
I1

−
[
�(x) + �2(x)

]
I2 −

[
�(x) + �2(x)

]
R − �(x)Q

}
dx

≤�
Ω

{
∇ ⋅

(
dS(x)∇S

)
+ ∇ ⋅

(
dE(x)∇E

)
+ ∇ ⋅

(
dL(x)∇L

)

+ ∇ ⋅

(
dI1

(x)∇I1
)
+ ∇ ⋅

(
dR(x)∇R

)

+ �
Ω

{
Λ∗ − �∗

[
S + E + L + I1 + I2 + R + Q

]}
dx

≤Λ∗|Ω| − �∗U (t).

U(t) ≤ U(0)e−µ∗t
+

�∗
|�|

µ∗

(
1− e−µ∗t

)
.

U(0)

=

∫

�

[S(x, 0)+ E(x, 0)+ L(x, 0)+ I1(x, 0)+ I2(x, 0)+ R(x, 0)+ Q(x, 0)]dx

≤

∫

�

�S(x, 0)+ E(x, 0)+ L(x, 0)+ I1(x, 0)+ I2(x, 0)+ R(x, 0)+ Q(x, 0)�L∞(�)dx

=�S(x, 0)+ E(x, 0)+ L(x, 0)+ I1(x, 0)+ I2(x, 0)+ R(x, 0)+ Q(x, 0)�L∞(�)|�|.

�S + E + L+ I1 + I2 + R+ Q�L1(�)

=

�

�

|S + E + L+ I1 + I2 + R+ Q|(x, t)dx

=

�

�

(S + E + L+ I1 + I2 + R+ Q)(x, t)dx

≤ max





�����
S(x, 0)+ E(x, 0)+ L(x, 0)

+I1(x, 0)+ I2(x, 0)+ R(x, 0)+ Q(x, 0)

�����
L∞(�)

|�|,
�∗

|�|

µ∗



.

We denote that 

K = max





�����
S(x, 0)+ E(x, 0)+ L(x, 0)

+I1(x, 0)+ I2(x, 0)+ R(x, 0)+ Q(x, 0)

�����
L∞(�)

|�|,
�∗

|�|

µ∗



 , 

then we know

Due to [11, Theorem  1 and Corollary 1], there exists a 
positive constant K ∗ depending on K such that

Thus, S(x, t),E(x, t), L(x, t), I1(x, t), I2(x, t),R(x, t),Q(x, t) 
are uniformly bounded on � . Hence, the global solution 
of novel coronavirus pneumonia transmission model (1) 
is positive and uniformly bounded. �

Theorem  3  There exists a global exponential attractor 
A∗ of novel coronavirus pneumonia transmission model 
(1), it exponential attracts any bounded set in H7.

Proof  For the novel coronavirus pneumonia diffusion 
system (1), we first confirm the [22, condition (2.3)]. 
Since

∫

�

(S + E + L+ I1 + I2 + R+ Q)dx ≤ K .

�S + E + L+ I1 + I2 + R+ Q�L∞(�) ≤ K ∗.
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〈
∇ · (dS(x)∇S)+�(x, t)− β1(x, t)SE − β2(x, t)SI1(x, t − τ)

+α(x, t)L− µ(x, t)S
, S

〉

H

=

∫

�

∇ · (dS(x)∇S) · Sdx +

∫

�

�(x, t)Sdx −

∫

�

β1(x, t)S
2
Edx

−

∫

�

β2(x, t)S
2
I1(x, t − τ)dx +

∫

�

α(x, t)SLdx −

∫

�

µ(x, t)S2dx

=

∫

�

n∑

i=1

S ·

∂

∂xi

(
dS(x)

∂S

∂xi

)
dx +

∫

�

�(x, t)Sdx −

∫

�

β1(x, t)S
2
Edx

−

∫

�

β2(x, t)S
2
I1(x, t − τ)dx +

∫

�

α(x, t)SLdx −

∫

�

µ(x, t)S2dx

=

n∑

i=1

∫

�

S ·

∂

∂xi

(
dS(x)

∂S

∂xi

)
dx +

∫

�

�(x, t)Sdx −

∫

�

β1(x, t)S
2
Edx

−

∫

�

β2(x, t)S
2
I1(x, t − τ)dx +

∫

�

α(x, t)SLdx −

∫

�

µ(x, t)S2dx

=−

n∑

i=1

∫

�

dS(x)

(
∂S

∂xi

)2

dx +

n∑

i=1

∫

∂�

S ·

(
dS(x, t)

∂S

∂xi

)
· nxi ds+

∫

�

�(x, t)Sdx

−

∫

�

β1(x, t)S
2
Edx −

∫

�

β2(x, t)S
2
I1(x, t − τ)dx +

∫

�

α(x, t)SLdx −

∫

�

µ(x, t)S2dx

=−

∫

�

dS(x)

n∑

i=1

(
∂S

∂xi

)2

dx +

∫

∂�

SdS(x, t)
∂S

∂n
ds+

∫

�

�(x, t)Sdx

−

∫

�

β1(x, t)S
2
Edx −

∫

�

β2(x, t)S
2
I1(x, t − τ)dx

+

∫

�

α(x, t)SLdx −

∫

�

µ(x, t)S2dx

=−

∫

�

dS(x)|∇S|
2
dx +

∫

�

�(x, t)Sdx −

∫

�

β1(x, t)S
2
Edx

−

∫

�

β2(x, t)S
2
I1(x, t − τ)dx +

∫

�

α(x, t)SLdx −

∫

�

µ(x, t)S2dx

≤− (dS)∗

∫

�

|∇S|
2
dx +�∗

∫

�

Sdx + α∗

∫

�

SLdx

=− (dS)∗�S�
2
H 1

2

+�∗

∫

�

Sdx + α∗

∫

�

SLdx,

〈
∇ · (dE(x)∇E)+ β1(x, t)SE + β2(x, t)SI1(x, t − τ)+ ρ2(x, t)R

−[δ1(x, t)+ γ (x, t)+ µ(x, t)]E
, E

〉

H

=

∫

�

∇ · (dE(x)∇E) · Edx +

∫

�

β1(x, t)SE
2
dx +

∫

�

β2(x, t)SEI1(x, t − τ)dx

+

∫

�

ρ2(x, t)ERdx −

∫

�

[δ1(x, t)+ γ (x, t)+ µ(x, t)]E
2
dx

≤ −(dE)∗�E�
2
H 1

2

+

∫

�

β1(x, t)SE
2
dx +

∫

�

β2(x, t)SEI1(x, t − τ)dx

+

∫

�

ρ2(x, t)ERdx

≤ −(dE)∗�E�
2
H 1

2

+ β∗

1

∫

�

SE
2
dx + β∗

2

∫

�

SEI1(x, t − τ)dx + ρ∗

2

∫

�

ERdx,
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In view of Theorem  2, we know (S(x, t), I1(x, t), I2(x, t),
R(x, t),Q(x, t)) is uniformly bounded, hence, [22, condi-
tion (2.3)] holds. Moreover, denote that

u = (S1,E1, L1, I11, I21,R1,Q1), v = (S2,E2, L2, I12, I22,R2,Q2)   , 
we can verify that there is a constant L̂ , such that

Hence, Lipschitz condition is well verified. Since that 
L =

(
∇ · (dS(x)∇),∇ · (dE(x)∇),∇ · (dL(x)∇),∇ ·

(
dI1(x)∇

)
,

〈
∇ · (dL(x)∇L)+ δ1(x, t)E + δ2(x, t)I1

−[α(x, t)+ θ(x, t)+ µ(x, t)]L
, L

〉

H

=

∫

�

∇ · (dL(x)∇L) · Ldx +

∫

�

δ1(x, t)ELdx +

∫

�

δ2(x, t)LI1dx

−

∫

�

[α(x, t)+ θ(x, t)+ µ(x, t)]L
2
dx

≤− (dL)∗�L�
2
H 1

2

+ δ∗1

∫

�

ELdx + δ∗2

∫

�

LI1dx,

〈
∇ ·

(
dI1 (x)∇I1

)
+ γ (x, t)E + θ(x, t)L+ ρ1(x, t)R

−[δ2(x, t)+ ω(x, t)+ µ(x, t)+ η1(x, t)]I1
, I1

〉

H

=

∫

�

∇ ·

(
dI1 (x)∇I1

)
· I1dx +

∫

�

γ (x, t)EI1dx +

∫

�

θ(x, t)LI1dx

+

∫

�

ρ1(x, t)I1Rdx −

∫

�

[δ2(x, t)+ ω(x, t)+ µ(x, t)+ η1(x, t)]I
2
1dx

≤−

(
dI1

)
∗
�I1�

2
H 1

2

+ γ ∗

∫

�

EI1dx + θ∗
∫

�

LI1dx + ρ∗

1

∫

�

I1Rdx,

�ω(x, t)I1 − [φ(x, t)+ µ(x, t)+ η2(x, t)]I2, I2�H

=

∫

�

ω(x, t)I1I2dx −

∫

�

[φ(x, t)+ µ(x, t)+ η2(x, t)]I
2
2dx

≤ ω∗

∫

�

I1I2dx,

〈
∇ · (dR(x)∇R)+ φ(x, t)I2 − [ρ1(x, t)+ ρ2(x, t)+ σ(x, t)

+µ(x, t)+ η3(x, t)]R
, R

〉

H

=

∫

�

∇ · (dR(x)∇R) · Rdx +

∫

�

φ(x, t)I2Rdx

−

∫

�

[ρ1(x, t)+ ρ2(x, t)+ σ(x, t)+ µ(x, t)+ η3(x, t)]R
2
dx

≤ −(dR)∗�R�
2
H 1

2

+ φ∗

∫

�

I2Rdx,

�σ(x, t)R− µ(x, t)Q,Q�H

=

∫

�

σ(x, t)RQdx −

∫

�

µ(x, t)Q2dx

≤σ ∗

∫

�

RQdx.

�G(t,u)− G(t, v)�H7

=

∥∥(g1(t,u)− g1(t, v)
)
,
(
g2(t,u)− g2(t, v)

)
,(

g3(t,u)− g3(t, v)
)
,
(
g4(t,u)− g4(t, v)

)
,(

g5(t,u)− g5(t, v)
)
,
(
g6(t,u)− g6(t, v)

)
,(

g7(t,u)− g7(t, v)
)∥∥

H7

=

∥∥g1(t,u)− g1(t, v)
∥∥
H
+

∥∥g2(t,u)− g2(t, v)
∥∥
H

+

∥∥g3(t,u)− g3(t, v)
∥∥
H
+

∥∥g4(t,u)− g4(t, v)
∥∥
H

+

∥∥g5(t,u)− g5(t, v)
∥∥
H
+

∥∥g6(t,u)− g6(t, v)
∥∥
H

+

∥∥g7(t,u)− g7(t, v)
∥∥
H
≤ L̂ · �u− v�H7 .

0,∇ · (dR(x)∇), 0) is a symmetrical sectorial operator and 
all eigenvalues of L are

therefore, by [22, Lemma 2.5], the novel coronavirus 
pneumonia transmission model (1) has a invariant set, 
it exponential attracts any bounded set in H7 . From [22, 
Theorem  2.7], we can gain that the novel coronavirus 
pneumonia transmission model (1) has a global exponen-
tial attractor A∗and dimF (A

∗) = d0 < ∞ . �

After getting the global exponential attractor, we can 
discuss the stability and persists uniformly of the novel 
coronavirus pneumonia.

Theorem 4 

(1)	 If �∗ < 0, then 

 in H , that is the COVID-19 epidemic will be effec-
tively controlled and eventually eliminated.

(2)	 If �∗ > 0 , then there exists a positive function ̺(x) 
independent of the initial data, such that any solu-
tion (S,E, L, I1, I2,R,Q) satisfies 

 for x ∈ � , that is the COVID-19 epidemic will per-
sists uniformly.

Proof 

(1)	 Suppose �
∗ < 0 . We intend to use the 

comparison principle to prove that 
E(x, t) → 0, L(x, t) → 0, I1(x, t) → 0, I2(x, t) → 0,

Q(x, t) → 0,R(x, t) → 0 as t → ∞ for each x ∈ � . 
First, we observe from the system (1) that 

0 > �1 ≥ �2 ≥ ... ≥ �k > ..., �k → −∞ (k → ∞),

lim
t→∞

S(x, t) =S
0(x), lim

t→∞

E(x, t) = 0, lim
t→∞

L(x, t) = 0, lim
t→∞

I1(x, t) = 0,

lim
t→∞

I2(x, t) =0, lim
t→∞

R(x, t) = 0, lim
t→∞

Q(x, t) = 0

lim inf
t→∞

S(x, t) ≥̺(x), lim inf
t→∞

E(x, t) ≥ ̺(x), lim inf
t→∞

L(x, t) ≥ ̺(x),

lim inf
t→∞

I1(x, t) ≥̺(x), lim inf
t→∞

I2(x, t) ≥ ̺(x),

lim inf
t→∞

R(x, t) ≥̺(x), lim inf
t→∞

Q(x, t) ≥ ̺(x)





∂E
∂t

≤ ∇ · (dE(x)∇E)+ {β1(x, t)K
∗
− [δ1(x, t)+ γ (x, t)+ µ(x, t)]}E

+ β2(x, t)K
∗I1 + ρ2(x, t)R,

∂L
∂t

≤ ∇ · (dL(x)∇L)+ δ1(x, t)E + δ2(x, t)I1

− [α(x, t)+ θ(x, t)+ µ(x, t)]L,
∂I1
∂t

≤ ∇ ·

�
dI1 (x)∇I1

�
+ γ (x, t)E + θ(x, t)L+ ρ1(x, t)R

− [δ2(x, t)+ ω(x, t)+ µ(x, t)+ η1(x, t)]I1,
∂I2
∂t

≤ ω(x, t)I1 − [φ(x, t)+ µ(x, t)+ η2(x, t)]I2,

∂R
∂t

≤ ∇ · (dR(x)∇R)+ φ(x, t)I2

− [ρ1(x, t)+ ρ2(x, t)+ σ(x, t)+ µ(x, t)+ η3(x, t)]R,
∂Q
∂t

≤ σ(x, t)R− µ(x, t)Q.
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 Next, let us define 
(
Ẽ(x, t), L̃(x, t), Ĩ1(x, t), Ĩ2(x, t),

R̃(x, t), Q̃(x, t)

)
=

(
Me�

∗tχ∗(x),Me�
∗tκ∗(x),Me�

∗tϕ∗(x),

Me�
∗tψ∗(x),Me�

∗tξ∗(x),Me�
∗tζ ∗(x)

)
 where 

�
∗ < 0,χ∗(x) >> 0, κ∗(x) >> 0,ϕ∗(x) >> 0,

ψ∗(x) >> 0, ξ∗(x) >> 0, ζ ∗(x) >> 0 are the eigen 
value and eigenvectors in eq. (3) and M is chosen so 
large that E(x, 0) ≤ Ẽ(x, 0), L(x, 0) ≤ L̃(x, 0), I1(x, 0)

≤ Ĩ1(x, 0), I2(x, 0) ≤ Ĩ2(x, 0),R(x, 0) ≤ R̃(x, 0),Q(x, 0)

≤ Q̃(x, 0) for every x ∈ � . It can be shown that (
Ẽ(x, t), L̃(x, t), Ĩ1(x, t), Ĩ2(x, t), R̃(x, t), Q̃(x, t)

)
 

satisfies 

 By the comparison principle [18, Lemma 5.2.1], for 
every x ∈ � and t ≥ 0 , 

 Since Ẽ(x, t) → 0, L̃(x, t) → 0, Ĩ1(x, t) → 0, Ĩ2(x, t) → 0,

R̃(x, t) → 0, Q̃(x, t) → 0 as t → ∞ for each x ∈ � , 
we also have that 

 as t → ∞ for each x ∈ � . Next we declare 
S(·, t) → S0(x) uniformly on as t → ∞ . Given any 
small constant ε > 0 , there exists a large time T > 0 
such that 0 ≤ E(x, t), L(x, t), I1(x, t) ≤ ε for all 
x ∈ �, t ≥ T  . From the first equation in system (1), 
it is noticed that S is a super-solution to 

 and a sub-solution to 





∂�E
∂t = ∇ ·

�
dE(x)∇�E

�
+ {β1(x, t)K

∗
− [δ1(x, t)+ γ (x, t)+ µ(x, t)]}�E

+ β2(x, t)K
∗�I1 + ρ2(x, t)�R,

∂�L
∂t = ∇ ·

�
dL(x)∇�L

�
+ δ1(x, t)�E + δ2(x, t)�I1

− [α(x, t)+ θ(x, t)+ µ(x, t)]�L,
∂I�1
∂t = ∇ ·

�
dI1(x)∇

�I1
�
+ γ (x, t)�E + θ(x, t)�L+ ρ1(x, t)�R

− [δ2(x, t)+ ω(x, t)+ µ(x, t)+ η1(x, t)]�I1,
∂I2
∂t = ω(x, t)�I1 − [φ(x, t)+ µ(x, t)+ η2(x, t)]�I2,
∂R
∂t = ∇ · (dR(x)∇R)+ φ(x, t)�I2

− [ρ1(x, t)+ ρ2(x, t)+ σ(x, t)+ µ(x, t)+ η3(x, t)]�R,
∂Q
∂t ≤ σ(x, t)�R− µ(x, t)�Q.

E(x, t) ≤Ẽ(x, t), L(x, t) ≤ L̃(x, t),

I1(x, t) ≤Ĩ1(x, t), I2(x, t) ≤ Ĩ2(x, t),

R(x, t) ≤R̃(x, t),Q(x, t) ≤ Q̃(x, t).

I1(x, t) → 0,E(x, t) → 0, L(x, t) → 0,

I2(x, t) → 0,R(x, t) → 0,Q(x, t) → 0

(5)





∂w
∂t

−∇ · (dS(x)∇w) = �(x, t)−
�
β∗

1
+ β∗

2

�
wε − µ(x, t)w, x ∈ �, t ≥ T ,

∂w
∂n

= 0, x ∈ ∂�,

w(x,T ) = S(x,T ), x ∈ �

 Denote by w and v the solution of system (5) and 
system (6), respectively. The parabolic comparison 
principle gives that 

 For system (5), we can verify that 

 this means that system (5) satis-
fies [22, condition (2.3)] for 
Lw + G(w) = ∇ · (dS(x)∇w)+�(x, t)−

(
β∗

1
+ β∗

2

)
wε − µ(x, t)w  . 

Same as the proof of Theorem  3 in the previous 
article, system (5) also exists a global exponential 
attractor Aw . In addition, system (5) has a vari-
ational structure, the corresponding functional of 
the variational structure is 

 where 

 Then 

(6)





∂v
∂t

− ∇ · (dS(x)∇v) = �(x, t)− µ(x, t)v

+α(x, t)ε, x ∈ �, t ≥ T ,
∂v
∂n

= 0, x ∈ ∂�,

v(x,T ) = S(x,T ), x ∈ �.

w(x, t) ≤ S(x, t) ≤ v(x, t) for all x ∈ �, t ≥ T .

〈
∇ · (dS(x)∇w)+�(x, t)−

(
β∗

1 + β∗

2

)
wε − µ(x, t)w,w

〉
H

=

∫

�

∇ · (dS(x)∇w) · wdx +

∫

�

�(x, t)wdx

−

∫

�

(
β∗

1 + β∗

2

)
εw2

dx −

∫

�

µ(x, t)w2
dx

≤− (dS)∗�w�
2
H 1

2

+�∗

∫

�

wdx,

F(w) =

∫

�

[
dS(x)

2
|∇w|2 − g(x,w)

]
dx,

g(x,w) =

∫ w

0

[
�(x, t)−

(
β∗

1 + β∗

2

)
wε − µ(x, t)w

]
du.
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 so L+ G is a gradient type operator. From [12, 
Theorem A.2.2], we can prove that 

 where S0
−
(ε, x) is the unique positive steady state 

of problems (5). Similarly, for system (6), we can 
obtain 

 where S0
+
(ε, x) is the unique positive steady state of 

problems (6). Furthermore, because of the arbitrari-
ness of ε , it is easily checked that 

 Thus, our analysis implies that the S(·, t) → S0(x) 
uniformly as t → ∞ . In this way, we have proved 
that when t → ∞ , without any form of infec-
tion, the COVID-19 epidemic has completely 
disappeared.

(2)	 Since �∗ > 0 , it is noticed that the solution of 

 is a sub-solution of the first equation in novel coro-
navirus pneumonia transmission model (1). Similar 
to the proof of conclusion (1), system (7) is also a 
gradient type equation. From [12, Theorem A.2.2], 
we can prove that 

 By weak maximum principle, we know that 
S∗
−
(x) > 0 for all x ∈ � . Define that 

 and 

 where 

�DF(w),Lw + G(w)�H

=

〈
DF(w),∇ · (dS(x)∇w)+�(x, t)

−

(
β∗

1 + β∗

2

)
wε − µ(x, t)w

〉
H

=− �DF(w)�2H,

lim
t→∞

w(x, t) = S0
−
(ε, x) inH,

lim
t→∞

v(x, t) = S0
+
(ε, x) inH,

S0
−
(ε, x), S0

+
(ε, x) → S0(x) inH, as ε → 0.

(7)





∂S−
∂t

− ∇ · (dS(x)∇S−) = �(x, t)

−[β1(x, t)K
∗
+ β1(x, t)K

∗
+ µ(x, t)]S−,

∂S−
∂n

= 0, x ∈ ∂�,

S−(x,T ) = S(x,T ), x ∈ �

lim
t→∞

S−(x, t) = S∗
−
(x) inH.

(E−(x, t), L−(x, t), I1−(x, t), I2−(x, t),R−(x, t),Q−(x, t))

=

(
εχ∗(x), εκ∗(x), εϕ∗(x), εψ∗(x), εξ∗(x), εζ ∗(x)

)

S0 = S ± εϑ∗(x) ≥ S∗
−
(x) > 0

 and ε > 0 is a sufficiently small constant. Substitut-
ing εχ∗(x), εκ∗(x), εϕ∗(x), εψ∗(x), εξ∗(x), εζ ∗(x) 
into the second, the third, the forth, the fifth and 
the sixth equations of system (1), we know 

ϑ∗(x) >> 0,χ∗(x) >> 0, κ∗(x) >> 0,ϕ∗(x) >> 0,
ψ∗(x) >> 0, ξ∗(x) >> 0, ζ ∗(x) >> 0

1

S 0

{
ε∇ ·

(
dE(x)∇χ∗

)
+ β1(x, t)Sεχ

∗
+ β2(x, t)Sϕ

∗
+ ρ2(x, t)εξ

∗

−[δ1(x, t)+ γ (x, t)+ µ(x, t)]εχ∗
−

∂(εχ∗)

∂t

}

=

1

S 0

{
ε∇ ·

(
dE(x)∇χ∗

)
+ β1(x, t)S

0εχ∗
+ β2(x, t)S

0εϕ∗
+ ρ2(x, t)εξ

∗

− [δ1(x, t)+ γ (x, t)+ µ(x, t)]εχ∗
+ β1(x, t)Sεχ

∗
+ β2(x, t)Sεϕ

∗

−β1(x, t)S
0εχ∗

− β2(x, t)S
0εϕ∗

}

=

1

S 0
ε�∗ϕ∗

+ β1(x, t)εχ
∗

[
S

S 0
− 1

]
+ β2(x, t)εϕ

∗

[
S

S 0
− 1

]

=

1

S 0
ε�∗ϕ∗

+ ε
(
β1(x, t)χ

∗
+ β2(x, t)ϕ

∗
)[ S

S ± εϑ∗(x)
− 1

]
> 0

(ε > 0 is a sufficiently small constant),

ε∇ ·

(
dL(x)∇κ∗

)
+ δ1(x, t)εχ

∗
+ δ2(x, t)εϕ

∗

− [α(x, t)+ θ(x, t)+ µ(x, t)]εκ∗ −
∂(εκ∗)

∂t

=ε�∗κ∗ > 0 (ε > 0 is a sufficiently small constant),

Table 2  The parameters description of the COVID-19 epidemic 
in China

Parameter Data estimated Data sources

� 5 Estimate

β1 0.6 References [23]

β2 0.3 References [23]

α 0.3 Estimate

γ + δ2 0.423 References [13]

δ1 0.5 Estimate

ω 0.35 References [13]

ρ1 0.001 References [23]

ρ2 0.002 References [23]

θ 0.7 Estimate

φ 0.8 References [13]

σ 0.7 Estimate

µ 0.1595 References [19]

η1 0.021 References [13]

η2 0.157 References [13]

η3 0.021 References [13]

τ 11 References [23]
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 and 

 Therefore, (εχ∗, εκ∗, εϕ∗, εψ∗, εξ∗, εζ ∗) is the  
sub-solution of the second, the third, the forth 
and the fifth equations of system (1). We choose 
0 < ̺(x) < min

{
S∗
−
(x), εχ∗(x), εκ∗(x), εϕ∗(x),

εψ∗(x), εξ∗(x), εζ ∗(x)} , we can obtain that 

 for x ∈ � , then it shows that the novel coronavirus 
pneumonia persists.

�

The results of Theorem 2.4 show that �∗ is a threshold 
for describing the infectious ability of novel coronavirus 
pneumonia. If �∗ > 0 and t → ∞ , then the positive solu-
tion of novel coronavirus pneumonia transmission model 
(1) is globally exponential attractive and the attraction 
domain is A∗ . To explain this phenomenon from a medi-
cal point of view is that the novel coronavirus pneumonia 
epidemic will continue to survive and cannot be cured, 
but the spread of the epidemic will eventually be effec-
tively controlled within a small area.

Data collection and analysis
The number of confirmed COVID-19 cases worldwide 
has exceeded 100 million, and the prevention and con-
trol of the epidemic is still very arduous. As the northern 
hemisphere enters winter, epidemics in many countries 
in Europe and the United States have broken out again, 
and confirmed cases have increased day by day.

From January 24, 2020, the official website of the 
National Health Committee of the People’s Republic of 
China has updated the relevant data of the COVID-19 
epidemic [13]. The official website of the WHO can check 

ε∇ ·

(
dI1 (x)∇ϕ∗

)
+ γ (x, t)εχ∗

+ θ(x, t)εκ∗ + ρ1(x, t)εξ
∗

− [δ2(x, t)+ ω(x, t)+ µ(x, t)+ η1(x, t)]εϕ
∗
−

∂(εϕ∗)

∂t

=ε�∗ψ∗ > 0 (ε > 0 is a sufficiently small constant),

ω(x, t)εϕ∗
− [φ(x, t)+ µ(x, t)+ η2(x, t)]εψ

∗
−

∂(εψ∗)

∂t

=ε�∗ψ∗ > 0 (ε > 0 is a sufficiently small constant),

ε∇ ·

(
dR(x)∇ξ∗

)
+ φ(x, t)ψ∗

−

∂(εξ∗)

∂t

− [ρ1(x, t)+ ρ2(x, t)+ σ(x, t)+ µ(x, t)+ η3(x, t)]εξ
∗

=ε�∗ξ∗ > 0 (ε > 0 is a sufficiently small constant)

σ(x, t)εξ∗ − µ(x, t)εζ ∗ −
∂(εζ ∗)

∂t

=ε�∗ζ ∗ > 0 (ε > 0 is a sufficiently small constant)

lim inf
t→∞

S(x, t) ≥̺(x), lim inf
t→∞

I1(x, t) ≥ ̺(x), lim inf
t→∞

I2(x, t) ≥ ̺(x),

lim inf
t→∞

R(x, t) ≥̺(x), lim inf
t→∞

Q(x, t) ≥ ̺(x)

the relevant data from January 21 to the present [8]. Our 
data comes from these official websites, and the data on 
the website will be updated in a timely manner every 
day. Based on these data, we can get some important 
parameters in Table  2 through simple data analysis and 
calculations.

Numerical simulation of novel coronavirus pneumonia 
epidemic trend in China
Since the outbreak of COVID-19 in 2020, the global 
spread of the epidemic has shown a certain periodicity, 
and this periodic phenomenon is the result of a combi-
nation of time and space factors. First of all, the diffu-
sion of the epidemic is highly dependent on climate and 
temperature, and the root cause of temperature differ-
ences between regions is the difference in latitude and 
location, and it is finally manifested through the time 
phenomenon of seasonal alternation. In daily life, peo-
ple’s activity trajectories are regularly fixed between 
several specific locations, such as homes, work units, 
schools, subways, supermarkets, and so on. The appear-
ance of these specific locations in daily life is also peri-
odic and the diffusion rate of each location is relatively 
fixed. Therefore, the position in the trajectory of peo-
ple’s action will appear periodically, and the diffusion 
rate will also appear periodically with this trajectory of 
action. In order to investigate the impact of the spatial 
periodic diffusion rate on the spread of the epidemic, 
we select a positive periodic function according to the 
range of activities of different groups of people (the sus-
ceptible people have a large range of activities, and the 
infected people have a small range of activities). Through 
a number of numerical simulation experiments, we 
found that the simulation effect of the set of parameters 
dS(x) = e15 sin x, dE(x) = |sin x|, dL(x) = |sin x|, dI1(x)

= 0.3|sin x|, dR(x) = 2 is more consistent with the actual 
spread of the epidemic.

Refer to the data in Table 2 and our system (1), we first 
simulate the spread trend of the novel coronavirus pneu-
monia epidemic in China (Fig.  2).

From Fig. 2, we can see that the results of the numerical 
simulation are basically consistent with the official data. 
At this time, the novel coronavirus pneumonia epidemic 
is globally asymptotically stable or persists uniformly.

If we choose β1 = 0.006,β2 = 0.003 in Table 2, then we 
can obtain the image in Fig. 3.

From Fig.  3, we find that when the contact rate is 
reduced to a small enough level, the novel coronavirus 
pneumonia epidemic will die out. At this time, the dis-
ease-free equilibrium is globally asymptotically stable.

From the novel coronavirus pneumonia transmission 
model (1) we can see that all the parameters are tempo-
ral-spatial related functions, so we choose different 
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Fig. 2  The spread of the COVID-19 epidemic in China
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Fig. 3  The spread of the COVID-19 epidemic when β1 = 0.006,β2 = 0.003
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Fig. 4  The temporal-spatial heterogeneity COVID-19 epidemic is persists uniformly when 
β1(x , t) = 0.3|0.2 sin x|, γ (x , t) = 0.223|cos x|, ρ2(x , t) = 0.02|sin x|, η2(x , t) = 0.157e−2xt
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Fig. 5  The global stability of disease-free equilibrium of temporal-spatial heterogeneity system (1) when 
β1(x , t) = 0.6e−x ,β2(x , t) = 0.3e−2x

|sin xt|, γ (x , t) = 0.223|cos x|, ρ2(x , t) = 0.02|sin x|, η2(x , t) =

0.157e−2xt
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functions will directly lead to different stability results. If 
we select β1(x, t) = 0.3|0.2 sin x|, γ (x, t) = 0.223|cos x|,

ρ2(x, t) = 0.02|sin x|, η2(x, t) = 0.157e−2xt and choose 
other parameters from Table  2, then we can clearly see 
that the novel coronavirus pneumonia epidemic is per-
sists uniformly (Fig. 4). This reflects that the new corona-
virus epidemic will fluctuate within a controllable range, 
but the epidemic will not dissipate. This is the normaliza-
tion stage of the spread of COVID-19.

If we select β1(x, t) = 0.6e−x ,β2(x, t) = 0.3e−2x
|sin xt|, γ (x, t)

= 0.223|cos x|, ρ2(x, t) = 0.02|sin x|, η2(x, t) = 0.157e−2xt 
and choose other parameters from Table 2, then we can 
clearly see that the disease-free equilibrium of the tem-
poral-spatial heterogeneity novel coronavirus pneumonia 
epidemic is globally asymptotically stable (Fig. 5).

Discussion
The novel coronavirus pneumonia epidemic is still raging 
around the world. As of February 3, 2020, the five most 
severely affected countries in the world are the United 
States, India, Brazil, the United Kingdom and Russia. As a 
populous country, China has done a very good job in the 

prevention and control of the novel coronavirus pneumo-
nia epidemic, with only sporadic cases of asymptomatic 
infections and imported cases from abroad. We make a 

Table 3  The number of confirmed cases and deaths of COVID-
19 in China and the five most severe countries

Country Total confirmed 
cases

Newly confirmed 
cases

Total deaths

USA 27027347 114703 457856

India 10766245 8635 154486

Brazil 9283418 54096 226309

UK 3863757 16906 108225

Russia 3842145 16406 75383

China 101092 12 4828

Fig. 6  Comparison of compartment I1 under different contact rates

Fig. 7  Effect of self-limiting treatment

Fig. 8  Comparison of compartment I1 under different self-limiting 
treatment rates
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list of the real-time data of the above several countries for 
comparison in Table 3.

Why is the prevention and control of the novel coro-
navirus pneumonia epidemic in China so effective? A 
very important point is that the Chinese government 
encourages people to take the initiative to stay at home 
and reduce gathering activities. The Chinese people also 
consciously wear masks when they go out and keep a 
safe distance from each other. The primary purpose of 
home quarantine measure is to control the effective con-
tact rate, and it can also reduce the chance of relapse in 
patients after cures.

In our model (1), compartment E contains asympto-
matic infections and patients in the incubation period. 
These two groups of people cannot know that they are 
carrying the virus without medical treatment. They live a 
normal life like everyone else and can move around with-
out restriction. Their dedication to spreading the new 
coronavirus is higher than the confirmed cases. We only 
adjust the contact rate β1 = 0.002 in Table  2 to draw a 
comparison chart of compartment I1 (Fig. 6).

From Fig.  6, we can clearly see that if there are ways 
to quickly identify asymptomatic infections and patients 
in the incubation period, and reduce contact with these 
people, China’s epidemic prevention and control can still 
do better.

Another highlight of the novel coronavirus pneumo-
nia model constructed in this article is to examine the 
impact of self-limiting treatment on epidemic prevention 
and control. As mentioned earlier, self-limiting treat-
ment includes symptomatic treatment, immunotherapy 
and other methods. Reasonable diet and strengthen-
ing exercise are all ways to enhance physical fitness and 
immunity. The successful development of the new crown 
vaccine has also greatly improved the immunity of the 
vaccinated population, enhanced the resistance of the 

vaccinated population and the self-healing ability after 
infection. Regarding the effect of self-limiting treatment, 
we conducted the following simulation. First, we simulate 

Fig. 9  The COVID-19 model (1) missing the self-limiting treatment compartment

Fig. 10  Comparison of the impact of self-limiting treatment on 
infected patients
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the number of infected people in China without any self-
limiting treatment (Fig. 7).

From Fig.  7 we can clearly see that without vaccines, 
home isolation and other self-limiting treatment meas-
ures, the number of confirmed cases in China will be 
greater than the current number. The COVID-19 vaccine 
has been successfully developed in China, and the pop-
ularization of the vaccine has also begun. In the future, 
more and more people will participate in the immu-
notherapy of vaccination. If we adjust the self-limiting 
treatment rate such that δ1 = 0.8, δ2 = 0.8 in Table  2, 

the number of people participating in self-limiting treat-
ment has increased significantly at this time, and we can 
see from Fig. 8 that the decline in infected people is even 
more obvious. Compared with δ1 = 0.5, δ2 = 0.2 , the 
number of infections dropped by about 13.

If we choose α = θ = δ1 = δ2 = 0 in Table 2, the self-
limiting treatment compartment (L) in model (1) will be 
gone, and replaced by the following new model:

We still use the data in Table  2 to simulate the new 
model in Fig. 9, and compare the number of infected per-
sons in the new model and model 0.1 to get the following 
comparison chart (Fig. 10). 

Figure 10 clearly reflects the role of self-limiting treat-
ment in epidemic prevention and control. If there is no 
self-limiting treatment compartment in the model, the 
number of infected persons is significantly higher than 
when there has self-limiting treatment. Compared with 
official data, the model without a self-limiting treat-
ment compartment has larger errors in the simulation 
results. Therefore, the model (1) constructed in this 

Table 4  The parameters description of the COVID-19 epidemic 
in the USA

Parameter Data estimated Data sources

� 18000000 References [23]

β1 0.75 References [23]

β2 0.6 References [23]

γ 0.088 References [9]

ω 0.001072 References [9]

ρ1 0.1 References [23]

ρ2 0.2 References [23]

φ 0.35 References [23]

σ 0.55 Estimate

µ 0.1595 References [19]

η1 0.055 References [9]

η2 0.055 References [9]

η3 0.049 References [8]

dS 2 Estimate

dE 1 Estimate

dI 0.3 Estimate

dR 2 Estimate

Fig. 11  Comparison of US confirmed cases with or without 
self-limiting treatment
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Fig. 12  Comparison chart of τ = 7, τ = 14 and τ = 42
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article is more suitable for the spread of the epidemic in 
China. Prevention and control recommendations based 
on this model will also be more helpful to public health 
departments.

From Table 3, we can see that the cumulative number 
of confirmed cases in the United States has exceeded 27 
million, which is a very alarming number. The Centers for 
Disease Control and Prevention publishes weekly sum-
mary of the novel coronavirus pneumonia epidemic in 
the USA [9]. The weekly summary shows that the inci-
dence of the USA epidemic has dropped to 8.8%, the 
mortality rate has dropped to 5.5%, and the rate of iso-
lation treatment in hospitals is 107.2/100000. Then we 
get the following data in Table  4. Since the outbreak of 
the epidemic, the daily life of the American people has 
not been subject to any restrictions. They work normally, 
gather together and lack the necessary protective meas-
ures. If the U.S. government encourages people to reduce 
going out, wear masks to travel, and take measures to 
isolate and self-limit the treatment of mild patients, the 

number of confirmed cases in the United States will be 
greatly reduced. Combined with the data in Table 4, we 
make a simulation comparison of confirmed cases in the 
United States with or without self-limiting treatment 
(Fig. 11). Obviously, self-limiting treatment can help the 
United States better prevent and control the novel coro-
navirus pneumonia epidemic. 

Through the numerical simulations in this section, we 
find that restricting the free movement of asymptomatic 
infected persons can reduce the risk of infection for sus-
ceptible persons. Increasing the proportion of self-limit-
ing treatment for asymptomatic infections and patients 
in the incubation period has a significant effect on the 
prevention and control of the novel coronavirus pneumo-
nia epidemic.

Everyone knows that the COVID-19 epidemic usually 
has an incubation period of 7–14 days, and there have 
been previous reports claiming an extremely long incu-
bation period of 42 days. We simulate the changes in the 
number of people in compartment I1 with a time delay 
of 7 days, 14 days and 42 days. Because the time delay is 
relatively short, the changing trends of the three curves 
are relatively close on the surface. However, we can still 
clearly see from the first image of Fig. 12 that the three 
curves are not completely coincident. In order to be able 
to see the relationship between the three curves clearly, 
we have also partially enlarged the simulated image (sec-
ond image of Fig. 12).

From Fig.  12, we can see that when the time delay is 
equal to 14 days, the number of infected people is the 
largest in the steady state. Similarly, we also simulate the 
changes in the number of people in compartment I1 with 
a time delay of 0 days, 7 days and 14 days. In particular, 
when τ = 0 , the original model becomes a new COVID-
19 model without time delay.

From the simulation results (Fig.  13), we can see that 
the incubation period of 14 days is still the most serious 
situation of the epidemic. Therefore, the 14th day of the 
incubation period is the peak of the possible outbreak of 
COVID-19. From the perspective of public health, the 
time delay effect provides the government and medical 
departments with valuable time for prevention and control 
deployment. During this period of time, relevant depart-
ments can detect asymptomatic infections in a timely 
manner through effective detection methods and control 
the spread of the epidemic in local areas. In this way, the 
time delay period can be described as the golden period 
for epidemic prevention, control and treatment. Combin-
ing Figs. 12 and 13, since the outbreak of the epidemic will 
weaken after 14 days, the prevention and control of the 
first 14 days is particularly important. The 14-day quar-
antine policy introduced by many countries during the 
COVID-19 epidemic is reasonable. Strict implementation 
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Fig. 13  Comparison chart of τ = 7, τ = 14 and τ = 0
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of the relevant policies of 14-day home quarantine has 
been effective in preventing and controlling the COVID-
19 epidemic. If the patient takes targeted self-limiting 
treatment during the 14-day prime time, such as reduc-
ing going out, strengthening exercise, vaccination, oxygen 
therapy, etc., it can speed up the recovery of the disease. 

Conclusion
Novel coronavirus pneumonia is a self-limiting disease, 
and targeted self-limiting treatment can speed up the 
recovery of infected people. This conclusion was ques-
tioned at the beginning of the outbreak, but with the 
accumulation of global experience in treating novel cor-
onavirus pneumonia, such doubts no longer exist. This 
paper studies the long-term dynamics of the self-limit-
ing time delay diffusion novel coronavirus pneumonia 
model in a temporal-spatial heterogeneity environment. 
Through mathematical modeling and rigorous math-
ematical reasoning, we have proved that targeted self-
limiting treatment can effectively control the spread and 
diffusion of the novel coronavirus pneumonia epidemic. 
In addition, due to the introduction of temporal-spatial 
heterogeneity environment in the model, the proof of the 
global stability of the model is much more difficult than 
that of the constant coefficient model. In this proof pro-
cess, we found that the principal eigenvalue of the system 
can be used as a new threshold to better characterize the 
epidemic infection ability in a temporal-spatial hetero-
geneity environment. Furthermore, we used the global 
attractor method to discuss the global stability and global 
exponential attractivity of the spread of novel corona-
virus pneumonia in a temporal-spatial heterogeneous 
environment. With the help of numerical simulations, we 
intuitively demonstrated the impact of the temporal-spa-
tial heterogeneity environment on the spread of the novel 
coronavirus pneumonia epidemic and the promotion of 
self-limiting treatment on the prevention and control of 
the novel coronavirus pneumonia epidemic. Numeri-
cal simulation results show that the spread of the global 
novel coronavirus pneumonia epidemic has fluctuated 
and increased due to seasonal changes and regional dif-
ferences, and increasing the proportion of self-limiting 
treatment can greatly reduce the number of infected peo-
ple. At the same time, time delay also plays a very impor-
tant role in the spread of the epidemic. The 14th day is 
the peak of a concentrated outbreak of infected people.
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