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The brain white matter (WM) structural injury caused by type 2 diabetes mellitus (T2DM)
has been linked to cognitive impairment. However, the focus was mainly on the mild
cognitive impairment (MCI) stage in most previous studies, with little attention made to
subjective memory complaints (SMC). The main purpose of the current study was to
investigate the characteristics of WM injury in T2DM patients and its correlation with
SMC symptoms. In a group of 66 participants (33 HC and 33 T2DM-S), pointwise
differences along WM tracts were identified using the automated fiber quantification
(AFQ) approach. Then we investigated the utility of DTI properties along major WM
tracts as features to distinguish patients with T2DM-S from HC via the support vector
machine (SVM). Based on AFQ analysis, 10 primary fiber tracts that represent the subtle
alterations of WM in T2DM-S were identified. Lower fractional anisotropy (FA) in the
right SLF tract (r = −0.538, p = 0.0013), higher radial diffusivity (RD) in the thalamic
radiation (TR) tract (r = 0.433, p = 0.012), and higher mean diffusivity (MD) in the right
inferior fronto-occipital fasciculus (IFOF) tract (r = 0.385, p = 0.0029) were significantly
associated with a long period of disease. Decreased axial diffusivity (AD) in the left
arcuate was associated with HbA1c (r = −0.368, p = 0.049). In addition, we found
a significant negative correlation between delayed recall and abnormal MD in the left
corticospinal tract (r = −0.546, p = 0.001). The FA of the right SLF tracts and bilateral
arcuate can be used to differentiate the T2DM-S and the HC at a high accuracy up to
88.45 and 87.8%, respectively. In conclusion, WM microstructure injury in T2DM may
be associated with SMC, and these abnormalities identified by DTI can be used as an
effective biomarker.

Keywords: type 2 diabetes, white matter, cognitive function, memory, diffusion tensor imaging

Abbreviations: AFQ, automated fiber quantification; WM, white matter; FA, fractional anisotropy; MD, mean diffusivity;
AD, axial diffusivity; RD, radial diffusivity; TR, thalamic radiation; CST, corticospinal; IFOF, inferior fronto-occipital
fasciculus; ILF, inferior longitudinal fasciculus; SLF, superior longitudinal fasciculus; MoCA, montreal cognitive assessment;
MMSE, mini-mental state examination.

Frontiers in Neuroscience | www.frontiersin.org 1 April 2022 | Volume 15 | Article 800420

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2021.800420
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2021.800420
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2021.800420&domain=pdf&date_stamp=2022-04-06
https://www.frontiersin.org/articles/10.3389/fnins.2021.800420/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-800420 April 5, 2022 Time: 10:11 # 2

Wang et al. Tractography of T2DM-S

INTRODUCTION

Type 2 diabetes mellitus (T2DM) is a long-term systemic
metabolic disease characterized by insulin resistance and
hyperglycemia, accounting for up to 90% of all diabetes cases
(Quattrocchi et al., 2020). T2DM-related complications can also
cause injury to the central nervous system (CNS) in addition to
the retina, kidneys, and peripheral nerves. There is increasing
evidence that T2DM significantly increases the risk of Alzheimer’s
disease, dementia, and vascular dementia (Cukierman et al.,
2005; Yaffe et al., 2012; Bordier et al., 2014; Degen et al.,
2016). Approximately 11.3% of elderly patients with T2DM
have suffered from cognitive impairment (Bruce et al., 2003).
Cognitive impairment in T2DM usually manifests as functional
deficits in working memory, attention, and execution (Zhang
et al., 2014; Srikanth et al., 2020). Subjective memory complaints
(SMC) refers to subjective experiences of cognitive function
decline which is a kind of self-reported abnormality (Hong et al.,
2019). Compared with middle-aged people without diabetes,
the proportion of T2DM patients with SMC has increased by
19% (Biessels and Despa, 2018; Fiore et al., 2019). SMC can
incite anxiety in patients, leading to a poorer quality of life
and increased healthcare utilization (Waldorff et al., 2009).
The etiology and clinical significance of SMCs is unclear, but
these complaints are associated with objective cognitive decline
or with depression, anxiety, and psychosocial stressors (Vale
et al., 2012). SMC has been reported to exhibit biological and
physiological brain changes similar to those seen in Alzheimer’s
disease. Whether SMC is attributable to brain structure changes
in diabetic patients and cognitive dysfunction in the future is
still controversial (Biessels and Despa, 2018; Bruce et al., 2019;
Kawagoe et al., 2019).

Neuroimaging has been used to non-invasively characterize
the changes of brain structure in patients with T2DM, mainly
showing a decrease in gray matter volume and loss of axonal
integrity (Li et al., 2020). Diffusion tensor imaging (DTI) is
an inspection method that can effectively observe and track
brain white matter (WM) fiber bundles, detect microstructural
abnormalities, and assess the integrity of WM bundles in the
brain (Reijmer et al., 2013; Vaeggemose et al., 2020). Compared
with traditional structural MRI, DTI seems to be a more
sensitive biomarker of cognitive decline caused by aging and
axial diffusivity (AD; Schiavone et al., 2009; Zhuang et al., 2012).
Relevant studies have shown that differential brain structural
abnormalities between T2DM and healthy control (HC) may
reflect pathological mechanisms underlying the effect of blood
glucose fluctuation to the brain (Moulton et al., 2015; Alotaibi
et al., 2021). Abnormalities in specific WM tracts can lead to
disruption in information transfer and interruption of pathways
within important brain regions (Xie et al., 2017; Sundar et al.,
2019). The limited sample size, the variability of demographic
characteristics of the patients, and the diversity of methodological
methodologies may all contribute to the inconsistency of different
studies. In a study using tract-based spatial statistics (TBSS), DTI-
derived indexes were abnormal in several brain regions of T2DM,
such as the right corpus cingulum (Xiong et al., 2016). Previous
studies have provided some information on the impact of mild

cognitive impairment (MCI) in T2DM (Sun et al., 2018; Xiong
et al., 2020). A large amount of evidence has shown that T2DM
with MCI will be an injury to the structure of the brain. The
main damaged fiber tracts include the corpus callosum (Liang
et al., 2019), the bilateral front limbs of the internal capsule (Zhuo
et al., 2019), the bilateral posterior thalamus radiation (Tan et al.,
2016), etc. The T2DM with amnestic MCI showed decreased
fractional anisotropy (FA) in the right inferior fronto-occipital
fasciculus (IFOF) and the right inferior longitudinal fasciculus
(ILF; Gao et al., 2019).

In the past, most T2DM-related DTI studies have surveyed
whole-brain WM diffusion metrics using either voxel-based
analyses (VBA). It is inevitably affected by the size of smoothing
kernel. Although TBSS (Sanjari Moghaddam et al., 2019)
technology was used later, the influence of cross fibers on the
results was still not solved. Meanwhile, many studies are limited
to basic DTI-derived indexes such as FA and mean diffusivity
(MD), in which the tracts were defined by a region of interest
(ROI) approach (Hoogenboom et al., 2014; Cui et al., 2020).
Automated fiber quantification (AFQ; Yeatman et al., 2012) is
a widely used and successful tractography method in detecting
structural abnormalities of the WM pathway, which enables us
to segment the fiber tracts and identify the abnormal points
accurately and automatically, avoiding the influence of smooth
kernel (Sarica et al., 2017; Dou et al., 2020). An support vector
machine (SVM) model is a classical machine learning algorithm,
which can help us better distinguish the specific WM injury
patterns of T2DM with SMC (T2DM-S) and find effective
image biomarkers (Zhou et al., 2018). During the occurrence
and development of the disease, the destruction of fiber tracts
follows certain objective rules. A large number of studies have
been done on healthy elderly patients and T2DM; even so,
the impact of subtle cognitive impairment on T2DM has not
been fully elucidated at the early stage of effective intervention.
The main purpose of the current study was to investigate the
characteristics of WM injury in T2DM patients and its correlation
with SMC symptoms. In the present study, we hypothesize that
WM disruption may vary along fiber tracts in T2DM and may
provide potential candidate hallmarks for the pathological state
of disease. We attempt to explore whether T2DM was associated
with SMCs and the feasibility of AFQ tractography combined
with SVM for identification of disease biomarkers.

MATERIALS AND METHODS

Participants
The study was approved by the Medical Ethics Committee of the
Lanzhou University Second Hospital and conducted according
to the principles expressed in the Declaration of Helsinki. Each
participant was aware of the purpose and risk of the study and
signed informed written consent forms.

Between April 2018 and December 2020, 66 subjects (right-
handed) were prospectively recruited in this investigation,
including 33 T2DM patients (with SMC symptoms, T2DM-S) [9
females, 24 males; mean age 56.3 years, standard deviation (SD)
7.80] from Lanzhou University Second Hospital outpatient or
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inpatient according to the diagnostic criteria of the World Health
Organization standards (Alberti and Zimmet, 1998), and 33 age-,
sex-, and education-matched HC [15 females, 18 males; mean age
52.47 years, standard deviation (SD) 6.96] were recruited from
the community. SMCs were confirmed by an affirmative answer
to both of the following questions: (1) “Are you complaining
about your memory?” and (2) “Is it a regular complaint which
lasts more than 6 months?” (Jessen et al., 2014; Teipel et al., 2017).
Namely, there were no informant-based complaints of memory
impairment or decline, and Mini-Mental State Examination
(MMSE) score ≥27 (Folstein et al., 1975; Kawagoe et al., 2019).
In addition, in view of the high incidence rate of T2DM in elderly
people, it is difficult to distinguish SMC origin from T2DM itself
and other diseases, such as Alzheimer’s disease, as elderly people
are more likely to exhibit neurodegenerative diseases. Therefore,
middle-aged subjects (≤65) patients were recruited in order to
clearly demonstrate the pathology of cognitive impairment.

The exclusion criteria for participants in this study included
the following items: (1) a history of mental, neurological
disorders; (2) lacunar infarction and WM hyperintensity; (3)
diabetic retinopathy or nephropathy; (4) diabetic peripheral
neuropathic pain; (5) degenerative disorders, such as Parkinson’s
disease, and (6) hypertension or hyperlipidemia.

Neuropsychological and Laboratory
Testing
All patients underwent complete neuropsychological assessments
and laboratory tests, including MMSE, MoCA, blood
biochemistry, lipids and cholesterol levels, plasma glucose
and glycosylated HbA1c levels. Detailed information about
demographic and clinical characteristics are shown in Table 1
and Supplementary Table S1.

TABLE 1 | Demographic and clinical characteristics for each group.

T2DM-S HC t/χ2 p-Value

Age (year) 56.30 ± 7.80 52.47 ± 6.96 1.705 0.095a

Sex (female/male) 9/24 15/18 2.36 0.125b

Education (years) 11.09 ± 2.61 11.59 ± 3.02 0.576 0.569c

SBP (mmHg) 118.33 ± 9.84 119.24 ± 9.36 0.312 0.756a

DBP (mmHg) 77.39 ± 17.95 70.12 ± 9.51 1.873 0.067c

BMI 22.07 ± 1.53 21.94 ± 1.38 0.280 0.779a

MoCA 26.06 ± 2.00 27.53 ± 1.44 1.903 0.063c

Visuospatial/executive 4.39 ± 0.83 4.27 ± 0.84 0.591 0.932c

Attention 5.42 ± 0.66 5.46 ± 0.56 0.200 0.366c

Delayed recall 4.18 ± 1.46 4.06 ± 0.86 0.406 0.685c

MMSE 28.06 ± 2.60 29.06 ± 1.25 1.834 0.072a

FBG (mmol/L) 12.50 ± 3.40 5.11 ± 1.63 11.26 0.000*

HbA1C (mmol/mol) 0.11 ± 0.03 N/A N/A N/A

Duration (y) 6.23 ± 5.01 N/A N/A N/A

Mean ± standard deviation (SD) is reported.
T2DM-S, type 2 diabetes mellitus with subjective memory complaints (SMC)
symptoms; HC, health controls; MMSE, mini–mental state examination; MoCA,
montreal cognitive assessment; SBP, systolic blood pressure; DBP, diastolic blood
pressure; FBG, fasting blood glucose; BMI, body mass index; N/A, means that
there is no relevant data.
aTwo-sample t-test, two tailed unless otherwise indicated.
bχ2 test.
cTwo-sample t-test with Welch’s correction.
*p < 0.05.

Data Acquisition
MRI images were acquired with an eight-channel phased-array
head coil 3.0T scanner (Siemens Verio, Erlangen, Germany).
To limit machine noise and minimize head motion, earplugs
and tight foam cushioning were utilized separately. Single-shot
SE-EPI sequence was used in DTI. The scanning parameters
were TR = 8,700 ms, TE = 90 ms, layer thickness = 3.0 mm,
matrix = 128 × 128, flip angle = 90◦, FOV = 230 mm × 230 mm,
64 gradient directions at b = 1,000 s/mm2, plus one b = 0 image.
At the same time, 3D high-resolution magnetization prepared
rapid acquisition with gradient echo (MPRAGE) sequence
was used for sagittal thin-layer T1WI to provide anatomical
information for the location of anterior-posterior commissure
(AC-PC). The scanning parameters are as follows: TR = 1,900 ms,
TE = 2.79 ms, slice thickness = 1.0 mm, matrix = 256 × 256, the
FOV = 256 mm × 256 mm, and flip angle = 9◦, and 196 volumes.
The parameters of the subjects were consistent, and the quality
control was carried out by a professional technical staff.

Automated Fiber Quantification
Procedure
Open-source software (MrDiffusion and AFQ)1,2 (Yeatman
et al., 2012) was utilized primarily via Matlab (The MathWorks,
Natick, MA, United States) platform. Effects from subject
motion were attenuated using the six-parameter rigid-
body realignment. We then generated cortical and WM
surfaces and brain region parcellations using the Freesurfer
program.3 These will be used for segmenting the major
WM tracts following tractography. DtiInit was used to
preprocess DTI image, which can run eddy/motion correction
and co-register to anatomy and products dt6 files stored
in standard directory structures used for AFQ pipeline.
Meanwhile, the MRtrix3 package4 was used to control
susceptibility distortions, Gibbs ringing, and bias field
inhomogeneities.

After completing the preceding preprocessing steps, the
whole-brain probability streamlines were tracked using MRtrix3’s
tckgen with constrained spherical deconvolution (CSD) and
anatomically constrained tractography (ACT). The step size
is 1 mm, the angle threshold is 45◦, the threshold value of
fiber bundle direction distribution is 0.05, and the number of
streamlines is set to 1 million (Smith et al., 2012). Then we
put the dt6 structure into the AFQ processing flow together
with the fiber bundles generated by MRtrix3 using the iFod
algorithm. The fiber bundles are segmented according to the
predefined template of 20 main fiber bundles in the brain.
Two fiber tracts were discarded based on known inconsistencies
in automatic identification (bilateral cingulum hippocampus).
FA was then assessed along each fiber group centroid using
spline interpolation. The contribution of a single fiber to the
core estimate is weighted based on the likelihood that the
fiber is a member of the given fiber tract, computed as the

1http://vistalab.stanford.edu/
2https://github.com/jyeatman/AFQ
3http://surfer.nmr.mgh.harvard.edu/
4https://www.mrtrix.org/
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Mahalanobis distance. The mean FA was then computed for
each fiber tract on an individual subject basis. The same
method applies to mean diffusivity (MD), radial diffusivity
(RD), and AD, and each fiber bundle is divided into 100
equidistant points.

Machine Learning Analyses
Four kinds of pointwise diffusion indicators (FA, MD, RD, and
AD) of each fiber tracts were used as raw features, including
7,200 for each participant. Multivariate imputation was applied
between the variables using a regressor model, in which each
feature with missing values is modeled as a function of other
features. Then we utilized Z-score standardization to eliminate
the impact of measurement units on the results. Two feature
selection methods (two sample t-test and variance) were adopted
in this study. The p-value of two sample t-test was 0.05. The
threshold of variance was set to 1. Before machine learning, the
two groups were labeled (T2DM: 0, HC: 1), mixed, and then
divided into training and testing sets in a 7:3 ratio. We selected
46 cases as the training data set (30/16 = positive/negative)
and another 20 cases as the independent testing data set
(12/8 = positive/negative). Then SVM prediction models using
optimal parameter set was trained using leave-one-out cross-
validation (LOOCV) and predicted on the test data sets
(Abraham et al., 2014). Here, we used the linear kernel SVM
because it was easier to explain the coefficients of the features for
the final model. The performance of the models was evaluated
from the sensitivity, specificity, and area under the curve (AUC).
All the above processes were implemented with scikit-learn
machine learning library (v0.24.1) on Python (3.7.6). Scripts used
for all analyses are available on a web page named AFQ-Browser5

(Yeatman et al., 2018).

Statistical Analysis
SPSS statistics for Windows, Version 24.0, was used for all
statistical analyses (IBM, Chicago, IL, United States). For
demographic data, we used two sample t-test and Mann–
Whitney U-test for continuous variable. Simultaneously, the
gender difference was compared using the chi-square (χ2) test.
We used partial correlation analyses and linear regression to
study the correlation between DTI-derived indexes and various
clinical variables, such as disease duration time, blood glucose
level, glycosylated hemoglobin, blood lipid index, etc., controlled
with age, sex, and years of education as potential covariates. The
display form of figures depends on recently published articles
(Chandio et al., 2020).

RESULTS

Demographic and Clinical
Characteristics
Demographic and cognitive information of T2DM-S and HC are
listed in Table 1. There were no significant intergroup differences
in age, sex, and education level between groups (p > 0.05).

5https://yeatmanlab.github.io/AFQ-Browser

Group Differences of Automatic Fiber
Quantification Approach
According to the results of AFQ, 10 different fiber tracts exhibited
significant alterations, including the bilateral corticospinal tracts
(CST), the bilateral fronto-occipital fasciculus (IFOF), the
bilateral arcuate, the right ILF, the left thalamic radiation
(TR), the right superior longitudinal fasciculus (SLF), and the
left cingulum cingulate (CC). Figure 1 shows the pointwise
significant difference values of WM fiber tracts between T2DM-
S and HC (Banfi et al., 2019)6. Table 2 shows the mean FA
value of each fibers and group difference between the two
groups. For along-tract results (shown as Table 3) (Colby
et al., 2012)7, patients with T2DM-S had significantly reduced
FA in the right SLF, bilateral arcuate. Increased MD values
are shown in the left CST, left IFOF, right ILF, left CC,
and right IFOF. We also find increased AD in left CST,
reduced AD in left arcuate, and increased RD in the left TR
relative to HC.

Model Performance
Given the relatively small sample size, we employ distinct DTI
parameters as data to synthesize the differences of different
fiber tracts. When we use the results of the two-sample t-test
to screen features (shown as Figure 2B), FA-trained SVM
model utilized 39 final point features and achieved a receiver
operating characteristic AUC of 88% and an accuracy of
84.85% (p < 0.01). MD-trained SVM model utilized 49 final
point features and achieved AUC of 91% and an accuracy of
75.76% (p < 0.01). RD-trained SVM model utilized eight final
point features and achieved AUC of 66% and an accuracy of
60.61% (p = 0.07). AD-trained SVM model utilized 35 final
point features and achieved AUC of 82% and an accuracy
of 74.24% (p < 0.01). When we use the results of variance
to select features (shown as Figure 2A), FA-trained SVM
model utilized 192 final point features and achieved a receiver
operating characteristic AUC of 94% and an accuracy of
87.88% (p < 0.01). MD-trained SVM model utilized 235 final
point features and achieved AUC of 84% and an accuracy of
80.30% (p < 0.01). RD-trained SVM model utilized 57 final
point features and achieved AUC of 66% and an accuracy of
63.64% (p = 0.042). AD-trained SVM model utilized 96 final
point features and achieved AUC of 82% and an accuracy of
71.21% (p = 0.002). The detailed parameters are shown in
Supplementary Tables S2, S3.

Correlation With Clinical Features
Finally, clinical and cognition variables (duration of diabetes,
delayed recall, and HbA1c) were correlated with diffusion
characteristics as generated by AFQ along-the-tract analysis
(p< 0.05). Lower FA in the right SLF tract (r = -0.538, p = 0.0013),
higher RD in the TR tract (r = 0.433, p = 0.012), and higher MD in
the IFOF tract (r = 0.385, p = 0.0029) were significantly associated

6https://seaborn.pydata.org/
7http://white.stanford.edu/software
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FIGURE 1 | Plots summarizing group differences for diffusion tensor imaging (DTI)-derived indexes. Only fiber tracts with difference after point-wise comparison are
shown. The X-axis represents the fiber segment, the left Y-axis represents the average DTI parameters, and the right Y-axis represents the negative logarithm of
p-value. In the figure, the yellow horizontal line represents p < 0.05, and the gray horizontal line represents p < 0.01. The figure is plotted using seaborn
(https://seaborn.pydata.org/) and AFQ’s function, as well as refer to the relevant contents in the DIPY toolkit (https://dipy.org).

FIGURE 2 | The ROC curves of different DTI-derived indexes in support vector machine (SVM) model. The figure depicts the ROC curve of the trained model (yellow
curve) and the average ROC curve (blue curve) of the model after leave-one-out cross-validation (LOOCV), and the shaded part represents the standard deviation
(SD) of area under the curve (AUC). (A) Shows the results of training the model with four DTI parameters after feature selection by variance filtering method (variance
threshold = 1). (B) Shows the results of training the model with four DTI parameters after feature selection by two sample t-test (p < 0.05).

with a long period of disease. Decreased AD in the left arcuate
was associated with HbA1c (r = −0.368, p = 0.049). In addition,
we found a significant negative correlation between delayed recall
and abnormal MD in the left corticospinal tract (r = −0.546,
p = 0.001) (As shown in Figure 3).

DISCUSSION

In this AFQ-based study, we investigated the aberrant WM
microstructure of T2DM and further investigated their
correlation with SMC. The primary findings are as follows:
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TABLE 2 | Mean FA (× 100) of 18 fiber tracts for T2DM-S and HC.

Index Tracts T2DM-S HC Statistic p-Value Cohen’s d

1 TR_L 0.458 ± 0.05 0.457 ± 0.04 0.106 0.916 0.03
2 TR_R 0.470 ± 0.04 0.473 ± 0.47 0.240 0.811 0.07
3 CST_L 0.631 ± 0.06 0.632 ± 0.04 0.072 0.942 0.02
4 CST_R 0.622 ± 0.05 0.523 ± 0.14 3.820 <0.01** 0.98
5 CC_L 0.448 ± 0.05 0.40 ± 0.09 2.320 0.024 0.63
6 CC_R 0.418 ± 0.05 0.414 ± 0.07 0.213 0.832 0.06
7 Forceps major 0.573 ± 0.06 0.574 ± 0.05 0.060 0.952 0.02
8 Forceps minor 0.509 ± 0.04 0.516 ± 0.03 0.683 0.498 0.21
9 IFOF_L 0.435 ± 0.04 0.443 ± 0.02 0.784 0.437 0.24
10 IFOF_R 0.432 ± 0.03 0.438 ± 0.03 0.597 0.553 0.19
11 ILF_L 0.407 ± 0.03 0.293 ± 0.14 4.060 <0.01** 1.07
12 ILF_R 0.392 ± 0.04 0.397 ± 0.02 0.435 0.665 0.14
13 SLF_L 0.432 ± 0.04 0.418 ± 0.04 0.826 0.414 0.27
14 SLF_R 0.392 ± 0.04 0.288 ± 0.12 4.600 <0.01** 1.19
15 UF_L 0.486 ± 0.03 0.496 ± 0.04 0.981 0.332 0.30
16 UF_R 0.460 ± 0.04 0.473 ± 0.04 1.090 0.282 0.34
17 Arcuate_L 0.482 ± 0.04 0.421 ± 0.10 3.070 0.003 0.792
18 Arcuate_R 0.454 ± 0.04 0.403 ± 0.09 2.790 0.007 0.726

Mean ± standard deviation (SD) is reported.
**p < 0.01.
T2DM-S, type 2 diabetes mellitus with subjective memory complaints; HC, health control; AD, Alzheimer’s disease; MD, mean diffusivity; TR, thalamic radiation; CST,
corticospinal tract; CC, cingulum cingulate; IFOF, inferior fronto-occipital fasciculus; ILF, inferior longitudinal fasciculus; SLF, superior longitudinal fasciculus; UF, uncinate
fasciculus; _R, right; _L, left; FA, fractional anisotropy.

TABLE 3 | Diffusion measures statistics along the fiber bundles.

Tracts T2DM-S HC Segments Statistic p-Values (correct)

FA CST_R 0.68 ± 0.06 0.61 ± 0.17 82–84 2.5901 0.0053*

SLF_R 0.40 ± 0.09 0.46 ± 0.06 94–100 2.5818 0.0048*

Arcuate_L 0.39 ± 0.17 0.40 ± 0.04 44–61, 90–92 2.8014 0.0030*

Arcuate_R 0.31 ± 0.16 0.40 ± 0.13 66–69 2.8157 0.0030*

MD CST_L 0.83 ± 0.08 0.79 ± 0.03 23–27 2.6307 0.0059*

CC_L 0.61 ± 0.27 0.75 ± 0.07 57–59, 71–80, 88–89 2.8525 0.0031*

ILF_R 0.80 ± 0.15 0.66 ± 0.32 1–8, 69–70, 85 2.7307 0.0044*

IFOF_L 0.93 ± 0.11 0.83 ± 0.06 1–11 2.7519 0.0039*

IFOF_R 0.88 ± 0.18 0.74 ± 0.28 21–23 2.8899 0.0025*

AD CST_L 1.53 ± 0.10 1.45 ± 0.05 13–29 1.8946 0.0443*

Arcuate_L 0.95 ± 0.41 1.17 ± 0.05 46–56, 87–93 1.9673 0.0291*

RD TR_L 0.72 ± 0.10 0.65 ± 0.06 1–8 2.6378 0.0054*

Mean ± standard deviation (SD) of difference nodes is reported.
*p < 0.05.
The table shows two sample t-test was carried out on automatic fiber quantification (AFQ) bundle profiles of subjects to get significant group differences along the tract.
Along-the-tract diffusion value was corrected for multiple comparisons (p < 0.05, FWE correction). The p-value at a specific segment implies how much significance there
is between patients and healthy controls for that particular bundle.

First, our study indicates that the DTI parameters capture
WM changes in T2DM patients before they are diagnosed
with conventional neuropsychological test results. Second, the
AFQ approach combined with machine learning algorithms
can identify biomarkers related to the microstructure of WM
in the early stage of T2DM. Third, the evaluation of the DTI
parameters on T2DM patients demonstrated a correlation with
the level of HbA1c, cognition performance, and the duration of
disease. To the best of our knowledge, we are the first to assess
the integrity of whole-brain WM microstructure in people with
T2DM utilizing a recently established approach called AFQ. Our
results may extend the precursor stage of T2DM related cognitive
impairment to the SMC stage.

The identified fiber tracts are part in line with earlier reports
for the injury pattern of WM integrity proposed in previous
findings (Tan et al., 2016). WM injury may change along the
trajectory of the bundle, but this change is not obvious in
the entire fiber (Chandio et al., 2020; Chen et al., 2020). The
destruction of WM in the brain is closely related to memory
loss (Quan et al., 2020). Previous research has shown that the
temporal and frontal lobes play an important role in diabetes-
related cognitive impairment (Chen et al., 2014; Zhang et al.,
2014). The relationship between the frontal and temporal lobes
and language memory was also found in T2DM (Yau et al., 2009).
This can be supported by the evidence that cerebral blood flow
derived from glucose metabolism is observed in PET technology
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FIGURE 3 | Scatterplots of partial correlation analyses between averaged DTI-derived indexes and HbA1c, delayed recall, and duration of disease. The red lines are
the regression lines controlled for age, gender, and education. Correlation coefficients are noted as r, and p < 0.05 is considered as significant. (A) Shows the
duration was negatively correlated with the mean FA of right SLF. (B) Shows the duration was positively correlated with the mean MD of right IFOF. (C) Shows the
HbA1c was negatively correlated with the mean AD of left Arcuate. (D) Shows the duration was positively correlated with the mean RD of left Thalamic Radiation.
(E) Shows the delayed recall was negatively correlated with the mean MD of left CST.

measurements (Quan et al., 2020). Although the underlying
cognitive process remains unknown, the injury of these fiber
tracts are thought to be related to the destruction of the internal
network (Zhang et al., 2016). Evidence from relevant animal
trials can support structural abnormalities in these fiber tracts
and could lead to functional disconnections of brain networks
(Biessels and Reagan, 2015). Therefore, it is speculated that the
abnormality of the specific node of the WM fiber tracts is related
to the aberration of the memory decline of T2DM patients.
These results provide new insights into our understanding of
neuropsychological mechanisms in these patients.

The T2DM-S group had significantly reduced FA and
increased AD, RD, and MD on the WM tracts of both
hemispheres, which might reflect earlier pathological changes,
such as inflammation, microglial activation/accumulation, and
impairment of WM integrity of cellular structures (Quan et al.,
2020). FA can usually be used as an indicator of demyelination
and axon integrity. However, models from animal studies
have shown that increased RD reflects demyelination, while
decreased AD suggests abnormalities in the axonal structure

itself (Song et al., 2005; Hubner et al., 2017). In our study, the
abnormal increase in AD in the left CST and arcuate, and
RD in some nodes of the left TR indicates the explanation
of myelination and the extensive abnormality of axon soma,
which may prove the above statements. There were abnormalities
within tracts connecting frontal and temporal lobes to other
brain regions, which is already known through functional
neuroimaging or gray matter volumetric studies to be abnormal
in cognitive dysfunction (Yang et al., 2020). These bundles are
mainly connected to the relevant brain areas of the default brain
network (DMN, including the cingulum, SLF, and ILF), which are
consistent with the results of previous studies (Tan et al., 2016;
Sanjari Moghaddam et al., 2019). In a recent review, patients
with T2DM show less functional connectivity compared with
controls and reduced integrity of the WM in the default mode
network (Wang et al., 2020). Abnormal right thalamus radiation
was also found, which is the main pathway connecting the
frontal lobe and thalamus. The IFOF is a major long-range tract
with functional connectivity of distinct cortical brain regions
associated with executive function, social cognition, attention,
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and semantic processing of language (Quan et al., 2020). Given
the putative roles of ILF and IFOF in vision and language
processing (Quan et al., 2020), our findings are compatible with
the concept that WM injury can affect early memory complaints.
As a result, the injury appears to be extensive, and it affects the
left or right hemisphere. Multiple abnormal destruction of WM
may indicate that diabetes-related risk factors can make the WM
structure fragile (Ma et al., 2018).

These findings highlight the potential adverse effects of
impaired glucose metabolism on cognition and brain structure.
Although the loss of WM integrity is thought to be a possible
early biomarker of neurodegeneration, little is known about the
clinical implications of this result. The abnormal microstructure
of diabetes-related cognitive impairment is related to pathological
disorders of endocrine profile (Sanjari Moghaddam et al., 2019),
including glucose toxicity, inflammation, oxidative stress, insulin
resistance, blood-brain barrier destruction, and cerebral macro-
and microvascular disease (Viazzi et al., 2017), leading to
the disintegration and destruction of the myelin sheath and
causing changes in cognitive function (Strachan et al., 2011).
This association signifies that these defects may be caused by
the diabetic impact on WM. For instance, disruption of WM
integrity has been associated with slowing of processing speed
and poor executive function (Vernooij et al., 2009). Furthermore,
follow-up studies have shown that diabetes is associated with
accelerated progression of brain atrophy, accompanied by a
decline in processing speed and executive function (Falvey
et al., 2013). The abovementioned fiber bundles may underlie
attention and memory deficits and executive dysfunction. We
found that the fiber bundles related to the duration of disease
were concentrated in the left TR, the right SLF bundle, and
the right IFOF bundle. As a transit station connecting various
brain regions, the thalamus plays an important role in the
Papez circuit through the structural connection of the medial
temporal lobe (Xia et al., 2020), participates in memory, learning,
information processing, and the integration of cross neural
circuits, and plays an important role in the formation of cognitive
function (Van der Werf et al., 2003). The abnormality of RD
value of left TR is similar to many AD-related studies, and
the connection between medial temporal cortex and thalamus
is damaged (Damoiseaux et al., 2009; Delli Pizzi et al., 2014).
With the extension of the duration of the disease, the degree
of injury further increased, linked to the abnormalities in
the right SLF and IFOF tracts, indicating that the long-term
metabolic abnormalities have long-term and lasting changes in
brain cognitive-related structures. Previous studies found that
chronic hyperglycemia and oxidative stress play a key role
in diabetes-related cognitive decline (Kielstein, 2013; Biessels
et al., 2014; Strachan and Price, 2014; Rosness et al., 2016;
Young-Hyman et al., 2016). The metabolic syndrome linked
to diabetes may accelerate the disruption of the pathway of
the brain, resulting in cognitive impairment (Zilliox et al.,
2016). This study also found a correlation between AD and
HbA1c in the left arcuate bundle. In addition, we found
evidence of a negative correlation between HbA1c and WM
microstructure (left arcuate) in patients with T2DM-S. Studies
have shown that metabolic serum marker HbA1c is associated

with impaired cognitive function and WM integrity in healthy
people (Repple et al., 2021). In the past, most DTI studies on
people with MCI or AD have linked the WM damage score
to global cognitive measures such as the (MMSE; Huang and
Auchus, 2007). We found no significant correlation between
the overall score of MMSE and MoCA with fiber bundle
injuries in our investigation. Interestingly, there was a negative
connection between the delayed recall of MoCA and the MD
value of the left corticospinal tract, indicating a correlation
between T2DM WM injuries and SMC symptoms. The results
confirmed the effect of the reported WM bundle disruption on
cognitive performance and are consistent with previous studies
(Goldstein et al., 2009).

The difference in FA values along with the fiber bundles can
be used as a potential optimal imaging biomarker for evaluating
early brain injury in T2DM-S. Previous studies (Cabeen et al.,
2017) have shown that the results of traditional voxel-based
methods are affected by smoothing kernels. The AFQ method
generates a mean streamline per subject with 100 equidistant
points (Chandio et al., 2020), so it can provide more information
about WM injury. The AFQ method can automatically identify
the main intracranial fiber tracts and their abnormalities. We also
found that there were abnormalities of RD and AD in some other
tracts not detected by FA, including other tracts connecting the
frontal lobe and temporal lobe with other brain structures (such
as left TR, left CC, and left arcuate). This suggests that the FA
measurement, which is considered to be the most sensitive to
axonal structural integrity, seems to be more sensitive than other
parameters in the early abnormal microstructure of T2DM-S. In
the framework of SVM, we used a variety of DTI parameters
to train the model, which show good performance. In our
sample, compared with other parameters, the FA-based learning
model shows the best accuracy (more than 80%) no matter what
feature selection method was used. The two feature selection
methods have little effect on the end results of the machine
learning algorithm, indicating that the location of WM damage
is fixed and special, which can be identified by machine learning
methods. The above indicates that FA value is very sensitive to the
extensive changes in the microstructure of T2DM-S.

We should recognize several limitations of the current study.
First, although we used a CSD method to eliminate the influence
of cross fibers on the results, some fiber bundles still have poor
values (mainly some fine fibers), which may be a limitation of the
DTI model. Second, the current study is limited by its relatively
small sample size, and the severity of SMC is not quantified by
a specific scale. As a result, our findings should be interpreted
with caution and verified using a larger sample size. Third, we did
not incorporate normal cognition T2DM and T2DM with MCI
into our research, which will be one of our future study goals.
Fourth, this study is an exploratory study to find the relationship
between abnormal brain microstructure and SMC in patients
with T2DM, so as to provide ideas for future research. Fifth, the
cross-sectional nature of this study cannot demonstrate whether
SMC causes WM abnormalities or whether WM differences were
preexisting with T2DM. Longitudinal research will be used to
solve these questions in the future (Yuan et al., 2018). Finally, only
a general evaluation of cognitive impairment was carried out.
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Future research is needed to study the connection between WM
integrity and other cognitive processes in T2DM-S by including
more extensive measures of cognitive function (e.g., digit-span
test and Stroop test).

CONCLUSION

Biomarkers based on abnormal indicators on DTI segments can
identify early T2DM patients with SMC. On the one hand, it
shows that T2DM-S patients have structural alterations in WM
in the early stage, which may be the basis of SMC. On the other
hand, it also shows that DTI is an effective tool to measure
the subtle injuries of fiber tracts. As a supplement to diabetic
brain injury, the WM damage hypothesis of T2DM has been
extended to SMC; the memory complaints of T2DM patients
also have the same corresponding pathological basis of structural
damage. A further understanding of the role of fiber tracts
and their integrity in the cognitive performance of diabetes is
helpful for us to understand the neuropsychological symptoms
observed in diseases and make us closer to preserving specific
neuroanatomical units.
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