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INTRODUCTION

Oxidized phospholipids (OxPL) are ubiquitous, formed in many inflammatory tissues, 

including atherosclerotic lesions, and frequently mediate proinflammatory changes1. 

Because OxPL are mostly products of non-enzymatic lipid peroxidation, mechanisms to 

specifically neutralize them are unavailable and their roles in vivo are largely unknown. We 

previously cloned the IgM natural antibody E06, which binds the phosphocholine (PC) 

headgroup of OxPL and blocks the uptake of OxLDL by macrophages and inhibits 

proinflammatory properties of OxPL2-4. To determine the role of OxPL in vivo in the 

context of atherogenesis, we generated transgenic mice in the Ldlr−/− background that 
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expressed a single-chain variable fragment of E06 (E06-scFv) using the apoE promoter. The 

E06-scFv was secreted into plasma from liver and macrophages, and achieved sufficient 

plasma levels to inhibit in vivo macrophage uptake of OxLDL and OxPL-induced 

inflammatory signaling. Compared to Ldlr−/−, Ldlr−/−/E06-scFv mice had less 

atherosclerosis by 57-28% after 4, 7, and even 12 months respectively of 1% high-

cholesterol diet (HCD). Echocardiographic and histologic evaluation of aortic valves (AV) 

demonstrated that E06-scFv ameliorated the development of AV gradients and decreased AV 

calcification. Both cholesterol accumulation and in vivo uptake of OxLDL were decreased in 

peritoneal macrophages, and both peritoneal and aortic macrophages had a decreased 

inflammatory phenotype. Serum amyloid A was decreased 32% indicating decreased 

systemic inflammation, and hepatic steatosis and inflammation were also decreased. Finally, 

the E06-scFv prolonged life as measured over 15 months. Because the E06-scFv lacks 

functional effects of an intact antibody other than the ability to bind OxPL and inhibit 

OxLDL uptake in macrophages, these data support a major proatherogenic role of OxLDL 

and demonstrate that OxPL are proinflammatory and proatherogenic, which E06 counteracts 

in vivo. These studies suggest that therapies inactivating OxPL may be beneficial in 

reducing generalized inflammation, including the progression of atherosclerosis, aortic 

stenosis and hepatic steatosis.

Oxidation of LDL (OxLDL), a central event in atherogenesis, results in formation of neo-

epitopes from lipid peroxidation, termed “oxidation-specific-epitopes” (OSE), which are 

endogenous “danger-associated molecular patterns” recognized by multiple innate pattern 

recognition receptors1,5. Phosphocholine (PC) containing oxidized phospholipids (OxPL) 

are a prominent example, and the PC headgroup of OxPL in OxLDL (as a lipid or OxPL-

protein adduct) is recognized by macrophage scavenger receptors and TLRs, by innate 

protein CRP and by the IgM natural antibody (NAb) E061. OxPLs accumulate in OxLDL, 

apoptotic cells and microparticles released by activated and dying cells4,6 and are ubiquitous 

in a wide variety of inflammatory settings, including atherosclerosis7, pulmonary8,9 and 

neurological diseases10-12 and NASH13 among others1. In addition, OxPL present on Lp(a) 

are thought to mediate, in part, the ability of Lp(a) to promote atherogenesis and calcific 

aortic valve disease (CAVD)14. However, the pathophysiological effects of endogenously 

generated OxPL in vivo are unknown and it is unlikely that they could be specifically 

neutralized in vivo by small molecules or enzyme inhibitors.

The NAb E06 recognizes the hydrophilic PC headgroup of OxPLs present in OxLDL and 

apoptotic cells but does not recognize unoxidized PL in LDL or viable cells. Furthermore, 

E06 blocks uptake of OxLDL by macrophages in vitro and can inhibit many 

proinflammatory properties of OxPL (A detailed characterization of E06 can be found in 

Supplementary Information). To determine the role of OxPL in vivo in atherogenesis, we 

generated transgenic mice expressing a single chain variable fragment of E06 (E06-scFv) as 

described in Methods (Extended Data Fig. 1a-c). The E06-scFv cDNA was inserted into a 

liver-specific expression vector, pLiv7, under the apoE promoter and a hepatic control 

element enhancer (LE6) (Fig. 1a) and used to generate E06-scFv transgenic mice in the 

C57BL/6 background. These were crossbred to generate “homozygous” mice, which were 

bred into Ldlr−/− and Rag1−/−/Ldlr−/− mice on the C57BL/6 background. The E06-scFv 
mRNA exhibited highest expression in liver, macrophages and spleen, and low-level 
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expression in heart, lung, kidney, and brain. (Extended Data: Fig. 1d). The plasma E06-scFv 

levels in the various transgenic models studied were ~20-30 μg/mL. Plasma titers of the 

endogenous IgM E06 were not affected by the E06-scFv transgene in the various studies 

described (Extended Data: Fig. 2). Binding and competition studies validated that plasma 

E06-scFv fully replicated the binding properties of the parent E06 IgM, specifically binding 

to various PC epitopes as well as OxLDL and a POVPC-peptide, (a synthetic OxPL-peptide 

analogue15) and to AB1-2, a highly specific T15/E06 anti-idiotypic Ab (Fig. 1b and 

Extended Data: 1e). Even at high dilutions (1:100), plasma from Ldlr−/−/E06-scFv mice 

inhibited binding of biotinylated OxLDL to J774 macrophages in culture by > 75% (Fig. 

1c). E06-scFv also inhibited the proinflammatory activation of thioglycollate elicited 

macrophages (TGEM) when oxidized PAPC (OxPAPC) was injected in vivo. Expression of 

both TNFα and IL-1β was markedly attenuated in TGEM from the Ldlr−/−/E06-scFv mice 

(Fig. 1d). E06-scFv enriched plasma bound to rabbit atherosclerotic tissue (Extended Data: 

Fig. 3a), and also prominently stained late stage apoptotic cells but not viable cells 

(Extended Data: Fig. 3b and c). PC-KLH effectively abolished E06-scFv binding in both 

cases (data not shown). We also demonstrated the presence of E06-scFv antibody in aortic 

roots of Ldlr−/−/E06-scFv mice, consistent with either plasma origin or local macrophage 

secretion (Extended Data: Fig. 3d).

To determine the impact of OxPL on atherosclerosis, Ldlr−/− and Ldlr−/−/E06-scFv mice 

were fed a HCD for 4, 7 or 12 months. Weight gain, plasma cholesterol, triglycerides and 

lipoprotein profiles were similar (Extended Data: Table 1 and Fig. 4). Compared to Ldlr−/− 

mice, atherosclerosis was significantly reduced in Ldlr−/−/E06-scFv mice at each time point 

(en face by 57%, 34% and 28%, and aortic root by 55%, 41% and 27% respectively) (Fig. 2c 

and d). OxPL promote apoptosis and necrosis1,16 In lesion size-matched cross sections, 

necrotic core areas were 44% smaller (p=0.015) and had visibly more collagen in Ldlr−/−/
E06-scFv mice, suggesting improved plaque stability (Extended Data: Fig. 5a).

The apoE promoter is known to be active in macrophages and to respond to cholesterol and 

LXR agonists17. Peritoneal macrophages from Ldlr−/−/E06-scFv mice expressed E06-scFv 

mRNA, and ELISA analysis of culture supernatants demonstrated the binding of secreted 

E06-scFv to PC-BSA (Extended Data: Fig. 5b). The LXR agonist T0901317 enhanced 

synthesis and secretion of bioactive E06-scFv into the culture media (Extended Data: 5b), 

demonstrating a functional apoE promoter regulating expression of the E06-scFv in 

macrophages. To determine the contribution of macrophage E06-scFv to atherogenic 

protection, we performed a bone marrow transplantation (BMT) from C57BL/6 wildtype or 

from E06-scFv mice (not on Ldlr−/− background) into irradiated male Ldlr−/− recipients and 

fed the mice with a western diet (WD). Plasma E06-scFv titers were detectable in recipient 

Ldlr−/− mice 2 weeks after BMT and rose in response to cholesterol feeding (Extended Data: 

Fig. 5c), but even at 16 weeks were only ~10% of those observed in the Ldlr−/−/E06-scFv 

mice. Nevertheless, aortic root lesions were reduced by 37% in mice receiving BM from 

E06-scFv donors, compared to wildtype donors (Extended Data: 5d). Plasma lipids were not 

different (Extended Data: Table 1). These data suggest an important role for local arterial 

macrophage secretion of E06-scFv in providing atheroprotection, though conceivably some 

of the E06-scFv’s benefit could derive from macrophages engrafted in other tissues.

Que et al. Page 3

Nature. Author manuscript; available in PMC 2018 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To provide insight into atheroprotective mechanisms, we demonstrated decreased in vivo 
macrophage uptake of fluorescently-labeled OxLDL in Ldlr−/−/E06-scFv mice. We used 

Rag1−/−/Ldlr−/− mice to exclude effects of other antibodies and allow an examination of the 

protective effect of the E06-scFv alone. Uptake of OxLDL was significantly reduced in 

macrophages of Rag1−/−/Ldlr−/−/E06-scFv compared to Rag1−/−/Ldlr−/− mice (Fig. 3a). To 

assess the full potential of E06-scFv to bind to OxLDL, we pre-incubated plasma from Ldlr
−/− or Rag1−/−/Ldlr−/− or Rag1−/−/Ldlr−/−/E06-scFv mice with the OxLDL before injection. 

Whereas uptake of OxLDL was ~ 100% and ~70% for the OxLDL incubated with Rag1−/− 

or Rag1−/−/Ldlr−/− plasma respectively, it was reduced to ~ 26% when premixed with 

Rag1−/−/Ldlr−/−/E06-scFv plasma (Fig. 3b). Consistent with the decreased in vivo uptake of 

OxLDL, macrophage cholesterol content of Ldlr−/−/E06-scFv mice was reduced 48% 

compared to Ldlr−/− mice. (p=0.02) (Fig. 3c). Desmosterol was reported to be increased in 

macrophages from WD fed Ldlr−/− mice, leading to decreased inflammatory gene 

expression18. However, neither desmosterol nor other oxysterol concentrations were 

different between macrophages of Ldlr−/− and Ldlr−/−/E06-scFv mice (Extended Data: Fig. 

1f).

RNAseq analysis of TGEM (Fig. 3d and e) suggested a shift from a more inflammatory 

“M1-like” phenotype in the Ldlr−/− mice to a more attenuated “M2-like” repair phenotype in 

the Ldlr−/−/E06-scFv mice. Gene Ontology (GO) analyses indicated that nearly all the genes 

expressed >1.5-fold higher in the Ldlr−/−/E06-scFv macrophages relate to immune 

regulation and defense, both innate and adaptive (Extended Data: Table 2). We also utilized 

flow cytometry to profile arterial wall cells (Fig. 3f). Compared to macrophages isolated 

from aortas of chow-fed Ldlr−/− mice, macrophages from HCD Ldlr−/− mice were shifted to 

a predominant “M1-like” phenotype (CD45+CD11b+CD11c+ Arg1−), whereas despite the 

same cholesterol levels, macrophages from the HCD Ldlr−/−/E06-scFv mice showed an M2-

like phenotype (CD45+CD11b+CD11c−Arg1+), more comparable to that seen in the chow-

fed Ldlr−/− mice.

Aortas from HCD fed Ldlr−/− mice had greater total monocyte/lymphocyte accumulation 

than did chow-fed Ldlr−/− or HCD Ldlr−/−/E06-scFv mice, and in particular, a greater 

enrichment of lymphocytes, especially T but also B cells (Extended Data: Table 3). The 

proportions of CD4+ and CD8+ T cells in blood, peri-aortic lymph nodes and spleens of 

Ldlr−/− and Ldlr−/−/E06-scFv mice were not different (data not shown). There were no 

differences between the two groups in blood RBC or WBC counts, nor in blood coagulation 

markers including PT and aPTT, fibrinogen, and plasminogen (data not shown).

Recent genetic data demonstrate a strong causal role for Lp(a) and its associated OxPL in 

the etiology of CAVD in humans14,19. We therefore prospectively used 2D and Doppler 

ultrasound, to measure gradients at the AV in HCD Ldlr−/− and Ldlr−/−/E06-scFv mice at 6, 

9 and 12 months, and at 15 months, the AV calcium content was evaluated histologically. 

There was a progressive increase over time in mean AV pressure gradients in Ldlr−/− mice, 

which was significantly attenuated in the Ldlr−/−/E06-scFv mice and was 49% lower at 12-

months (Fig. 4a, and Extended Data: Fig. 6a and Table 4). Total AV calcium content was 

also significantly reduced by 41.5% (Fig. 4b and c). Consistent with the more extensive 

pathology noted in the AV leaflets in the Ldlr−/− mice (Fig. 4b and Extended Data: Fig 5a) 
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representative M-mode echocardiography demonstrated thicker AV valves in the Ldlr−/− 

mice (Extended Data: Fig. 6b). Over 15 months of prospective observation, it was notable 

that 6 of 13 Ldlr−/− mice died, whereas 0 of 10 Ldlr−/−/E06-scFv mice died (p = 0.016 via 

Kaplan-Meier survival analysis) (Fig. 4d).

Livers of mice on a HCD diet are known to develop steatosis and accumulate enhanced 

levels of OSE, including OxPL20. Livers from Ldlr−/− mice stained prominently with E06 

IgM compared to Ldlr−/−/E06-scFv livers (Fig. 4f), though hepatocyte derived E06-scFv 

may partially mask OxPL epitopes in the Ldlr−/−/E06-scFv mice. The histological 

appearance of steatosis in the Ldlr−/−/E06-scFv livers was decreased, which was confirmed 

by significant decreases in hepatic triglyceride and cholesterol content (Fig. 4e), and there 

was decreased inflammatory gene expression in whole liver extracts (Extended Data: Fig. 

6c).

Serum Amyloid A (SAA) is known to be raised by cholesterol feeding and reflects systemic 

inflammatory status in mice21. Remarkably, despite plasma cholesterol values >800 mg/dL, 

plasma SAA levels were reduced 32% in Ldlr−/−/E06-scFv mice (p=0.016) supporting a 

generalized decrease in systemic inflammation (Fig. 4g).

The detailed cellular and molecular mechanisms by which OxPL mediate these 

proatherogenic and proinflammatory effects are likely to be complex, dependent on the 

diverse OxPLs and different cellular targets involved. For example, OxPLs can activate cells 

by a variety of receptors, including CD36, TLR2/1 and 6, TLR4, CD14 and combinations of 

these receptors, and in turn, generate a wide variety of responses1,5,7,8,16,22-25. In addition, 

the PC on OxLDL mediates macrophage uptake by CD36 and SR-B15. Presumably, 

extracellular E06-scFv binds to many of the extracellular OxPL moieties formed and by 

blocking uptake of OxLDL and inhibiting inflammatory signaling, contributes to reduced 

atherogenesis, though we cannot exclude the possibility that the E06-scFv in the intracellular 

signaling pathway of macrophages or hepatocytes may also contribute in some manner.

In summary, we present a unique murine model that demonstrates that in the context of 

hypercholesterolemia, OxPL are involved in the pathogenesis of inflammation in general, 

and atherosclerosis, CAVD and hepatic steatosis specifically. CAVD is a growing problem in 

our aging population and leads to symptomatic aortic stenosis requiring AV replacement by 

surgical or trans-catheter approaches in > 2% of those over age 6526. Similarly, OxPL may 

be involved in the pathogenesis of NASH, which currently afflicts a high percentage of the 

population and increases the risk for cirrhosis and cardiovascular disease. The E06 

transgenic mice can be used to study the mechanisms by which OxPL contributes to these 

disease processes in vivo, as well as other disease states in which OxPL may play a role. For 

example, we recently demonstrated with these mice that OxPL restrains bone formation in 

mice fed either a WD or chow diet27.

This unique sensitivity of E06 to molecules with abnormally presented PC may allow 

specific therapeutic targeting of diseased tissues but not normal tissues in a variety of 

inflammatory states. As shown here as proof-of-principle, diseases of systemic inflammation 

that generate OxPL may be targets of OxPL-directed therapies. Furthermore, OxPL in 
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various tissues can be imaged with OxPL specific antibodies, such as in atherosclerotic 

aortas using MRI-based nanoparticles28, which could aid in the appropriate selection of 

high-risk patients. The E06-scFv expressed in these mice lacks Fc effector functions of 

antibodies, and therefore, its impact was caused solely by blocking biological effects of 

OxPL. Translational applications of E06 or similar anti-OxPL antibodies to humans, as well 

as antibodies to other OSE29,30, in which more traditional IgG isotypes are more likely to be 

used, will need to decipher any potential additional roles of various Fc effector functions.

MATERIALS AND METHODS

Antigen preparation and modifications

Plasma was obtained from healthy donors after an overnight fast following consent under a 

protocol approved by the UCSD Human Research Protections Program. LDL was isolated 

by sequential ultracentrifugation, and modified with malondialdehyde (MDA), 

malondialdehyde-acetaldehyde-adducts (MAA) or CuSO4 to generate MDA-LDL, MAA-

LDL or copper-oxidized LDL (Cu-OxLDL) respectively, as previously described31. 

Phosphocholine-BSA (PC-BSA) was from Biosearch Technologies and POVPC-BSA was 

prepared as described32. Monoclonal anti-Myc and anti-His alkaline phosphatase (AP) 

conjugated antibodies were from Sigma.

E06-scFv construction and optimized expression

In the Supplementary Information, we describe in detail the history of the discovery of the 

IgM natural antibody E06/T15 and its binding specificity and biological properties. The 

cDNAs encoding the E06 variable heavy (VH) and Light (LH) regions were connected with 

an oligo linker of 15-amino acid peptide (Gly4Ser)3 that were assembled by overlapping 

PCR and cloned into an expression vector pSecTag2A (Invitrogen), which contains a murine 

Ig kappa-chain leader sequence for secretion and Myc and polyHis tags that facilitates 

purification and detection. HEK293 cells were transfected with pSecTag2A-E06-scFv 

plasmid using the lipofectamine plus reagent (Invitrogen). Stable transfectants were selected 

with Zeocin, and the E06-scFv antibody in the culture supernatant was identified using an 

ELISA plate pre-coated with Cu-OxLDL or PC-BSA and detection by anti-myc or anti-His 

tag antibody conjugate using chemiluminescent assay techniques described previously29. 

During development, multiple linkers were tried and in addition, site-directed mutagenesis in 

framework region 1 was performed at 7 sites in an iterative fashion using QuickChange 

Multi Site-Directed Mutagenesis Kit (Stratagene) to create point mutations to improve the 

folding, stability, yield and reduce the aggregation of recombinant scFv. His6-tagged E06-

scFv was purified on Ni-NTA agarose beads (Qiagen) according to the manufacture’s 

protocols. Briefly, cell lysates were clarified by centrifugation (20,000 × g, 30 min, 4°C), 

and the supernatant applied to Ni2+-NTA agarose column, from which His6-tagged E06-

scFv was eluted with 250 mM imidazole. Fractions containing E06-scFv were pooled and 

extensively dialyzed against PBS before use. The purity and integrity were assessed by SDS-

PAGE and Western blot with anti-His Tag Ab-HRP conjugate, and an ECL detection system 

(Amersham).
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Generation of E06-scFv transgenic mice

The liver-specific expression vector pLiv7 was used to generate transgenic mice expressing 

the E06-scFv transgene driven by the apoE promoter, as previously reported33. The MfeI-

MluI fragment from the pSecTag2A-E06-scFv plasmid including murine Ig kappa leader 

sequence and Myc/His tags was released by MfeI/MluI digestion, and inserted into the 

polylinker region of pLiv7 to generate a transgenic vector pLiv7-E06-scFv. The apoE-E06-

scFv transgene consists of 3.0 kb ApoE promoter, and 5′, 3′-UTR of apoE flanked E06-

scFv gene and a 0.77 kb hepatic control element (LE6) placed downstream of poly(A) signal 

(Fig 1). To create transgenic mice, a 6.8 kb apoE-E06-scFv transgene cassette was separated 

from the vector by digestion with sacII and speI, purified, and injected into the pronuclei of 

fertilized mouse eggs obtained from superovulated female mice (C57BL/6). The injected 

eggs were surgically transferred to oviducts of surrogate C57BL/6 females in the UCSD 

Transgenic and Knockout Mouse Core.

Production and screening of transgenic mice

Offspring were screened both for plasma E06-scFv titer and integration of the transgene by 

PCR amplification of the tail DNA with the upstream primer sequence MfeFw 5′-TAC AAT 

TGA GCT GGC TAG CCA CCA TGG AG-3′ and the downstream E06rev3 primer 

sequence 5′-GCT GTA CCA AGC CTC CTC CAG ACT CCA CCA G-3′ to yield a 540-bp 

product corresponding to the nucleotide sequence between −15 and 525 of E06-scFv cDNA. 

Mice from the highest expressing transgenic E06-scFv founder lines were bred with each 

other to generate “homozygous” transgenic mice, and in turn, these were crossed into Ldlr
−/− and Ldlr−/− Rag1−/− mice, all on the C57BL/6 background. All animals were genotyped 

for E06-scFv and Ldlr−/−, respectively and plasma assayed to confirm expression of the E06-

scFv by immunoassay.

Binding profile of plasma E06-scFv quantified by chemiluminescent ELISA

E06-scFv plasma titers were determined by chemiluminescent ELISA assays for binding to 

PC epitopes as expressed on Cu-OxLDL, PC-KLH, PC-BSA,POVPC-BSA, and capsular 

polysaccharide (C-PS) of S. pneumonia, as well as to the anti-T15 idiotype antibody 

AB1-22. Competition immunoassays were performed to demonstrate specificity31,32 In 

brief, 96-well round-bottomed MicroFluor plates (DYNEX Technologies, Chantilly, VA) 

were coated with various antigens at 5 μg/mL (50 μL per well) in PBS overnight at 4°C. 

After the plates were washed and blocked with 1% BSA-TBS for 30 min, 25 μL of primary 

Abs diluted with 1% BSA-PBS were added to the wells, in the absence or presence of 

competitors and incubated for 90 min at room temperature. Bound Abs were detected with 

anti-Hisx6 tag antibody conjugated with alkaline phosphatase (SIGMA), in Tris buffered 

saline (TBS) buffer containing 1% BSA, followed by a rinse with water and the addition of 

25 μL of 50% LumiPhos 530 (Lumigen, Southfield, MI) as luminescent substrate. The light 

emissions were measured, and counts expressed as relative light units (RLU) over 100 ms 

using a Dynex Luminometer (DYNEX Technologies). For competition immunoassays, data 

are expressed as B/B0, were B represents binding in presence and B0 in absence of 

competitors. In separate experiments, the absolute plasma E06-scFv levels in transgenic 
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mice were determined using a standard curve generated with purified His6-tagged E06-scFv 

isolated as described above. All determinations were done in triplicate.

Flow cytometry and deconvolution microscopy of E06-scFv-Tg plasma binding to 
apoptotic cells

Plasma of Ldlr−/−/E06-scFv-Tg and Ldlr−/− control mice were analyzed for binding to 

apoptotic cells by flow cytometry (FACS) analysis as described4. Thymocytes harvested 

from C57BL/6 mice were cultured in cell culture medium and induced to undergo apoptosis 

by 10 ng/ml PMA (Sigma-Aldrich) for 16 hours. Plasmas diluted in 1% BSA-PBS were 

incubated with apoptotic thymocytes for 1hr at 4°C, followed by incubation with FITC-

labeled anti-His6 mAb in 1% BSA-PBS for 30 minutes at 4°C. Apoptotic cells were double-

stained with Annexin V - Phycoerythrin (Annexin V - PE) and 7-amino-actinomycin (7-

AAD) (BD Biosciences) for 15 min and immediately analyzed by FACS using a FACSCanto 

(BD Biosciences). For immunofluorescence microscopy studies, apoptotic Jurkat cells were 

prepared by exposure to UV irradiation at 20 mJ/cm2, and further cultured for 16 hours 

before use. Apoptotic Jurkat cells were incubated with 100 μL of plasma (1:20) in 1% BSA-

PBS at 4°C for 1hr, washed and labeled with FITC-conjugated anti-His-tag mAb (1:1000) 

and 1 μg/mL of Hoechst dye (Sigma-Aldrich) for 45 min at 4°C. The cells were fixed with 

3.7% paraformaldehyde for 20 min, washed, and resuspended in 1% BSA-PBS. The cells 

were spun down on glass slides using cytospin (Thermo Shandon). Images were captured 

using a DeltaVision deconvolution microscopic system operated by SoftWorx software 

(Applied Precision) as described previously.

Demonstration of specificity of E06-scFv binding to OxPL and ability to inhibit OxLDL 
binding to macrophages

Binding of biotinylated OxLDL to J774 macrophages plated in microtiter wells was assessed 

by a chemiluminescent binding assay as described recently34. In brief: biotinylated Cu-

OxLDL (5 μg/ml) was incubated in the absence or presence of E06-scFv-Tg plasma or 

control at various dilutions overnight at 4°C. The supernatants were then added to 

macrophages plated in 96-well microtiter plates and the binding of biotinylated OxLDL 

detected by AP-labeled NeutrAvidin and chemiluminescent ELISA.

Impact of E06-scFv on atherosclerosis in Ldlr−/− mice

Animal protocols were approved by the Institutional Animal Care and Use Committee 

(IACUC) at University of California San Diego. At 8 weeks of age, 18-20g male Ldlr−/− or 

Ldlr−/−/E06-scFv-Tg mice were matched for age, body weight, and total cholesterol and 

placed on a 1% cholesterol diet (HCD) (TD97131, Harlan Teklad) to determine the impact 

of the E06-scFv on progression of atherosclerosis. For each study, we sought to have 8-10 

mice per group, which based on experience would be sufficient to detect differences in 

atherosclerosis. Blood samples were collected from submandibular bleeding at 0, and 

various time points on diet. Mice were weighed monthly, and total cholesterol and 

triglycerides levels were determined using automated enzymatic assays (Roche Diagnostics, 

Indianapolis). Lipoprotein profiling was performed on terminal blood samples using fast 

performance liquid chromatography (FPLC) equipped with a Superose 6 column, and total 

cholesterol and triglycerides levels in each fraction were determined as described29.
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Bone marrow transplantation (BMT) study

BMT was performed as previously described35. In brief, bone marrow (BM) was harvested 

from cleaned femurs and tibias of male E06-scFv mice (not on Ldlr−/− background) and 

wildtype C57BL/6 mice and re-suspended in RPMI 1640 medium for injection. Ldlr−/− male 

recipient mice were fasted overnight and received a lethal dose of radiation (9 Gy) 4 h before 

BM injection. Mice (n = 12 per group) were anesthetized with isoflurane, and 5×106 BM 

cells either from E06-scFv mice or from C57BL/6 wildtype mice were injected into the 

retro-orbital venous plexus. Three days before and 2 weeks after the BM transplantation, 

recipient mice received autoclaved acidified (pH 2.7) water supplemented with 100 μg/mL 

neomycin and 10 μg/mL polymyxin B sulfate. Two weeks after BMT, all mice were given a 

Western Diet (TD00457, Harlan) for 16 weeks to induce atherosclerosis. Reconstitution of 

transplanted bone marrow was confirmed based on titers of E06-scFv secretion in plasma.

Atherosclerosis analysis

Mice exposed to HCD or WD were euthanized using 100% CO2. Sections of spleen, kidney, 

and liver tissues were frozen in RNAlater solution (Ambion) for mRNA extraction or 

embedded in OCT (Sakura Tissue-Tek, Torrance, CA) for cryosectioning. After perfusion 

with 4% formalin-sucrose for 15 min, livers and hearts were removed, fixed and embedded 

in paraffin and serially sectioned. The aortas were dissected under a microscope and fixed in 

4% formalin-sucrose, opened, flattened pinned and stained with Sudan IV, and images of the 

aortas were captured and quantified by analysis of the entire en face aorta as described35. 

Aortic root cross-sectional lesion areas were quantified using serial cross-sections taken at 

100μm intervals between 100μm and 900μm beginning with the first appearance of the first 

leaflet of the aortic valve until the last leaflet. Mean lesion size at each 100μm section in 

each animal was determined by computer-assisted morphometry (Image-Pro Plus 6.3, Media 

Cybernetics) on serial 10μm paraffin sections. Modified van Gieson elastic stain was used to 

enhance the contrast between the intima and surrounding tissue. Cross-sectional plaque area 

and plaque morphology were evaluated by two investigators blinded to the study protocol. 

The results are presented as mean of all values for each interval plotted vs. distance from 

first leaflet and the overall extent of aortic root lesions was determined by area under the 

curve (AUC) analysis of all serial sections in each group.

In lesions of the 4-month HCD experiments, we also determined the area of necrosis by 

computer-assisted morphometric analysis of extent of necrosis of 5 lesions taken at each 100 

μm interval and expressed as the absolute area involved at that site. In the 7-month 

experiment, lesions on each of the 100μm sections were selected to be of equal total size 

between the Ldlr−/− and Ldlr−/−/E06-scFv aortic sections at that level, and the area of 

necrosis determined and plotted at each 100μm section. For both the 4-month and 7-month 

analyses, the extent of necrotic area was determined as the AUC analysis of all serial 

sections in each group.

Echocardiographic and histological analysis of aortic valve

Ldlr−/− (n =13) and Ldlr−/−/E06-scFv (n =10) mice were fed a HCD for 15 months and 

aortic valve (AV) function was serially evaluated with Doppler ultrasound, 2D and M-mode 

echocardiography at 6, 9 and 12 months. At 15 months, the extent of atherosclerosis was 
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determined and AVs evaluated histologically. A Kaplan-Meier survival analysis was also 

performed on the entire cohort. Severity of aortic sclerosis was determined quantitatively by 

calculating peak pressure gradients across the AV using Doppler analysis and measurement 

of AV leaflet thickness using M-mode echocardiography. Pressure gradients were 

determined from aortic blood flow velocities (V) using the principles of conservation of 

energy and calculated by the modified Bernoulli equation [∆P=4(Vaorta
2 – VLVOT

2)9. Images 

were acquired using high-resolution (32-55MHz) ultrasound (VisualSonics Vevo 2100) as 

described in Cowling et al36. Histological assessment of AV was determined on serial 

sections at 100μm intervals from the origins of the AV leaflets at the base of the aortic root, 

and stained for calcium using Von Kossa’s method. Calcium on each section was quantified 

by number of pixels “stained” using Image J software. Total AV calcium was determined by 

area under the curve (AUC) analysis of all serial sections in each group.

Immunohistologic analyses of atherosclerotic lesions and liver tissues

Immunohistochemical studies were performed on sections of paraformaldehyde-fixed and 

paraffin-embedded tissues. Paraffin sections of atherosclerotic lesions, aortic roots and liver 

tissues were stained for OxPL with biotinylated E06 IgM, or with E06-scFv using a 

biotinylated mAb anti-Myc tag (Miltenyi Biotech) following the manufacturer’s instruction. 

Endogenous peroxidase activity was blocked with 0.3% hydrogen peroxide in PBS for 15 

min. After blocking, nonspecific binding sites with 10% normal goat serum and Fc Block 

(2.4G2 antibody) in PBS for 30 min, slides were incubated with primary antibodies for 1 h 

at room temperature. Biotinylated antibodies (E06, anti-myc and anti-polyHis) were 

revealed with ABC-HRP VectaStain kit (Vector Laboratories, Burlingame, California) and/or 

NovaRed substrate (Vector Labs). Slides were counterstained by hematoxylin and in some 

experiments, percentage of positively stained targets were quantified by image analysis 

morphometry (Image-Pro Plus).

Determination of cellular composition of aorta

Cellular composition of aortas was determined in the Cell Phenotyping Core of the UCSD 

PPG on Role of Immune Mechanisms in Inflammation and Atherosclerosis, under the 

direction of K. Ley, using established techniques37. In brief, 6 aortas from 16-week chow-

fed Ldlr−/−, 6 from HFD-fed Ldlr−/− and 5 from Ldlr−/−/E06-scFv mice were dissected 

following heparin PBS perfusion and adventitia carefully removed. The intact aortas were 

incubated for one hour with an Aorta Dissociation Enzyme stock solution and single cell 

suspensions prepared from the digested aorta by shearing the aortas apart and passing cells 

through a 70μm cell strainer into 5ml polypropylene FACS tubes (BD Falcon). The cells 

were pelleted by centrifugation (400×g, 5 minutes, 4°C), resuspended in 1ml of FACS buffer 

(PBS supplemented with 1% BSA and 0.05% NaN3), counted and assessed for viability 

using trypan blue in a hemocytometer. Cells were stained on ice for 30 min with the panel of 

antibodies below, washed twice with FACS buffer and then analyzed at La Jolla Institute for 

Allergy and Immunology using a FACSAria analyzer. Anti-CD45 antibody and fixable live-

dead cell stain (Invitrogen, Molecular Probes) was added to all samples to allow for gating 

of live CD45+ leukocytes and cells were sorted with the panel of antibodies listed in Table in 

Supplemental Information.
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Analysis of T cells in blood, spleen and periaortic lymph nodes by flow cytometry

Blood from Ldlr−/− or Ldlr−/−/E06-scFv mice was collected in 4% sodium citrate solution. 

Blood lymphocytes were obtained from the interface after underlying and spinning the blood 

with Histopaque 1077 (Sigma, Saint Louis, MO). Peri-aortic lymph nodes and spleens were 

processed to obtain single cell suspensions. Spleen samples were lysed with 1× RBC lysis 

buffer (BioLegend, San Diego, CA). Cell suspensions were counted using a Z2 Coulter 

counter (Beckman Coulter, Brea, CA) to obtain absolute numbers of each cell population. 

Single cell suspensions were stained as routinely done in our laboratory38, with antibodies 

against CD4 (clone RM4-5; Life Technologies, Carlsbad, CA), CD8 (clone 53-6.7; 

Biolegend, San Diego, CA), TCRβ (peri-aortic LNs and spleen only) (clone H57-597; 

ebioscience, San Diego, CA), CD44 (clone IM7, Biolegend), CD25 (clone PC61, Biolegend) 

and live dead exclusion yellow dye (Life Technologies) in FACS buffer (2% BSA in PBS). 

Cells were stained on ice for 30 min, washed twice with FACS buffer and then samples were 

analyzed using LSRII (BD Bioscience, San Diego, CA). Data were analyzed using FlowJo 

9.7 (Tree Star Inc., Ashland, OR).

RNA analysis of tissues

Total RNAs were extracted from individual frozen tissue samples (Livers) or thioglycollate 

elicited peritoneal macrophages (TGEM) using RNeasy mini kit (Qiagen) as per the 

manufacturer’s instructions. Tissues were homogenized in RNeasy lysis buffer with a 

motorized homogenizer. Genomic DNA was removed by DNase I, and RNA concentration 

and quality were assessed with by NanoDrop. Next, 1 μg of RNA was reversely transcribed 

to cDNA using EcoDry Premix kit (Clontech). Real-time qPCR was carried out to determine 

gene expression of inflammatory molecules. All reactions were performed in the Rotor-Gene 

Q cycler (Qiagen) in triplicates using 50 ng of cDNA and qPCR Master Mix (Eurogentec, 

San Diego, CA), primers and Taqman fluorescent probes (Applied Biosystems) in a total 

reaction volume of 20 μL. Relative quantities of mRNA were calculated using ΔΔCt formula 

and two standard curves relative quantitation using Rotor-Gene Q Software 1.7 (Qiagen) 

with GAPDH as the reference gene.

Analyses of Peritoneal Macrophages

Thioglycollate-elicited peritoneal macrophages (TEM) from Ldlr−/− and Ldlr−/−/E06-scFv-

Tg mice fed a HCD diet for 5 weeks were isolated 3 days after intraperitoneal (i.p.) injection 

of 1 ml of 2% thioglycollate broth (Sigma-Aldrich) as described13. TGEM macrophages 

were collected for RNA-seq analysis, cholesterol analysis and mass spectrometry 

determinations of sterols as described18. TGEM were isolated from 3 mice in each group 

and each set of macrophages divided into 2 separate aliquots, which were individually 

extracted and sterols determined in triplicate by liquid chromatography-mass spectrometry 

(LC-MS/MS) following LipidMaps protocols online at www.lipidmaps.org.

In other studies to assess the ability of macrophages to secrete the E06-scFv, TGEM were 

obtained from E06-scFv-Tg mice plated at a density of 5 million cells/well in 6-well plates 

in 10% FBS in RPMI. On day 4, cells were incubated with T0901317 at 10uM/ml (or 

vehicle) in 1% delipidated, charcoal-stripped FBS in RPMI. Cell culture supernatants were 
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concentrated and assessed for E06-scFv binding activity by ELISA. Cell pellets were 

checked for expression of E06-scFv by qPCR.

RNA-seq analysis was performed on TGEM macrophages from 4 biological replicates. Total 

RNAs were converted into cDNA libraries as templates for high throughput sequencing 

using the Illumina HiScanSQ following the Illumina TruSeq RNA sample preparation 

protocol. Shortly, first strand cDNA was synthesized from 5 μg of total RNA using oligo-dT 

primer and EcoDry Premix kit (Clontech) for cDNA synthesis, and subsequently converted 

into blunt ends via exonuclease/polymerase. After adenylation of 3′ ends of DNA 

fragments, Illumina PE adapters were ligated to prepare cDNA fragments of preferentially 

200 bp in length and enriched using Illumina PCR primers in a 15-cycle PCR reaction. After 

cluster generation, 100 bp paired-end reads were generated and analyzed by alignment to the 

UCSC murine reference genome using TopHat/Bowtie. The numbers of reads mapping to 

exonic and intronic regions as well as to splice sites were calculated based on the UCSC 

annotation file. Reads per kilobase of exon model per million mapped reads (RPKM) values 

for Refseq genes were established. RNA-seq clusters were analyzed by Cuffdiff2, 

TreeView6, for heat map, and DAVID6.7 to determine differential gene expression (DEG) 

between Ldlr−/− and Ldlr−/−/E06-scFv macrophages, and by Gene Ontology (GO) 

classification to assign gene changes to different functional categories. For statistical 

analysis of DEG, the Cufflinks data of p-value from the t-test of RPKM in RNAseq data 

were further analyzed using R packages (DEseq2) from Illumina BaseSpace Sequence Hub 

and converted to FDR-adjusted q-values. The concise output files included only those 

transcripts which have a q-value lower than the given FDR, and the value of the significant-

column was adjusted accordingly (yes/no) in all output files. All DEG values shown are 

FDR-corrected p vales < 0.05.

Determination of uptake of fluorescent OxLDL by peritoneal macrophages in vivo

Rag1−/− mice lack T and B cells and plasma antibodies. Rag1−/− Ldlr−/− mice and Rag1−/−/

Ldlr−/− E06-scFv transgenic mice (which only have E06-scFv Abs) were injected i.p. with 1 

ml of sterile 2% thioglycollate to induce sterile peritonitis. Four days later, the mice were 

injected i.p. with 100μg of Alexa Fluor 488 labeled OxLDL in 200 μL PBS per mouse Ldlr
−/−39. The mice were euthanized 1hr after injection, and peritoneal cells were recovered by 

lavage with 10 ml of ice-cold PBS containing 1% heat-inactivated FBS and 10 mM EDTA. 

Peritoneal macrophages were labeled with anti-F4/80 APC conjugated mAb (eBioscience) 

and macrophage-specific uptake of OxLDL was analyzed by FACS for the presence of 

intracellular labeled OxLDL. In a separate experiment, Alexa Fluor 488 labeled OxLDL was 

pre-incubated with plasma from each of Ldlr−/− or Rag1−/− Ldlr−/− or Rag1−/−/Ldlr−/−/E06-

scFv mice for 1 hour, and then injected i.p. into Ldlr−/−Rag1−/− mice. In both experiments, 

uptake of OxLDL by elicited peritoneal macrophages in vivo was expressed as the 

percentage of macrophages ingesting OxLDL.

Statistical analysis

Unless otherwise noted, data are expressed as mean ± SEM. Statistical analysis was 

performed by GraphPad Prism 7.04 using the two-tailed Student’s t-test and one-way 

ANOVA with appropriate post-hoc tests as needed. When variances were different, 
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differences between groups were analyzed using a nonparametric multiple comparison test. 

Lesion size, lesion morphology and gene expression were evaluated using the Mann–

Whitney test.

Data Availability

The datasets generated during and/or analyzed during the current study are available from 

the corresponding author on reasonable request. The raw sequence data presented in this 

article have been submitted to the National Center for Biotechnology Information Sequence 

Read Archive (https://www.ncbi.nlm.nih.gov/sra/, BioProject) under accession number 

PRJNA438959.
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Extended Data

Extended Data Figure 1. E06-scFv expression and binding characteristics
a. Simply Blue staining of purified EO6-scFv from HEK293 cell lysates from two 

experiments. b. Western blot with anti-Myc of E06-scFv following purification on Ni-NTA 

agarose beads (representative of 4 independent experiments). c. Binding profile of purified 

E06-scFv using chemiluminescent ELISA (Binding data are mean ±SEM, using 3 

independent samples, each determined in triplicate). d. Tissue distribution of E06-scFv gene 
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transcript in Ldlr−/−/E06-scFv mice determined by qPCR. (Data are mean ±SEM, 

determined from tissues of 3 Ldlr−/−/E06-scFv mice. e. Competition immunoassays of Ldlr
−/−/E06-scFv plasma binding to plated OxLDL in the presence or absence of increasing 

amounts of indicated competitors. Results are ratio of binding of E06-scFv to OxLDL in the 

presence (B) or absence of competitor (B0). AB1-2 is a T15 anti-idiotypic antibody; 

C16lysoPC: C16 lyso-phosphatidylcholine, DPPC: Dipalmitoyl phosphatidylcholine. Data 

shown are triplicates of each point from one competition experiment, representative of 4 

separate studies of similar nature. f, Accumulation of desmosterol and other indicated sterols 

in TGEM from indicated mice fed a HC diet for 16 wks. TGEM were isolated from 3 mice 

in each group and each set of macrophages divided into 2 separate aliquots for analysis in 

triplicate. Data are mean ±SEM. There were no differences between respective sterol pairs, 

p>0.05 for all pairs.
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Extended Data Figure 2. Expressed E06-scFv does not alter levels of total IgM or IgM E06 
(detected by AB1-2) in transgenic mice
Comparison of plasma IgM titers to indicated antigens of Ldlr−/−or Ldlr−/−/E06-scFv mice at 

baseline or after 4 or 7 months of HC diets. Note significant increases in Total IgM and IgM 

to MDA-LDL and OxLDL at 4 and 7 months vs. respective baseline titers (all vales p< 

0.001) except at 4 months, total IgM of Ldlr−/−/E06-scFv mice and E06 (detected by AB1-2) 

in both mouse groups were not different than their respective baselines (p>0.05). 

Importantly, there were no significant differences in any antibody titers between Ldlr−/− or 
Ldlr−/−/E06-scFv mice at any time point, and in particular, note that endogenous IgM-E06 
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titers (detected by AB1-2 binding) were similar. As expected, the Rag1−/− and Rag−/−/E06-

sc did not have any IgM.

Extended Data Figure 3. Plasma E06-scFv binds to atherosclerotic lesions and apoptotic 
thymocytes and is present in aorta of Ldlr−/−/E06-scFv mice
a, Staining of atherosclerotic lesions of WHHL rabbit aorta with E06-scFv plasma (left 

panel), and Ldlr−/− mice (right panel) (both at dilution of 1:20), visualized using biotinylated 

anti-Myc mAb and ABC-AP VectaStain kit. b, Deconvolution microscopy of E06-scFv 

plasma (1:20 dilution) binding to apoptotic but not normal cells. Blue, nuclei stained with 
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Hoechst dye; Green, FITC-labeled anti-His tag mAb; Red, Annexin V-PE. c, Binding of 

E06-scFv plasma (1:20 dilution) to apoptotic thymocytes (7AAD+/Annexin V+) by FACS 

analysis. d, Expression of E06-scFv in aortic lesion of Ldlr−/−/E06-scFv but not Ldlr−/− 

mouse. Cross-sections at the AV were stained with biotinylated anti-Myc mAb to identify 

presence of E06-scFv in atherosclerotic lesion. Nuclei counterstained using Hematoxylin QS 

(Original ×200). Panels a-c are representative of similar studies with 5 other plasma samples. 

Panel d is representative of studies in 3 other aortic sections.
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Extended Data Figure 4. Lipoprotein profiles of Ldlr−/− and Ldlr−/−/E06-scFv mice are similar in 
various studies
a, b, Plasma cholesterol (a), and triglycerides (b) distribution by FPLC in pools of equal 

aliquots of plasma from mice fed HC diet for 16 weeks (n=10, 11). c, Plasma cholesterol 

distribution in mice fed HC diet for 28 weeks (n=9,7). d, Plasma cholesterol and triglyceride 

distribution in BMT experiment: Lipoprotein profiles in Ldlr−/− mice that received BM from 

wild type (control, n=9) or E06-scFv mice (n=13) and then fed a WD for 16 weeks.
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Extended Data Figure 5. E06-scFv reduces necrotic core formation and macrophage secretion of 
E06-scFv confers atheroprotection
a, E06-scFv reduces extent of necrosis within aortic root lesions after HCD for 7 months as 

shown in Fig 2c. Lesions of equal size were matched at each of the indicated sites in aortic 

root sections from 7 Ldlr−/− and 9 Ldlr−/−/E06-scFv mice and extent of necrosis measured as 

described in Methods. Necrosis was reduced by 43.9% in Ldlr−/−/E06-scFv mice (AUC 

113.4 vs. 63.6, p=0.015). b, Secretion of E06-scFv in cultured peritoneal macrophages in the 

absence or presence of LXR agonist T090137 from C57BL/6 (WT) and E06-scFv mice 

determined by PC-binding assay. Culture supernatants were concentrated 10-fold for ELISA 

(left panel). The E06-scFv expression, driven by the apoE promoter was stimulated by 

T0901317 as indicated by Western blots of cell lysates with anti-myc mAb (right panel). 

Representative of 4 separate experiments. c, Plasma E06-scFv titers following 

transplantation (baseline) in Ldlr−/− mice transplanted with WT (n=7) or E06-scFv (n=7) 

bone marrow). E06-scFv titers (plasma from 7 WT and 7 E06-scFv) increased in mice 

transplanted with E06-scFv BM over 16 weeks of WD. d, Aortic root atherosclerosis in Ldlr
−/− mice transplanted with WT (n=9) or E06-scFv (n=13) bone marrow after 16 weeks of 

WD. As described in Methods, aortic root lesion areas were quantified from serial sections 

(9 sections per mouse) cut through the aorta at the origins of the AV leaflets and then stained 

with modified van Geison solution. Lesions at aortic root were reduced by 37% in mice that 

received BMT from E06-scFv mice (AUC 69.6 vs 110.6, p=0.02, two-sided-t-test).

Que et al. Page 20

Nature. Author manuscript; available in PMC 2018 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Figure 6. AV echocardiography and hepatic gene Expression
a Representative pulse wave Doppler derived aortic jet velocities in 12 month old Ldlr−/−/
E06-scFv (left) and Ldlr−/− (right) mouse: ECG tracings are shown in green. Representative 

of studies in 9 Ldlr−/− and 10 Ldlr−/−/E06-scFv mice. b. Representative M-mode 

echocardiography images containing the AV in short axis through the right ventricular 

outflow tract (RVOT), aortic (Ao) root with AV, and left atrium (LA). The AV (arrows), best 

observed in diastole, is thinner in Ldlr−/−/E06-scFv compared to Ldlr−/− mice. ECG tracings 

shown in green. Representative of studies in 9 Ldlr−/− and 10 Ldlr−/−/E06-scFv mice. c. 
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Decreased inflammatory gene expression in whole liver extracts of Ldlr−/− and Ldlr−/−/E06-

scFv mice after 16 weeks of HC diet. Relative mRNA levels were determined by qPCR and 

normalized to GAPDH and expressed as means ± SEM. (n=4 mice each).

Extended Data Table 1
Weights and lipid levels in mice in atherogenic studies

a. Indicated parameters for mice on the HCD diets for 4, 7 or 12 month studies. Results 

represent the mean ± SEM. For mice on the 4 month diet protocol, plasma cholesterol and 

triglyceride were measured at baseline, 4 wks, 8 wks and at 4 months. For mice in the 7 and 

12 months protocols, measurements were made at time of sacrifice. There were no 

significant differences between mice at any given time point. (For the 4, 7 and 12 month 

protocols, Ldlr−/− (n = 10, 9, 8) and Ldlr−/−/E06-scFv (n =11, 7, 10 respectively). b. 
Variables at indicated times in Ldlr−/− recipient mice on the WD following BM 

transplantation from C57BL/6 or E06-scFv mice on C57BL/6 background. Results represent 

the mean ± SEM. There are no significant differences between mice at any given time point. 

(Number of mice for C57BL/6 donors, n = 9; for E06-scFv donors, n = 13).

a

Time Course Groups -2 weeks (Baseline) 4 weeks 8 weeks 4 months 7 months 12 months

Ldlr−/− E06-scFv Ldlr−/− 06-scFv Ldlr−/− E06-scFv Ldlr−/− E06-scFv Ldlr−/− E06-scFv Ldlr−/− E06-scFv

Weight (g) ± SEM 25.1±0.5 22±1.1 27.5±0.5 24±1.1 28.2±0.5 24.9±1.1 30.7±0.6 26.7±1.3 35.2±4.2 34.8±3.6 38.7±7.6 37.3±4.1

Total Chol (mg/dL) 269±9.5 246±9.9 944±63 957±52 852±55 925±46 624±38 881±125 790±240 937±135 1108±467 1119±409

Triglyceride (mg/dL) 88±9.2 139±9.7 135±12 141±17 111±7.5 123±12 128±7.7 151±14 161±54 199±78 162±51 249±92

b

Time Course Groups –2 weeks (Baseline) 4 weeks 8 weeks (Midpoint) 16 weeks (Endpoint)

C57BL E06-scFv C57BL E06-scFv C57BL E06-scFv C57BL E06-scFv

Weight (g) ± SEM 22.3±1.6 23.4±2.4 24.5±1.7 25±2.4 26.2±0.7 26.1±2.9 26.8±1.7 27.4±2.4

Total Chol (mg/dL) 248±23 240±25 1231±64 1328±95 1444±140 1240±143 1579±168 1215±216

Triglyceride (mg/dL) 92±16 112±30 176±50 202±53 143±25 178±44 578±83 433±62

Extended Data Table 2
GO analysis of differentially expressed genes in 
macrophages of Ldlr−/− and Ldlr−/−/E06-scFv mice

GO analysis of genes that were increased >1.5 fold in TGEM of Ldlr−/−/E06-scFv mice 

compared to Ldlr−/− mice. Experimental details and major gene changes shown in Figure 3. 

Data of TGEM from 4 mice each group.

Go Analysis: Genes Expression >1.5 fold higher in E06-scFv Transgenic Mice

Term Count % P-value

GO:0006955 ~ immune response 45 16.4234 9.37E-26

GO:0009615 ~ response to virus 12 4.3796 3.69E-09
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Go Analysis: Genes Expression >1.5 fold higher in E06-scFv Transgenic Mice

Term Count % P-value

GO:0002684 ~ positive regulation of immune system process 17 6.2044 1.12E-08

GO:0045087 ~ innate immune response 13 4.7445 1.39E-08

GO:0006952 ~ defense response 24 8.7591 1.89E-08

GO:0050778 ~ positive regulation of immune response 14 5.1095 2.40E-08

GO:0002460 ~ adaptive immune response based on somatic recombination of 
immune receptors built from immunoglobulin superfamily domains

11 4.0146 1.31E-07

GO:0002250 ~ adaptive immune response 11 4.0146 1.31E-07

Extended Data Table 3
Cell counts of viable aortic cells determined from FACS 
analysis

Cell counts of viable aortic cells isolated from aortas of chow-fed and HCD-fed Ldlr−/− mice 

and HCD-fed Ldlr−/−/E06-scFv mice. Values are mean ± SD of total viable cells evaluated 

by flow cytometry per aorta as described in methods. Number of aorta for each group: HCD-

Ldlr−/−/E06-scFv = 5; Chow-Ldlr−/− = 6; and HCD-Ldlr−/− = 6.

Group Total Viable cells* Monocytes
(% of Total)

Lymphocytes
(% of Total)

В cells
(% of Lymph

T cells
(% of Lymph)

HCD E06-scFv 3398±2615 43±7.1 57±7.1 4.1±2.0 54±11

Chow- Ldlr−/− 864±1085 43±15 57±15 7.5±5.1 29±15

HCD– Ldlr−/− 7829**±10.247 18±4.6 82±4.6 12±20 62±15

*
Note that one aorta in the HCD-Ldlr−/− had extensive atherosclerosis and had 27,846 viable cells counted. The next 

highest value in this group was 9,342; By comparison, the highest in the Chow-Ldlr−/− group was 2909 and in the HCD-

Ldlr−/−/E06-scFv group was 5692. Aortic cells were evaluated by flow cytometry as described in Methods. Data for 
phenotype of monocyte/macrophages are shown in Figure 3.

Extended Data Table 4
Echocardiographic parameters of mice after 12 months 
of HCD

Values are mean±SD and p values refer to comparisons of − Ldlr−/− vs Ldlr−/−/E06-scFv 

mice using two-sided-t-test. FS, fractional shortening; HR, heart rate; IVSD, interventricular 

septum during diastole; LVIDd, left ventricular internal diameter during diastole; LVIDs, left 

ventricular internal diameter during systole; LVPWd, left ventricular posterior wall thickness 

during diastole; LVM/BW, ratio of left ventricle mass to body weight. This table includes 

studies in 2 Ldlr−/− mice not included in Fig 4a.

Parameters Ldlr−/−

(n=13)
Ldlr−/− E06-scFv

(n=10) P value

HR (bpm) 528±55 562±51 0.18

IVSd (mm) 0.75±0.08 0.73±0.05 0.55

LVIDd(mm) 3.68±0.45 3.76±0.39 0.67

LVIDs(mm) 2.51±0.42 2.60±0.43 0.63

LVPWd(mm) 0.73±0.08 0.71±0.07 0.54
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Parameters Ldlr−/−

(n=13)
Ldlr−/− E06-scFv

(n=10) P value

%FS 31.8±7.3 31.0±7.9 0.78

LVM/BW Aortic Valve 25.2±5.0 25.6±4.1 0.84

–Peak Velocity (cm/s) 103.22±28.23 79.25±29.50 0.020

–Peak Gradient (mmHg) 4.56±2.43 2.83±1.91 0.025

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Transgenic mice expressing a single chain variant of E06 (E06-scFv)
a, The configuration of the E06 single-chain transgene, which encodes the E06 light and 

heavy chains with flexible linker (Gly4Ser)3 and epitope tags under the direction of ApoE 

promoter and LE6 enhancer. b, Binding properties of plasma from wild-type C57BL/6 and 

the E06-scFv mice to indicated antigens (mean±SEM, n=5 plasmas from each group, each 

point determined in triplicate). c, Plasma from E06-scFv mice reduced OxLDL binding by 

macrophages in culture. Shown is one experiment, each point in triplicate, and representative 

of 5 separate experiments. d, E06-scFv protected thioglycollate elicited peritoneal 

macrophages (TGEM) from OxPAPC induced inflammatory response. OxPAPC or vehicle 

(PBS) were injected ip into Ldlr−/− or Ldlr−/−/E06-scFv mice and TGEM macrophages were 

collected 4h after injection for qPCR analysis. Data are mean ± SEM normalized to control; 

(n=3,4 mice per group).
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Figure 2. E06-scFv reduces atherosclerosis in HC-fed Ldlr-/- mice
a, b, Examples of en face atherosclerosis in Ldlr−/− and Ldlr−/−/E06-scFv mice after 4 

months (a) and 12 months (b) of 1% high cholesterol diet (HCD). c, d, Cumulative data for 

extent of en face lesion formation in the entire aorta (c) or at the aortic root (d) of Ldlr−/− (n 

=8-10) and Ldlr−/−/E06-scFv mice (n =7-11). Compared to Ldlr−/− mice, atherosclerosis was 

significantly reduced in Ldlr−/−/E06-scFv mice at 4, 7 and 12 months (en face by 57%, 34% 

and 28%, and aortic root by 55%, 41% and 27% respectively).
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Figure 3. Mechanisms by which E06-scFv decreases atherosclerosis
a, AlexaFluor 488 labeled OxLDL was injected i.p. and macrophage uptake of OxLDL was 

determined by FACS and expressed as % macrophages taking up OxLDL. Macrophage 

uptake was reduced in Ldlr−/−/Rag1−/−/E06-scFv compared to Ldlr−//−Rag1−/− mice (% 

uptake 91±1.03 vs. 62±5.01, 4 mice each). b, AlexFluor labeled OxLDL was pre-incubated 

with plasma from Ldlr−//−Rag1−/− or Ldlr−/− or Ldlr−/−/Rag1−/−/E06-scFv mice, and 

injected into corresponding mice (n =4 each) and macrophage uptake determined as in a. 

The % of macrophages that took up OxLDL was 98.83±0.44, 66.06±5.87, and 26.48±3.90 
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respectively. The ~ 25% decrease observed following incubation with Ldlr−/− plasma 

possibly reflects the presence of endogenous anti-OxLDL antibodies. c, TGEM from 16 

week HCD mice (n=4 mice each) were isolated and cellular cholesterol and desmosterol and 

other oxysterol levels determined and normalized to cellular protein. Total cholesterol 

accumulation shown here was reduced 48% in Ldlr−/−/E06-scFv mice (Data are mean ± SD; 

n = 4). Desmosterol and oxysterol levels were similar (see Extended Data Fig 1d). d, Heat 

map of RNAseq data from Ldlr−/− and Ldlr−/−/E06-scFv TGEM collected after 16 weeks of 

HCD (n = 4 each group). e, Selected list of differentially expressed transcripts in TGEM 

(Mϕ) based on clustering analysis on log ratio RPKM data from d. All values represent 

FDR-adjusted p values < 0.05 as described in Methods. f, Aortic wall tissue-resident 

macrophage phenotypes were determined by FACS analysis of CD45+ viable cells. 

Macrophages were defined as M1-like (CD11b+CD11c+Arg1−) or M2-like (CD11b+CD11c
−Arg1+) and expressed as % Frequency of parent (CD11b+CD11C+/−) (Ldlr−/−chow and 

Ldlr−/−/E06-scFv HCD (n=4), Ldlr−/−HCD (n=3).
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Figure 4. E06-scFv decreases early aortic valve stenosis, hepatic steatosis, and systemic 
inflammation
a, b, Ldlr−/− (n=11) and Ldlr−/−/E06-scFv (n=10) mice were fed HCD for 15 months and 

prospectively examined at 3 time points for aortic valve hemodynamics. a, Mean pressure 

gradients across the aortic valve, determined by Doppler echocardiography. At 12 months 

there was a 49% lower mean gradient in the Ldlr−/−/E06-scFv mice (2.4±1.9mmHg vs. 

4.8±2.4mmHg, mean±SD, p = 0.026, Ldlr−/−/E06-scFv (n=10) and Ldlr−/− (n=9). c, d, 

Calcification in aortic valve leaflets was determined by von Kossa staining of serial aortic 

valve sections and AUC compared. AV calcium was reduced in Ldlr−/−/E06-scFv mice by 

41.5% (p=0.045, one-tailed-t-test, Ldlr−/−/E06-scFv (n=9) and Ldlr−/− (n=8)). e, Survival of 

mice used in AV hemodynamic study over 15 months. f, Hepatic cholesterol and triglyceride 

(TG) levels were reduced by 42% and 47% respectively in Ldlr−/−/E06-scFv mice, Ldlr−/− 

(n=10) and Ldlr−/−/E06-scFv (n=12) mice g, Livers of mice fed HCD for 16-wks were 

immunostained with biotinylated E06 IgM (brown) and compared to chow-fed C57BL/6 

mice. Shown are representative photomicrographs, representative of 7 Ldlr−/−, 7 Ldlr−/−/
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E06-scFv and 3 WT (C57BL/6) mice. h, Plasma serum amyloid A (SAA) was decreased 

32% in HC fed Ldlr−/−/E06-scFv mice (Ldlr−/− (n=10) and Ldlr−/−/E06-scFv (n=12) mice).
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