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Abstract: Dissolved oxygen (DO) is a direct indicator of water pollution and an important water
quality parameter that affects aquatic life. Based on the fundamental theorem of surfaces in differen-
tial geometry, the present study proposes a new modeling approach to estimate DO concentrations
with high accuracy by assessing the spatial correlation and heterogeneity of DO with respect to
explanatory variables. Specifically, a regularization penalty term is integrated into the high-accuracy
surface modeling (HASM) method by applying geographically weighted regression (GWR) with
some covariates. A modified version of HASM, namely HASM_MOD, is illustrated through a case
study of Poyang Lake, China, by comparing the results of HASM, a support vector machine (SVM),
and cokriging. The results indicate that HASM_MOD yields the best performance, with a mean
absolute error (MAE) that is 38%, 45%, and 42% lower than those of HASM, the SVM, and cokriging,
respectively, by using the cross-validation method. The introduction of a regularization penalty term
by using GWR with respect to covariates can effectively improve the quality of the DO estimates.
The results also suggest that HASM_MOD is able to effectively estimate nonlinear and nonstationary
time series and outperforms three other methods using cross-validation, with a root-mean-square
error (RMSE) of 0.20 mg/L and R2 of 0.93 for the two study sites (Sanshan and Outlet_A stations).
The proposed method, HASM_MOD, provides a new way to estimate the DO concentration with
high accuracy.

Keywords: surface modeling; dissolved oxygen; spatial estimation

1. Introduction

As a health indicator for water bodies, the dissolved oxygen (DO) concentration plays
important roles in maintaining microbial diversity and various ecosystem and biogeochem-
ical processes in lake ecosystems [1–3]. Sufficient levels of DO in water are essential for
the survival of various aquatic organisms, such as algae, zooplankton, and aquatic plants.
Generally, the DO concentration in a healthy water body ranges from 8 to 12 mg/L, and
concentrations below 8 mg/L can adversely affect the survival of aquatic species [4,5].
Studies have shown that global climate change and extensive human activities can rapidly
reduce DO concentrations, leading to increased hypoxia, especially in coastal and estuarine
environments [6,7]. According to the National Oceanic and Atmospheric Administration
(NOAA), any persistent DO levels below 5.0 mg/L are considered unhealthy, and levels
below 2 mg/L are extremely hazardous to marine ecosystems [6]. Reliable estimates of DO
concentrations enable us to identify future contaminant problems and provide a basis for
taking effective countermeasures to prevent water pollution.

Although in situ observations with sensors provide highly accurate measurements of
DO concentrations, this approach is intensive and only gives point measurements. Stud-
ies have shown that no single identified sensor can be applied with high confidence to
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optimally measure DO concentrations [8]. An improved understanding of water quality
can be obtained by integrating remote sensing technology, site observations, and numer-
ical models. Recently, various approaches have been proposed for the estimation of DO
concentrations. The main prediction methods include various deterministic hydrological
models, statistical models, and machine learning methods [9–13]. Hydrological models
can provide physical DO concentration estimates but are characterized by large compu-
tational capacities and high uncertainty associated with the determination of parameters
and relevant physical processes [14]. The statistical method is a simple approach used to
generate spatial DO concentration fields. Harvey et al. [15] established a regression model
to predict the monthly water temperature and DO level. Stajkowski used an autoregressive
integrated moving average (ARIMA) model to estimate water quality parameters and
demonstrated its capability in DO concentration prediction [16]. In many statistical meth-
ods, the geostatistical method known as kriging has been widely applied, and cokriging
is an extension of kriging used when estimating one variable from other variables [17,18].
The literature shows that cokriging has been successfully used for the prediction and
estimation of groundwater quality parameters [19]. However, statistical methods generally
depend on datasets with linear relationships and fail to describe nonlinear characteristics.
Machine learning methods can be applied to address nonlinear problems. Support vec-
tor machines (SVMs) and artificial neural networks (ANNs) are typical models that are
commonly adopted by researchers in the prediction of water quality and have displayed
good performance in modeling DO concentrations [20–24]. ANNs are well-suited methods
with self-adaptability, self-organization, and error tolerance for nonlinear simulation, but
these methods have limitations due to their complex structures that require a great amount
of training data. SVMs are new machine-learning technologies based on statistical theory
and derived from instruction risk minimization that can enhance the generalization ability
and minimize the upper limit of generalization error [25]. However, as indicated in other
studies [26,27], machine learning methods are usually applied to establish global numeric
relationships among datasets and ignore geographical relations; notably, environmental
parameters are often spatially correlated, and the relationships among variables varying in
space are important.

In recent years, a partial differential equation (PDE)-based approach, the high-accuracy
surface modeling (HASM) method, was proposed based on the fundamental theorem
of surfaces in differential geometry by using in situ measurements [28]. This method is
effective in simulating elevations, climate variables, soil properties, ecological diversity, and
other ecological variables. Researchers have found that HASM generally performs better
than other classic interpolation methods, such as kriging, inverse distance weighting (IDW),
and the spline method [29–34]. The good performance of HASM is due to its complete
theoretical basis and the constraint conditions established using sampling information.
One of the advantages of HASM is its extensibility, which allows it to simulate different
environmental variables based on the characteristics of the variables and the corresponding
a priori knowledge. The performance of HASM in estimating the DO concentration,
however, has not been investigated until now. This approach is expected to provide an
effective way to improve the accuracy of the spatial estimation of DO levels.

The objective of this study is to propose a new approach for estimating the spatial
distribution of DO concentrations in Poyang Lake, China. The new method, termed
HASM_MOD, was developed based on HASM and the characteristics of DO by modifying
the main HASM equation. The performance of HASM_MOD was investigated by compar-
ing it with HASM, cokriging, and SVM using a cross-validation method. This is the first
study in the literature that attempts to apply HASM and HASM_MOD to simulate DO
concentrations. The rest of this study is organized as follows: In Section 2, the materials are
explained, including the details of the study area and datasets used in the analysis. The
methods are presented in Section 3, and the results are shown in Section 4. Discussions
and conclusions are given in Sections 5 and 6, respectively.



Sensors 2021, 21, 3954 3 of 18

2. Study Area and Data

Poyang Lake, the largest freshwater lake in China, is located downstream of the
Yangtze River in Jiangxi Province and freely connected to the longest river in China, the
Yangtze River (Figure 1). The lake has a southeast monsoonal climate with an annual mean
air temperature of 16–18 ◦C and an average annual precipitation of 1340–1780 mm. The
elevation of the Poyang Lake area gradually increases from north to south and west to east.
Poyang Lake is considered a vital resource not only for the local population but also for
the Yangtze valley and global ecology. The lake routinely fluctuates in volume between
the winter and summer seasons. The surface area of Poyang Lake changes greatly with
season, covering more than 4000 km2 in the wet season (June, July, August, and September)
and a much smaller area in the comparatively dry season (lasting from October to March
in the following year) [35]. The lake water level is mainly regulated by the Yangtze River
and the “five rivers”, namely the Gan River, Fu River, Xin River, Rao River, and Xiu River,
with a range of water levels spanning more than 10 m. The water level rises first due to the
inflows from the five rivers from April to June and then due to the backflow of the Yangtze
River from July to September; the water levels then gradually fall after October, with the
decreasing trend lasting for approximately half a year [36]. Influenced by the topographic
characteristics of Poyang Lake and the variations in the runoff of the five rivers, the surface
area and water level of Poyang Lake vary greatly with the season. In addition, it has been
reported that polluted river sections are mainly located in the Gan River, Fu River, Rao
River, and Xiu River. This study performed an analysis based on the observations obtained
at stations located in Poyang Lake and the surrounding inflowing rivers.

Figure 1. Locations of DO measurements and the Poyang Lake boundary.

The data used in this work consist of daily measurements of DO (mg/L), pH, water
temperature (TE, Co), and electrical conductivity (EC, µS/cm) from 30 monitoring stations
equipped with different sensors. Fourteen stations were located in the five main inflowing



Sensors 2021, 21, 3954 4 of 18

rivers, and the corresponding data were included in the calculation process to improve the
estimations. DO concentrations were measured using a Hatch luminescent DO sensor and
were transferred via SODA (SODA open data autonomy) telemetry to a central database.
The water quality parameters, which were collected by monitoring centers, were quality
controlled and then sent to the server through GPRS.

Previous studies predicted DO levels using several environmental and meteorological
variables as inputs [16,24,37,38]. However, the conclusions were inconsistent due to varia-
tions in the study area and spatiotemporal scales. For example, Heddam [39] found that
high accuracy can be obtained for DO estimations by using only water temperature (WT)
as the input variable. Researchers have also used other variables, such as pH, chlorophyll-a
(Chl-a), and humidity. Rankovic et al. [20] indicated that WT and pH have the greatest
effects on the DO concentration. Najah et al. [40] demonstrated that water pH, as an input
variable, had a very limited influence on the performance of DO prediction models in Johor,
Malaysia. Li et al. [41] showed that changes in DO are mainly affected by meteorological
variables, such as atmospheric temperature (AT), atmospheric pressure (AP), and precipita-
tion (Pre). Researchers also found that among the considered variables, WT has the highest
correlation with DO [8]. In this study, the correlations among environmental factors and
DO were estimated by using Spearman’s rank method. The candidate factors included WT,
pH, Chl-a, EC, AT, AP, and precipitation (Pre). The Chl-a concentration was derived based
on Landsat-8 OLI using the following formula [42]:

Chl − a = 124.3× (B4)2 + 15.28× B4 + 0.914, R2 = 0.846

The surface water temperature can be retrieved with a satellite-based remote sensor
that detects thermal radiation (3–5 and 8–14 µm wavebands) emitted from the upper
0.1 mm of the water surface [43,44]. Since the water volume of Poyang Lake fluctuates
seasonally, thermal remote sensing of WTs can be applied to provide the boundary of the
water body in different months. The satellite-derived lake water surface temperatures
used in this study were provided by the European Space Agency (ESA) Lakes Climate
Change Initiative (Lakes-cci) project [45]. Figure 2 displays the water body boundary in
the summer months (taking July and August as two examples).

Figure 2. The Poyang Lake boundary obtained using satellite-derived lake water surface tempera-
tures in July and August.
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3. Methods
3.1. HASM

According to the theory of the differential geometry of surfaces, a surface can be
uniquely determined by its first and second fundamental coefficients [46,47]. The first
fundamental coefficients of a surface, z = f (x, y), are expressed as

E = 1 + f 2
x , F = fx · fy, G = 1 + f 2

y ,

and they reflect geodesic curvature, curve length, and other intrinsic geometric information.
The second fundamental coefficients characterize the local structures of the surface and are
expressed as [48,49]

L =
fxx√

1 + f 2
x + f 2

y

, M =
fxy√

1 + f 2
x + f 2

y

, and N =
fyy√

1 + f 2
x + f 2

y

.

Based on the theorem of surfaces, a surface can be obtained by solving the Gaussian
equation set based on the condition that the first and second fundamental coefficients
satisfy this equation set [47]. The assumption of HASM is that the spatial distribution
of the predictor is deemed a surface that can be obtained by solving Gaussian equations.
Therefore, the main equations of HASM are the following Gaussian equations:

fxx = Γ1
11 fx + Γ2

11 fy +
L√

E+G−1
fyy = Γ1

22 fx + Γ2
22 fy +

N√
E+G−1

fxy = Γ1
12 fx + Γ2

12 fy +
M√

E+G−1

, (1)

where fx, fy, fxx, and fyy are the first and second partial derivatives of the graph z = f (x, y)
with respect to the x and y directions, respectively.

Let
{(

xi, yj
)∣∣0 ≤ i ≤ I + 1, 0 ≤ j ≤ J + 1

}
be the calculation grids and h be the grid

spacing. The finite discrete schemes of fx, fxx, fy and fyy can be given as

( fx)(i,j) ≈


f1,j− f0,j

h i = 0
fi+1,j− fi−1,j

2h i = 1, · · · , I,
f I+1,j− f I,j

h i = I + 1

( fxx)(i,j) ≈


f0,j−2 f1,j+ f2,j

h2 i = 0
fi−1,j−2 fi,j+ fi+1,j

h2 i = 1, · · · , I
f I+1,j−2 f I,j+ f I−1,j

h2 i = I + 1

( fy)(i,j) ≈


fi,1− fi,0

h j = 0
fi,j+1− fi,j−1

2h j = 1, · · · , J,
fi,J+1− fi,J

h j = J + 1

( fyy)(i,j) ≈


fi,0−2 fi,1+ fi,2

h2 j = 0
fi,j−1−2 fi,j+ fi,j+1

h2 j = 1, · · · , J
fi,J+1−2 fi,J+ fi,J−1

h2 j = J + 1

The first partial derivatives fx and fy represent the variations in the predictor in the
x and y directions, respectively, and the second partial derivatives fxx and fyy denote the
slope and direction of the variations in the predictor in the x and y directions, respectively.
fxy is the mixed partial derivative and represents the cross-slope of the change in the x and
y directions.
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( fxy)(i,j) ≈



f1,1− f1,0− f0,1+ f0,0
h2 i = 0, j = 0

f1,J+1− f1,J− f0,J+1+ f0,J
h2 i = 0, j = J + 1

f1,j+1− f0,j+1− f1,j−1+ f0,j−1
2h2 i = 0, j = 1, · · · , J

f I+1,1− f I,0− f I,1+ f I+1,0
h2 i = I + 1, j = 0

f I,J− f I+1,J− f I,J+1+ f I+1,J+1
h2 i = I + 1, j = J + 1

f I+1,j+1− f I,j+1− f I+1,j−1+ f I,j−1
2h2 i = I + 1, j = 1, · · · , J

fi+1,1− fi+1,0− fi−1,1+ fi−1,0
2h2 i = 1, · · · , I, j = 0

fi+1,J+1− fi+1,J− fi−1,J+1+ fi−1,J
2h2 i = 1, · · · , I, j = J + 1

fi+1,j− fi+1,j−1− fi−1,j+1−2 fi,j+ fi,j−1+ fi,j+1+ fi−1,j
2h2 i = 1, · · · , I, j = 1, · · · , J.

The Christoffel symbols (Γ1
11, Γ2

11, Γ1
22, Γ2

22) are shorthand notations for various func-
tions associated with second derivatives [49] and here depend only on the first fundamental
coefficients and their derivatives:

Γ1
11 = 1

2 (GEx − 2FFx + FEy)(EG− F2)
−1, Γ2

11 = 1
2 (EFx − 2EEy + FEx)(EG− F2)

−1,
Γ1

22 = 1
2 (2GFy − 2GGx + FGy)(EG− F2)

−1, Γ2
22 = 1

2 (EGy − 2FFy + FGx)(EG− F2)
−1

Γ1
12 = 1

2 (GEy − FGx)(EG− F2)
−1, Γ2

12 = 1
2 (EGx − FEy)(EG− F2)

−1.

The differential Equation (1) can be converted into the following finite difference
equations by applying Taylor expansions with finite difference schemes:

f n+1
i+1,j−2 f n+1

i,j + f n+1
i−1,j

h2 = (Γ1
11)

n
i,j

f n
i+1,j− f n

i−1,j
2h + (Γ2

11)
n
i,j

f n
i,j+1− f n

i,j−1
2h +

Ln
i,j√

En
i,j+Gn

i,j−1

f n+1
i,j+1−2 f n+1

i,j + f n+1
i,j−1

h2 = (Γ1
22)

n
i,j

f n
i+1,j− f n

i−1,j
2h + (Γ2

22)
n
i,j

f n
i,j+1− f n

i,j−1
2h +

Nn
i,j√

En
i,j+Gn

i,j−1

f n+1
i+1,j− f n+1

i+1,j−1− f n+1
i−1,j+1−2 f n+1

i,j + f n+1
i,j−1+ f n+1

i,j+1+ f n+1
i−1,j

2h2 = (Γ1
12)

n
i,j

f n
i+1,j− f n

i−1,j
2h + (Γ2

12)
n
i,j

f n
i,j+1− f n

i,j−1
2h +

Mn
i,j√

En
i,j+Gn

i,j−1

(2)

where

(Γ1
11)

n
i,j =

Gn
i,j(En

i+1,j − En
i−1,j)− 2Fn

i,j(Fn
i+1,j − Fn

i−1,j) + Fn
i,j(En

i,j+1 − En
i,j−1)

4(En
i,jG

n
i,j − (Fn

i,j)
2)h

,

(Γ2
11)

n
i,j =

2En
i,j(Fn

i+1,j − Fn
i−1,j)− En

i,j(En
i,j+1 − En

i,j−1)− Fn
i,j(En

i,j+1 − En
i,j−1)

4(En
i,jG

n
i,j − (Fn

i,j)
2)h

,

(Γ1
22)

n
i,j =

2Gn
i,j(Fn

i,j+1 − Fn
i,j−1)− Gn

i,j(G
n
i+1,j − Gn

i−1,j)− Fn
i,j(G

n
i,j+1 − Gn

i,j−1)

4(En
i,jG

n
i,j − (Fn

i,j)
2)h

,

(Γ2
22)

n
i,j =

En
i,j(G

n
i,j+1 − Gn

i,j−1)− 2Fn
i,j(Fn

i,j+1 − Fn
i,j−1) + Fn

i,j(G
n
i+1,j − Gn

i−1,j)

4(En
i,jG

n
i,j − (Fn

i,j)
2)h

(Γ1
12)

n
i,j =

Gn
i,j(En

i+1,j − En
i−1,j)− Fn

i,j(G
n
i+1,j − Gn

i−1,j)

4(En
i,jG

n
i,j − (Fn

i,j)
2)h

,

and

(Γ2
12)

n
i,j =

En
i,j(G

n
i+1,j − Gn

i−1,j)− Fn
i,j(En

i,j+1 − En
i,j−1)

4(En
i,jG

n
i,j − (Fn

i,j)
2)h

.
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Constraint conditions are added to Gaussian Equation (2) to guarantee that the sim-
ulated value at the l sampled location (xi,yj) in the calculation domain is equal to or
approximates the observation f i,j in the corresponding grid. Therefore, the mathematical
formula of HASM is given by

min‖

 A
B
C

zn+1 −

 d
q
p

n

‖
2

s.t.Sz(n+1) = k

(3)

where each element of the vector z denotes the estimated value of the grid; the constraint
equation Sz = k indicates that the predictor estimation is equal to the observation at each
station location. If there are m stations in the computational region, the matrix S can be
given as

S =


0 · · · 0 0 1 0 · · · 0 · · · 0
0 1 0 0 · · · · · · · · · 0 · · · 0
...

...
...

...
...

...
...

...
...

...
0 · · · 0 0 0 · · · 0 1 · · · 0


m×(M×N)

where M = I + 2 and N = J + 2 are the grid numbers in the x and y directions, respectively.
The number of rows in the matrix S is equal to the station number m. If the lth station has a
DO concentration of f i,j and is located in the ith row and jth column in the computational

grid, then S(l, (i− 1) · N + j) = 1, k(l) = f i,j.
By applying the Lagrange multiplier method, the HASM Equation (3) can be written as

Azn+1 = b
n

(4)

where A = AT A + BT B + CTC + λ2STS is a symmetric and positive definite matrix and
b = ATd+ BTq+CT p+λ2STk. The Lagrange parameter λ is the weight of the observations.
A small value of λ is given in areas with large DO variations. By setting the initial value
z(0) and constructing the constraint equation Sz = k using station observations, the surface
modeling of climate variables can be performed by HASM.

3.2. HASM_MOD

A disadvantage of HASM is the lack of consideration of the background information
associated with predictors while only considering the station observations and their spatial
autocorrelation. In this section, a HASM-based method was developed to estimate the
spatial distribution of DO by introducing a drift term, which integrates the explanatory
variables by using geographically weighted regression (GWR) in the model. The main
equation of HASM_MOD is as follows:

min
z

∥∥∥Az− b
∥∥∥

2
+ β

∥∥∥z−_
z
∥∥∥

2
(5)

From a mathematics perspective, the term
∥∥∥z−_

z
∥∥∥

2
can be seen as a regularization

penalty term for
∥∥∥Az− b

∥∥∥
2

and can be referred to as L2 regularization. However, L1
penalty methods often outperform L2 penalty methods, especially when irrelevant features
are present in

_
z [50]. Therefore, we use L1 regularization in this study. Replacing the drift

term in (5) with the L1 norm yields the following expression:

min
z

∥∥∥Az− b
∥∥∥

2
+ β

∥∥∥z−_
z
∥∥∥

1
(6)
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where
_
z = GWR(DO, x1, x2, · · · , xn); x1, x2, · · · , xn represent the auxiliary variables that

are correlated with DO levels, such as water temperature and pH; z is an estimate of DO;
and β is a regularization parameter. The split Bregman iteration was used to solve the
optimization problem (6) [51,52]. The solution process is given as follows:

For H(z) =
∥∥∥Az− b

∥∥∥
2

and Φ(z) =
∣∣∣z−_

z
∣∣∣, formula (6) can be rewritten as

min
z

H(z) + βΦ(z) (7)

Additionally, with d = Φ(z), problem (7) can be converted to

min
z,d

H(z) + β|d| , s.t. d = Φ(z)) (8)

Then, this problem can be modified to obtain

argmin
u,d

H(u) + β|d|+ α

2
‖d−Φ(z)‖2

2 (9)

The optimization Equation (9) can be solved by using the following alternating itera-
tive method: 

z(n+1) = argmin
z

H(z) + α
2

∥∥∥d(n) −Φ(z)− b(n)
∥∥∥2

2

d(n+1) = argmin
d

β|d|+ α
2

∥∥∥d−Φ(z(n+1))− b(n)
∥∥∥2

2

b(n+1) = b(n) + Φ(z(n+1))− d(n+1)

where z can be resolved by using the Gauss–Seidel algorithm and d can be resolved by

d(n+1) = shrink(Φ(z(n+1)) + b(n),
1
α
) (10)

where
shrink(x, y) =

x
‖x‖ ·max(‖x‖ − y, 0).

The optimal value of α can be obtained through sensitivity experiments, and β can
be optimized by using the L-curve method [53]. The z result is the final estimate of the
DO concentration.

3.3. Support Vector Machine

The SVM method, which is developed based on statistical learning theory, has been
successfully applied to classification and regression problems. The basic concept behind
SVM is to map the original datasets to higher-dimensional features of space and construct
an optimal separating plane (SP), from which the distance to all the data points is mini-
mal [54]. For training data set {(xi, yi), i = 1, · · · , n},x ∈ Rm,y ∈ R, where n is the total
number of data patterns, x is the input vector of m components, and y is the corresponding
output value, the SVM regression function can be expressed as follows:

f (x) = θ ·φ(x) + e (11)

where θ is the weight vector, e is the bias, and φ(x) indicates the nonlinear transfer function.
The parameters θ and e, which define the location of SP, can be determined by minimizing
the following regularized risk function:

min
1
2
‖θ‖2 + β

n

∑
i=1

(ξi + ξ∗i ) (12)
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subject to yi − θ · φ(x)− e ≤ ε + ξi θ · φ(x) + e− yi ≤ ε + ξi
∗, ξi ≥ 0, ξi

∗ ≥ 0, where β is
the regularization parameter, ξi and ξi

∗ are slack variables, and problem (12) is solved in a
dual form using the Lagrangian multipliers.

max− 1
2

n

∑
i=1

n

∑
j=1

(ci − c∗i )(cj − c∗j )K(xi, xj)−
n

∑
i=1

(ci − c∗i ) +
n

∑
i=1

(ci − c∗i )yi (13)

subject to
n
∑

i=1
(ci − c∗i ), 0 ≤ ci ≤ C, 0 ≤ c∗i ≤ C. K(xi, xj) is the kernel function.

By imposing the Karush–Kuhn–Tucker (KKT) optimality condition, θ∗ is obtained,
that is,

θ∗ =
n

∑
i=1

(ci − c∗i ) · K(xi, x) (14)

Finally, the SVM is expressed as follows:

f (x) =
n

∑
i=1

(ci − c∗i ) · K(xi, x) + e (15)

The radial basis function (RBF) was adopted as the kernel function of SVM in this
study [55].

3.4. Cokriging Method

Cokriging is the multivariate equivalent to kriging. The general form of the kriging
equation is

z∗(xp) =
n

∑
i=1

λiz(xi) (16)

In order to achieve unbiased estimations in kriging, the following set of equations
should be solved: 

n
∑

i=1
λiγ(xi, xj)− µ = γ(xi, x)

n
∑

i=1
λi = 1

(17)

where z∗(xp) is the estimated value at location xp, z(xi) is the known value at location xi,
λi is the weight associated with the data, µ is the Lagrange coefficient, and γ(xi, xj) is the
value of variogram corresponding to a vector with origin in xi and extremity in xj.

By using multiple datasets, cokriging is a very flexible interpolation method, allowing
the user to investigate graphs of cross-correlation and autocorrelation [17]. The general
equations of cokriging estimator are [18]

v
∑

l=1

n
∑

i=1
λilγlv(xi, xj)− µv = γuv(xj, x)

nl
∑

i=1
λil =

{
1, 1 = u
0, 1 6= u

(18)

where u and v are the primary and covariate variables, respectively.
In the cokriging method, the u and v variables are cross-correlated, and the covariate

contributes to the estimation of the primary variable. For cokriging analysis, the cross
variogram should be determined beforehand. Provided that there are points where both u
and v have been measured, the semivariogram can be estimated by [18]

γuv(h) = 2
1

N(h)

N(h)

∑
i=1
{zu(xi)− zu(xi + h)}{zv(xi)− zv(xi + h)} (19)
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The cokriging was implemented by using the “Geostatistical Analyst” tool in ArcGIS
software, which can automatically optimize the parameters based on the input datasets.

3.5. Performance Assessment of the Methods

In this study, the performance of HASM_MOD was assessed by using a cross-validation
method, namely the leave-one-out cross-validation, in which each observation was consid-
ered as the validation set and the remaining observations were considered as the training
set [56]. Three commonly used evaluation indicators, namely the mean absolute error
(MAE), root-mean-square error (RMSE), and coefficient of determination (R2), were used
to compare the performance of different methods. MAE can accurately reflect the actual
simulation error, as it can measure the difference between simulations and observations.
The RMSE indicates the fit of the method to the observed data. A high value indicates that
large deviations exist between the fitted values and the observations. R2 reflects how well
the model fits the observed data and typically gives the percentage of the variation in a
variable that can be explained by the model.

R2 = (
∑N

i=1 (pi − p)(oi − o)√
∑N

i=1 (pi − p)2 ∑N
i=1 (oi − o)2

)2

MAE =
1
N
|pi − oi|

RMSE =

√
1
N ∑

i=1,··· ,N
(pi − oi)

2

where oi is the observation value at the ith point (xi, yi), pi is the estimate, p = 1
N ∑N

i=1 pi,
o = 1

N ∑N
i=1 oi, and N is the number of test points.

4. Results

The relationships between the candidate factors and the DO level were investigated
by using Spearman’s rank method with a significance level of 1%. In this study, we first
took July and August in the wet season as examples. In July, the candidate inputs, namely
WT, PH, Chl-a, and Pre, were significantly correlated with DO, and the corresponding
Spearman rho values were−0.58, 0.45, 0.52, and 0.83, respectively. In August, the candidate
factors WT, Chl-a, AP, and Pre were strongly correlated with DO, and the corresponding
Spearman rho values were −0.64, 0.47, 0.57, and 0.52, respectively. Finally, according to the
results of Spearman’s rank method among the candidate factors, the explanatory variables
related to the DO concentration in July included WT, PH, Chl-a, and Pre, and the most
relevant environmental variables for DO in August included WT, Chl-a, AP, and Pre.

A comparison of the simulated and observed values based on cross-validation is
shown in Table 1; notably, HASM_MOD performs the best in July and August. The MAEs
of the prediction results of HASM_MOD, HASM, the SVM, and cokriging are 0.14, 0.22,
0.27 and 0.39, respectively, in July, and 0.22, 0.30, 0.41, and 0.30, respectively, in August.
Thus, according to the MAE, HASM_MOD performs best, followed by HASM in July;
however, in August, cokriging performs better than HASM according to the MAE and
RMSE. The RMSE values for HASM_MOD were 28%, 46%, and 42% lower than those of
HASM, the SVM, and cokriging in July and August on average. From the fitting effect
(R2), HASM_MOD gives the best results, followed by HASM, while the performance of
cokriging and the SVM varies in different months.
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Table 1. Modeling evaluation indices using the cross-validation method.

Month July August

Error MAE RMSE R2 MAE RMSE R2

Cokriging 0.39 0.45 0.93 0.30 0.32 0.96
SVM 0.27 0.31 0.96 0.41 0.47 0.83

HASM 0.22 0.24 0.98 0.30 0.34 0.97
HASM_MOD 0.14 0.17 0.99 0.22 0.25 0.97

Figure 3 displays the distribution of DO in Poyang Lake in July based on the HASM_MOD,
HASM, cokriging, and SVM methods. The HASM results display localized patterns
with large DO concentrations surrounded by low values in the lake. The HASM_MOD,
cokriging, and SVM results exhibit similar patterns, with large values found in the north
and low values in the southeast. Although HASM_MOD, cokriging, and the SVM yield
similar patterns, large differences exist in some local areas, such as in the middle of the
lake. Compared with the observations obtained from 18 stations located in the lake and
along the surrounding boundary, the results of HASM_MOD were better than those of
cokriging and the SVM (Figure 3a,b,d); cokriging and the SVM tended to underestimate
the DO concentrations, especially in the southern part of the lake. The HASM results
seem to generally fit the actual observations, but there are some oscillations, especially
near the station locations; these variations may be due to the equation systems used in
HASM. Furthermore, with data from 11 stations located in the lake, the results of different
methods were validated through cross-validation. The scatter correlation plots of the
observed and simulated values in July (Figure 4) also suggest that HASM_MOD estimated
DO concentrations reliably, with an R2 of 0.97; this value was 7%, 13%, and 17% higher
than those for HASM, the SVM, and cokriging, respectively.

The performance of the methods in August is displayed in Figure 5. Obvious differ-
ences existed among the spatial patterns of DO concentrations resulting from different
methods. Compared with the 18 station observations, the results of HASM_MOD were
generally best. Cokriging tended to underestimate the actual values in some local areas,
and the SVM exhibited overestimations in most parts of the lake (Figure 5a,b). Compared
with HASM, HASM_MOD performed better at station locations (Figure 5c,d). Figure 6
illustrates the relationship between the observations of 10 stations located in the lake and
the corresponding estimated values. The SVM performed the worst, with an R2 of 0.43, and
the HASM_MOD results displayed the best agreement with site observations (Figure 6d),
followed by cokriging, with an R2 of 0.83.

We also compared the accuracy of the estimated values and real observations at two
stations from January 2015 to December 2017. The sites selected were the Sanshan station
located in the middle of the lake and the Outlet_A station located at the outlet of Poyang
Lake. Figure 7 shows the simulated DO concentrations at Sanshan station by using the
cross-validation method. The predictions obtained from HASM_MOD are closer to the
observations than the estimates of the other three methods and have lower prediction errors
(Table 2). Large biases between the simulated and observed values were found for HASM
and the SVM (Figure 7), with RMSE values of 0.37 and 0.36, respectively. HASM_MOD
performed better than cokriging, the SVM, and HASM, with MAE reductions of 25%, 42%,
and 38%, respectively. The SVM produced the worst results according to the MAE, and
HASM yielded the worst results in terms of the RMSE and R2, indicating that HASM tends
to produce outliers.
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Figure 3. Spatial distribution of DO in Poyang Lake in July using different methods: (a) cokriging;
(b) the SVM; (c) HASM; (d) HASM_MOD.

Figure 4. Observed and estimated DO in July from (a) cokriging, (b) the SVM, (c) HASM, and
(d) HASM_MOD.
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Figure 5. Spatial distribution of DO in Poyang Lake in August using different methods: (a) cokriging;
(b) the SVM; (c) HASM; (d) HASM_MOD.

The monthly averages versus observed values at the Outlet_A station from 2015–
2017 are shown in Figure 8. Large biases between the observations and estimates can
be observed for HASM and cokriging, with maximum biases of 0.89 and 0.88 mg/L,
respectively. Cokriging performed the worst; the SVM outperformed HASM based on
the RMSE and R2, and HASM performed better than the SVM according to the MAE.
HASM_MOD performed the best, with the MAE of 0.17 mg/L, RMSE of 0.20 mg/L, and
R2 of 0.93 (Table 2). According to the MAE, the accuracy of HASM_MOD was 37%, 48%,
and 59% higher than the accuracies of HASM, the SVM, and cokriging, respectively.
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Figure 6. Observed and estimated DO in August from (a) cokriging, (b) the SVM, (c) HASM, and
(d) HASM_MOD.

Figure 7. Comparison of the results of different methods with the observations at Sanshan station
from January 2015 to December 2017.

Figure 8. Comparison of the results of different methods with the observations at the Outlet_A
station from January 2015 to December 2017.



Sensors 2021, 21, 3954 15 of 18

Table 2. Errors obtained with different methods.

Station Outlet A Sanshan

Error MAE RMSE R2 MAE RMSE R2

Cokriging 0.41 0.47 0.72 0.24 0.27 0.88
SVM 0.33 0.34 0.82 0.31 0.36 0.86

HASM 0.27 0.37 0.78 0.29 0.37 0.77
HASM_MOD 0.17 0.20 0.93 0.18 0.20 0.93

5. Discussion

To obtain highly accurate estimates of DO in the lake, a model based on HASM was
proposed in this study. Previous studies have indicated that a PDE-based method could
be effective in reducing the uncertainty in environmental variable simulations [28,57]. A
high-accuracy surface modeling (HASM) method in terms of the differential geometry of
surfaces was recently proposed, and studies have demonstrated that HASM yields good
performance in simulating some environmental variables [29–33]. To obtain improved
estimates of DO concentrations, HASM was extended in this study.

The results show that HASM produced lower MAE values and higher RMSE and
R2 values than SVM and cokriging, indicating that some outliers may exist in the HASM
results. The constraint equations in HASM based on station observations result in low
MAE values; therefore, the HASM-simulated values are approximately equal to the real
measurements at station locations. Furthermore, due to the restrictions of the constraint
equations and equation (2), which consider the spatial autocorrelation of DO by using a
finite difference scheme, the spatial patterns of DO produced by HASM oscillate, with gen-
erally accurate simulated values near station locations. The contributions of these biases of
HASM mainly lie in the input datasets and the method of solving the differential equations
(1). Although HASM takes into account the spatial autocorrelation of DO by using finite
difference schemes, it ignores the correlation between the DO and the related explanatory
variables. To eliminate the oscillation phenomenon and obtain high-accuracy DO estimates,
a regularization penalty term obtained by using the local regression method together with
some auxiliary variables related to DO was introduced in HASM; the resulting model was
called HASM_MOD. The local regression method was implemented by using GWR, which
enables the relationship between the DO concentration and the corresponding explana-
tory variables to vary by region. HASM_MOD integrates station observations by using
HASM and the explanatory variables using GWR and can produce improved results. The
results indicate that HASM_MOD is a reliable method for DO concentration prediction.
The accuracy of the HASM_MOD results was not influenced by the characteristics of the
time series. For the nonstationary time series of monthly mean DO concentrations at the
Sanshan and Outlet_A stations, HASM_MOD yields satisfying results, whereas HASM,
the SVM, and cokriging generate unreliable results, as demonstrated by the large RMSE
values. The errors of HASM_MOD were reduced due to the regularization penalty term,
which takes into account the spatial heterogeneity by integrating the explanatory variables
using GWR. Although some researchers showed that SVMs can well predict the dissolved
oxygen in aquaculture [58], the performance of SVMs was unsatisfactory in estimating the
DO concentration in Poyang Lake. This may be due to the non-optimum parameters of
SVMs and the kernel function used in this study, and studies have indicated that there is
no effective method to obtain the optimal parameter combination of SVMs accurately [38].
The accuracy of cokriging was also not satisfactory according to the cross-validation pro-
cess, which may be due to its linear nature and the failure to take into account the spatial
nonstationarity of DO concentration. Compared with that of the other three methods, the
performance of HASM_MOD was not influenced by the spatial distribution of the DO
concentration. The good performance of HASM_MOD may be due to the combined effect
of the constraint equations in HASM and the use of auxiliary variables in GWR, which
integrates the spatial autocorrelation of DO concentrations; the characteristics of spatial
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variation of the DO concentrations, such as the direction and slope of the variation; and the
local correlation between the DO concentrations and the related explanatory variables. The
results indicate that the accuracy of HASM_MOD was improved by 38%, 45%, and 42%
compared with the accuracies of HASM, the SVM, and cokriging, respectively.

With the correct selection of explanatory variables, it is possible to accurately estimate
the DO concentration in Poyang Lake by using HASM_MOD. The explanatory variables
vary with time scale, and in this study, we used Spearman’s rank correlation test to select
the auxiliary variables related to DO at a significance level of 1%. One of the obstacles is
the difficulty in finding the appropriate spatial and temporal scientific datasets for target
areas. Further studies can be conducted by introducing other explanatory variables and
applying remote sensing techniques. HASM_MOD is expected to yield good performance
in other areas at hourly scales, which will be investigated further in the future.

6. Conclusions

In this research, a model was built to yield highly accurate DO estimates by integrating
station observations and explanatory variables using HASM and GWR. The developed
model comprehensively considers the spatial autocorrelation of DO and correlations with
other environmental variables based on station observation constraints in terms of the
fundamental theorem of surfaces. By applying a cross-validation method, HASM_MOD
improved the accuracy of prediction, with MAE reductions of 38%, 45%, and 42% compared
with HASM, SVM, and cokriging, respectively. The proposed method provides a new way
to estimate DO concentrations with high accuracy, and this method could be successfully
applied to estimate other water quality parameters. Further work will consider additional
explanatory variables and remote sensing techniques and focus on improving predictions
of DO levels at the hourly scale.
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