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Looking at faces is always illuminating. Perhaps, this is because our faces reveal so much about

us, ranging from our evolutionary history to our embryological development, genetic endow-

ment, propensity for disease, current health status, and exposures over our lifespan. The struc-

ture of our faces may even reveal insights into our personalities—an idea that stretches back to

the ancient Greeks. The face is a complex constellation of parts serving functions as diverse as

sight, hearing, smell, breathing, nourishment and digestion, protection, and communication.

Despite our collective fascination, we still have limited understanding of the molecular

machinery that controls how our faces form or how morphological variation in facial features

arises, from the typical and often subtle differences that endow each of us with our unique

facial appearance to the rare craniofacial malformations seen in the clinic. However, we are

making incredible progress in these areas, and the pace of discovery is poised to accelerate rap-

idly, facilitated by the emergence of high-throughput experimental methods, advances in

computational modeling, and the investment and availability of large-scale craniofacial data

resources, (e.g., the FaceBase Consortium).

In recognition of these advances, PLOS Genetics invited us to put together a special collec-

tion on the theme of craniofacial genetics. This collection was not meant to be exhaustive but

rather a curated selection of published papers covered in PLOS journals deemed (by us) to be

particularly germane. Thus, the selection is, by its nature, highly subjective, reflecting our par-

ticular areas of interest: craniofacial morphogenesis, dysmorphology and syndromes, and nor-

mal human facial variation.

The genes and pathways controlling craniofacial morphogenesis:

Zebrafish as a model

The zebrafish has emerged as a potent addition to the traditional mouse model for studies of

craniofacial morphogenesis. The main features include external development and optical

transparency, which both facilitate imaging of live embryos and amenability to forward and

reverse genetic methods. Also, the zebrafish larval face is simpler than that of a newborn

human at the time feeding begins [1]. Many of the mechanisms governing early growth and

patterning of the face are shared across all vertebrates. Although there are unique structures in

zebrafish, mice, and humans, fundamental cellular processes are conserved. For instance, con-

vergence of frontonasal and maxillary neural crest occurs analogously in the formation of the

mammalian hard palate and the zebrafish ethmoid plate. The soft palate, separating the nasal

cavity and the oral cavity in mammals, is absent in zebrafish. Nonetheless, zebrafish may still
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be useful in studying genetic underpinnings of cleft (soft) palate, as the gene regulatory net-

works governing differentiation of relevant tissues are similar between zebrafish and mammals

[2]. Exemplifying this point, the gene regulatory network governing differentiation of the

mammalian superficial oral epithelium (oral periderm), where a large subset of genes associ-

ated with risk for cleft palate are expressed, has many shared features with that of zebrafish

periderm [3–6]. This means that many insights into zebrafish development, gleaned from its

impressive experimental toolkit, will be relevant to the development of the mammalian face

and, in some cases, to the genetic underpinnings of orofacial clefting.

The external development and transparency of zebrafish embryos permits exquisite imag-

ing by high-resolution confocal microscopy. One application is fate mapping using photo-con-

vertible dyes [7]. Reporters built from the regulatory elements of appropriate genes have been

used extensively to mark all neural crest cells [8,9], and, more recently, subsets of them that are

differentiated as chondrocytes [10] or bone [11]. Use of such tools, and vital dyes, in normal

animals has enabled the study of changes in cell organization that occur as a stream of cranial

neural crest converts into a skeletal element of precise size and shape [11]. Similar analyses in

mutants permit identification of the exact steps that go awry, facilitating identification of the

underlying cellular defects [12]. Another potent application of imaging is the development of

reporter lines that reveal a response to particular extracellular signals relevant to craniofacial

patterning, including BMPs [13], FGFs [14], WNTs [15], and Hedgehog [16]. These tools per-

mit investigations that would be much harder to carry out in mice.

Another experimental strength of zebrafish is that they are well suited to forward genetic

screens, a potent method to identify genes involved in craniofacial development, including of

the face. Even in an era where targeted mutagenesis is becoming increasingly efficient, random

mutagenesis screens make an important contribution because they can yield alleles that would

never be generated intentionally. Hypomorphic alleles can reveal a function in craniofacial

morphogenesis for a gene product in which a total loss of function allele leads to death prior to

craniofacial development. Morphology-based screens in the late 1990s revealed more than 80

mutants (as complementation groups) with grossly defective head shape [17–20]. Molecular

characterization of mutants from these screens and subsequent ones that evaluated subtler

phenotypes based on gene expression and histology revealed a large number of genes previ-

ously shown to be essential for development of the mammalian face, showing that these path-

ways are conserved. Excitingly, such efforts have also identified several genes not previously

implicated in craniofacial development. Such genes include histone variant H3.3 [21], Rabcon-

nectin-3a [22], and Hdac1 [23]. These genes are likely to be important for mammalian facial

development as well. There is no reason to think such screens have been saturated, and addi-

tional, more elaborate reporter-based screens may reveal genes missed in earlier screens.

Zebrafish are also useful for loss-of-function studies; until recently, this was most frequently

achieved by antisense morpholinos but increasingly by targeted mutagenesis mediated by clus-

tered regularly interspersed short palindromic repeats (CRISPR)/Cas9 [24]. There is debate in

the field regarding why the phenotypes induced by morpholinos and those induced by targeted

mutagenesis are frequently not congruent, with the latter often less severe. One possibility is

that the morphant phenotype is an artifact from an off target effect [25]; another is that tar-

geted mutagenesis, but not morpholinos, induces a compensatory mechanism [26, 27]. Cur-

rently, a conservative approach is to use morpholinos only when they phenocopy a mutant

[28]. More than 30 genes associated with craniofacial disorders also result in craniofacial dys-

morphogenesis in zebrafish [1,29]. In many cases, confirmation of the morpholino oligonucle-

otide-induced phenotype in a targeted mutant remains to be achieved. Once it has been, the

exquisite imaging methods available in zebrafish should permit relatively facile discovery of

the function of each of these genes in craniofacial development.
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The genetics of craniofacial malformations and syndromes

Over the last 15 years, we have witnessed a dramatic increase in gene discovery for all manners

of craniofacial phenotypes due to the development and application of high-throughput geno-

mic technologies. Beginning in 2005, genome-wide association studies (GWAS) have pro-

duced strong evidence that common DNA sequence variants influence risk of common traits

and diseases. The first application of GWAS to craniofacial phenotypes came in 2009 with

back-to-back publications on nonsyndromic orofacial clefts (OFCs) [30,31]. Additional

GWAS have been published at a consistent rate, collectively identifying over 25 risk loci across

diverse population groups [32–43]. The more recent application of next-generation sequenc-

ing (NGS) technology welcomed rapid gene discovery for rare diseases, including those with

extreme rarity, clinical heterogeneity, and those without strong family history that were not

amenable to linkage. The major contribution of GWAS and discovery of etiological mutations

by NGS has been the identification of novel candidate genes and new hypotheses about the

mechanisms contributing to craniofacial development; these discoveries complement the

insights gained from forward genetic screens in zebrafish mentioned above.

Novel findings for both common and rare craniofacial disorders have provided new etiologi-

cal hypotheses and new insights into craniofacial phenotypes but also present new challenges

for research. First, the discovery of new candidate genes has outpaced the functional studies

required to understand the cellular and molecular mechanisms for both common and rare dis-

eases. This is especially true for etiological variants occurring in noncoding regulatory parts of

the genome, which we know considerably less about and for which we lack robust bioinformatic

tools for annotation. Second, both GWAS and NGS have revealed a complexity to phenotypic

presentations. For GWAS, identified loci may act broadly on the craniofacial complex, while

others have very precise effects. In the example of OFCs, the FOXE1 locus on 9q22 increases

risk for all types of OFCs (including cleft palate only) [34, 44], whereas the GREM1 locus on

15q13 appears to have specificity for cleft lip and palate [45]. For rare diseases, NGS has clarified

unusual presentations of syndromes. In some cases, sequencing reveals multiple, independent

molecular diagnoses in individuals previously thought to have a novel or new variation of a sin-

gle syndrome. As a result, we foresee a growing list of genes in which genetic variants contribute

to multiple diseases, including syndromic and nonsyndromic forms of craniofacial disorders,

leading to new questions as to the mechanisms by which certain genotypes lead to observed

phenotypes. Addressing these questions will require continued detailed phenotyping, large-

scale genotyping and sequencing efforts, the development of new methods to identify genetic

modifiers or interactions, and high-throughput functional assays in model systems.

The complex genetics underlying normal-range human

craniofacial morphology

Subtle variations characterize virtually every aspect of human facial morphology, the combina-

torial possibilities resulting in a seemingly endless diversity of facial forms. The suggestion has

been made that human faces are indeed more variable than the faces of other species and com-

pared to other parts of our body [46]—a fact with potential evolutionary implications. It is

therefore remarkable that so little is known about the biological factors underlying “normal-

range” facial variation. There is no doubt that our genes play a major role; plain evidence for

this can be found in the strong facial resemblance among members of our own families. More

formally, we know from twin studies which aspects of our facial morphology are most and

least heritable [47]. The genetic basis of human facial malformations and syndromes (dis-

cussed above) provides yet another line of evidence indicating the critical role of genes in shap-

ing the human face.
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The effort to identify the genes that influence normal-range facial phenotypes is important

for several reasons. First, our understanding of how genes orchestrate facial morphogenesis is

incomplete (discussed above). Gene mapping studies can provide developmental and cell biol-

ogists with new candidates for investigation (which genes to focus on). Moreover, such studies

can reveal which aspects of facial morphology are likely to be impacted by specific variants and

therefore the cell populations and tissues in which to look for effects. Second, an improved

understanding of the genetic basis of normal-range variation can help elucidate the etiology of

craniofacial malformations. Many craniofacial disorders are characterized by highly variable

phenotypic expression. In Treacher Collins syndrome, for example, the same TCOF1 mutation

can impact the face with dramatically different levels of severity [48]. Such phenotypic variabil-

ity may be due to the impact of many other normally functioning genes that influence how the

face grows acting either independently or interactively with the mutated gene (and environ-

mental factors) to produce a final outcome. Third, in the future, it may be possible to use infor-

mation gleaned from facial gene mapping studies to create predictive models of facial features.

We are not able to do this yet, but one can imagine the potential applications: recreating faces

from DNA harvested from the bones of ancestors or left at a crime scene or residing in a geno-

mic data repository like dbGaP, having the ability to predict an unborn child’s face or the face

of a distant relative, or incorporating a patient’s genomic data into treatment planning at the

orthodontist. Exploring such ideas is exciting but in many cases will be associated with impor-

tant ethical and privacy implications.

The first genetic studies of normal-range human facial features were focused on candidate

genes implicated in craniofacial syndromes or from transgenic mouse models with severe

facial phenotypes [49–52]. Several of these early studies were featured in PLOS journals. The

eventual emergence of large data sets containing both facial images—which allow facial mor-

phology to be quantified in various ways—and dense genomic markers accelerated the pace of

discovery by allowing for genome-scale analyses [53]. In 2012, the first GWAS of normal-

range human facial shape were published [54–55]; one of these seminal studies by Liu and col-

leagues [55] appeared in PLOS Genetics. Of the handful of genome-wide significant loci identi-

fied by these 2 studies, the signal at PAX3 was replicated. Common genetic variants at PAX3
were associated with the shape of the nasal root—the uppermost part of the nose located

between the eyes. This is noteworthy because mutations in PAX3 can result in Waardenburg

Syndrome Type 1, where one of the cardinal features is dysmorphology of the nasal root area.

Several subsequent GWAS have now been conducted [56–59]. Each of these studies has identi-

fied a handful of loci, many of which contained at least one strong craniofacial candidate gene,

associated with various measured facial traits. A recent study [60] using a novel data-driven

approach to measuring 3D facial images based on machine learning principles identified 38

genome-wide significant loci, 15 of which were independently replicated. A number of the 15

replicated loci contained genes that have been implicated in early craniofacial development

and in human craniofacial syndromes (e.g., TBX15, SOX9, PAX3, DLX6). An important find-

ing from this study was that the effects of genetic variants on facial morphology tend to be

highly specific, even within a single structural component like the nose. Another important

finding was that variants at these 15 loci tended to show preferential activity in human cranial

neural crest cells—a critical cell population for building the face.

As with most common traits [61], the implicated variants from the above facial GWAS tend

to reside in noncoding (regulatory) regions of the genome. For example, many variants at the

15 aforementioned facial loci were in or near enhancers known to play a role in human cranio-

facial development [60]. This makes sense because variants that regulate the expression of

intact genes—without altering the gene’s protein structure—would be expected to result in the

kind of subtle modifications that characterize normal-range facial variation. This fact raises a
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number of challenges for identifying the likely functional variants, since much of the noncod-

ing genome is still poorly characterized. Moreover, at any given locus, there may be many

related variants that show evidence of association simply due to their proximity to the true

functional variant(s). We expect this problem to only be exacerbated with the analysis of larger

cohorts, which will likely reveal many more loci. The application of newer high-throughput

functional approaches designed to probe the noncoding portions of the genome (CRISPR

Cas9-based tools; STARR-seq) will be needed here to help sort through and make sense of

these GWAS results [62].

Major breakthroughs are taking place in the area of craniofacial genetics, and we expect a

rapid acceleration of discovery over the next few years. PLOS journals have played a key role

in advancing the science, not only by providing a venue to publish cutting edge craniofacial

research—some of which is highlighted in this collection—but also by making the availability

of underlying data a key aspect and expectation of the publication process. The importance of

open access and data sharing is critical for the transparency and reproducibility of our work

and our field. These values help ensure that our scientific findings will eventually find their

way to improving people’s lives.
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