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1 Introduction

Metabolomics studies characterise biological samples and
identify metabolites.[1] To investigate the small molecule
complement of organisms, liquid chromatography coupled
to tandem mass spectrometry (LC-MSn) is a routine tech-
nique commonly used. LC-MSn is applied in profiling, fin-
gerprinting, or untargeted mode[2] in a variety of areas in-
cluding environmental,[3] plant[4] , and biomedical research[5] .
Modern LC-MSn systems can detect more mass traces than
ever before thanks to high mass accuracy[6] and resolution[7]

producing complex data for every sample.
The data typically consists of mass-to-charge (m/z), time,

and intensity triplets that describe for every detected ion
mass the strength of the ion beam and the time it is de-
tected by the spectrometer. Processing and interpreting

LC-MSn data is extraordinarily difficult because of the high
dynamic range, chemical diversity, and metabolite numbers
typically found in metabolome samples. These can exceed
3000 metabolites in eukaryotic cells.[8] The partially convo-
luted, densely populated signal landscape contains system-
atic and random noise amongst true signals of varying in-
tensity and shape. Additionally, formation of ion clusters,
adducts, or fragmentation implies that many of the extract-
ed peaks or features can belong to the same compound.

Proprietary and free libraries addressing the data proc-
essing problem have been developed. These tools can be
grouped into three categories: command-line,[9,10] stand-
alone graphical user interface (GUI),[11,12] and web-based
tools,[13,14] each offering unique advantages, which are re-
viewed and discussed elsewhere.[15] However, due to the
nature of metabolomics data, processing requires complex
data analysis workflows, bundling different programs, tra-
versing parameter space, pulling in additional information
from databases, and performing statistical multivariate
analysis. Consequently, pipelines have been built concate-
nating existing tools.[16,17]

Workflow platforms such as the Konstanz Information
Miner (KNIME)[18] offer the potential for an all-in-one solu-
tion. KNIME is a workflow platform that supports a wide
range of functionality and has an active bioinformatics
community.[19,20] OpenMS,[21] another library for LC/MS data
management and analyses has recently been added to its
bioinformatics suite. Workflow-based data processing can
be described as visual programming. It has the advantage
of ease-of-use and rapid development of complex pipelines
while maintaining flexibility due to modularity.
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Here we present MassCascade and its plug-in MassCas-
cade-KNIME, a library and node-suite for stepwise LC-MSn

metabolomics data processing. We give an overview of the
architecture of the library and plug-in and discuss the ad-
vantages of a unified workflow environment.

2 Description

The core library MassCascade and the plug-in MassCas-
cade-KNIME, from here on referred to as ‘plug-in’, are writ-
ten in Java version 1.7. The open-source projects are re-
leased under GPL version 3 and are available on the project
hosting website BitBucket, including documentation:
https://bitbucket.org/sbeisken/masscascadeknime/wiki/Home

The stand-alone core library contains a collection of data
processing algorithms and a visualisation framework, which
are wrapped in the plug-in. The plug-in provides its own
workflow data model that utilises the core library for data
processing and visualisation, hence enabling workflow-
based node-wise execution and inspection of data process-
ing tasks. Details about the separate projects can be found
below.

2.1 Core Library

The core library contains methods for LC-MSn data process-
ing. Each method uses multi-threading. The core instances
passed between methods represent essential MS entities.
These are defined as follows where S (scan) is a set of m/z-
intensity pairs s at scan time t ; F (feature or ion trace) is
a triplet containing a time vector t, an intensity vector I,
and a characteristic retention time tr for a given m/z ; FS
(feature set) is a set of features F at an averaged character-
istic retention time tr, i.e. features that are believed – by
a chosen criterion such as the inner product between their
spectral vectors – to belong together.

St ¼ fs1, s2, s3, ..., smg, si ¼ ðmz,IÞ

Fmz ¼ ðt, I, trÞ

FStr ¼ Fmz1
, Fmz2

, F3, . . . , Fmzn

Each method takes a set of parameters including one or
many MS instances, applies the method’s function on the
instance, and returns a new MS instance. This way a snap-
shot of the data can be serialised to disk after any process-
ing step if required. That is essential for workflow environ-
ments, where intermediate results need to be accessible.

The library supports the HUPO PSI mzML 1.1.0 specifica-
tion,[22] superseding the older mzXML[23] and mzData[24] for-
mats, and Thermo Scientific’s RAW file format. The methods
have been optimised for centroided data. Input data
should be centroided with one of the many available file
converters such as ProteoWizard[25] or by using the imple-

mented wavelet-based centroider. On read-in, files are indi-
vidually converted in memory to an internal representation
and – optionally – serialized to disk. Smaller files can be
quickly processed in a server environment in this way given
enough memory.

The library implements methods for noise and signal fil-
tering, as well as methods for feature extraction and decon-
volution. Methods for signal identification include database
links to PubChem or MassBank, and functions for isotope,
adduct, and ion annotation. For a detailed list of imple-
mented algorithms, see section three in the Supplementary
Material. The visualisation framework allows data inspection
for the core instances. The library works stand-alone ena-
bling its use in compute intensive tasks. For local applica-
tions, a plug-in was developed to simplify its use.

2.2 KNIME Plug-In

The KNIME plug-in encapsulates the methods provided in
the MassCascade library and exposes each method to the
user as an individual node. The MS instances exchanged
between nodes are represented as data cell types that
comply with the platform’s tabular data model, hereafter
referred to as MS cells. Nodes can be configured through
their configuration dialogs, which also validate any set
method parameters. After successful execution, the result-
ing MS cells are accessible via the node’s out-port. Multiple
methods can be concatenated to build complex workflows
(Figure 1). In- and out-port compatibility is guaranteed by
different types of MS cells. Nodes can only be configured
for out-ports with MS cells of the same type as required by
the in-port.

Nodes for data visualisation are built on top of the core
library’s visualisation framework. Every MS cell can be in-
spected after every execution step, allowing results to be
scrutinized and parameters to be adjusted. Different visuali-
sation nodes work only on particular MS cell types. For ex-
ample, the Feature Viewer works only on cells of type Fea-
ture Cell. Further information about node usage and imple-
mentation of additional nodes can be found online in the
documentation of the project.

3 Results and Discussion

Using the MassCascade-KNIME plug-in, we successfully pre-
processed and identified reference samples from 58 com-
pounds – 30 in positive, 16 in negative – and 12 in both
ion modes (see section one and two in the Supplementary
Material). The files are deposited under “Metabolite Stand-
ards for the development and validation of MassCascade”,
as part of the data set MTBLS38 in the MetaboLights data-
base.[26] They, in turn, form part of a metabolomics study
on the ripening behaviour of Solanum lycopersicum
(MTBLS36), where MassCascade was used for data process-
ing, analysis, and metabolite identification. In this study,
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a feature matrix of a total of 219 samples was generated
after noise reduction, baseline correction, alignment, and
feature annotation to single out significantly different me-
tabolites between the genotypes investigated. In addition,
MassCascade enabled rapid fingerprinting of the sample
groups to remove outliers, e.g. from erroneous sample
preparation, and branching of the processing workflow to
explore the data (submission pending). In this application
note, we focus on the subset of Metabolite Standards to
highlight features of MassCascade in a straight-forward ap-
plication: identification of reference standards.

Initially, the workflow was built and tested on a single
sample to quickly explore the parameter space for every
node and find the best set of parameters. Spreadsheets in-
cluding possible adducts and the reference library were
read in for positive and negative ion mode. Once the work-
flow was set up, all samples were run through the pipeline
in batch mode where different ion modes are handled au-
tomatically. The main peaks (M + H, M–H), and, if present,
isotopes and fragments in MS1 were manually extracted
from the result list. To verify identities, the isolated signal
and retention time information were compared to a previ-
ously established, manually-curated, in-house database. See
‘metabolite_assignment’ in the Supplementary Material for
the list of identified metabolites.

We found that MassCascade is useful to automatically
narrow down the list of putative signals in the MS samples
and identify the main peak plus related peaks in the feature

sets. The correct metabolites were identified in all but two
samples. In those two samples, the peak shape of the main
peak was very narrow (3 scans) and was filtered out. The
peaks were recovered by isolating the two samples in the
workflow and running a part of it again with less stringent
scan width settings.

In contrast to OpenMS, MassCascade provides a higher
level interface more accessible to experimentalists. The
availability of two (or more) libraries for LC/MS data pro-
cessing in the same workflow environment gives users
a convenient option to harness the advantages of each li-
brary, custom tailored to their processing challenges. In
comparison, these synergetic benefits can already be seen
in the availability and use of multiple cheminformatics tool-
kits in KNIME.

Building a workflow with the MassCascade plug-in is fa-
cilitated by the input-output model of the platform. This
form of visual programming reduces the possibility of
errors and is particularly user-friendly. The implemented
methods can be re-executed and visualised quickly with
different parameters, thus, enabling data exploration, sup-
ported by generic KNIME nodes and specialized nodes
from other providers: Nodes to read comma separated
(csv) or Excel (xls) spreadsheets can be used to read lists of
contaminants for exclusion. Nodes for row-wise filtering
and other table utilities help to organise the data set. The
presence of cheminformatics plug-ins in combination with
MassCascade opens up additional synergies, e.g. by using

Figure 1. Screenshot of the workflow platform with the MassCascade plug-in loaded. The workflow reads LC-MS samples and carries out
several processing steps, represented by nodes. The window in the foreground shows ion chromatograms of features from the same com-
pound spectrum.
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managed libraries of small molecules libraries as input for
m/z identification. Another important feature of workflow
environments in general is that all workflows, their configu-
ration and even the data, can be exchanged between col-
laborators, which is extremely important for the expansion
and use of metabolomics studies.

4 Conclusions

We presented MassCascade, an open-source library for
processing LC-MSn metabolomics data, and its plug-in
MassCascade-KNIME. The Java library can be used stand-
alone or in combination with the plug-in. It comprises basic
algorithms for frequent tasks in LC-MSn data processing.
Through the plug-in, users can build complex workflows
with other KNIME nodes for chem- or bioinformatics or
with generic data analysis and visualisation tools, that go
beyond the actual MassCascade functionality.

The plug-in offers a modular, step-by-step solution for
building complex worfklows with the ability to inspect the
output of each method in between nodes. Its ease-of-use
and the ready availability of additional nodes with compli-
mentary methods for further data analysis are its key fea-
tures. Visual workflows also help in the standardisation of
data processing and analysis, much needed in the field of
metabolomics, where the diversity of instruments and vari-
ables is challenging.

Future work involves optimisation of the processing
methods in all categories and application of the library and
plug-in to complex biological studies as demonstration of
the synergistic effects of performing LC-MSn analysis in an
open workflow environment.
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