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Abstract: Microcystin-LR (MC-LR) is prevalent in water and can be translocated into soil-crop
ecosystem via irrigation, overflow (pollution accident), and cyanobacterial manure applications,
threatening agricultural production and human health. However, the effects of various input pathways
on the bioaccumulation and toxicity of MCs in terrestrial plants have been hardly reported so far. In the
present study, pot experiments were performed to compare the bioaccumulation, toxicity, and health
risk of MC-LR as well as its degradation in soils among various treatments with the same total
amount of added MC-LR (150 µg/kg). The treatments included irrigation with polluted water (IPW),
cultivation with polluted soil (CPS), and application of cyanobacterial manure (ACM). Three common
leaf-vegetables in southern China were used in the pot experiments, including Ipomoea batatas L.,
Brassica juncea L., and Brassica alboglabra L. All leaf vegetables could bioaccumulate MC-LR under
the three treatments, with much higher MC-LR bioaccumulation, especially root bioconcentration
observed in ACM treatment than IPW and CPS treatments. An opposite trend in MC-LR degradation
in soils of these treatments indicated that ACM could limit MC-LR degradation in soils and thus
promote its bioaccumulation in the vegetables. MC-LR bioaccumulation could cause toxicity to the
vegetables, with the highest toxic effects observed in ACM treatment. Similarly, bioaccumulation
of MC-LR in the edible parts of the leaf-vegetables posed 1.1~4.8 fold higher human health risks
in ACM treatment than in IPW and CPS treatments. The findings of this study highlighted a great
concern on applications of cyanobacterial manure.

Keywords: microcystin-LR; soil pollution; input pathway; agricultural plants; bioaccumulation;
degradation; phytotoxicity

Key Contribution: Application of cyanobacterial manure caused higher bioaccumulation, phytotoxicity
and human health risk from microcystin-LR.
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1. Introduction

Eutrophication and global warming favor frequent cyanobacterial blooms (CBs) in aquatic
environments, harming environment and public health [1–3]. Many genera of cyanobacteria,
e.g., Microcystis, Oscillatoria, and Nostoc can generate and then release various cyanotoxins to the
environment [4,5]. Among cyanotoxins, microcystins (MCs) arouse growing global concerns owing
to their ubiquity and high toxicity [3,6]. MCs are monocyclic heptapeptides and have more than
250 structural analogues, which can bind covalently to protein phosphatases 1 and 2A and induce
the production of reactive oxygen species (ROS), thus leading to negative ecological effects on
numerous plants and animals [7–9]. Epidemiologic studies showed that the increasing carcinoma
incidences of liver and esophagus were correlated with chronic intake of MCs-polluted water and
aquatic food [9–11]. Correspondingly, numerous studies regarding environmental fate and health
risks of MCs in aquatic environment have been conducted over the past few decades [5,8].

Concentrations of MCs in waters are normally lower than 100 µg/L, but sometimes could be
up to thousands of microgramme per litre, relying on environmental conditions and occurrence of
MCs-producing cyanobacteria [8,12]. MCs in water can enter agricultural soils and show relatively high
stability, because their cyclical heptapeptide structure is resistant to non-specific enzyme degradation,
pH changes, and high temperature [13–15]. There is thus a great possibility that agricultural soils in
the regions with frequent CBs outbreaks can be heavily polluted by MCs [12,16,17]. Our recent field
study showed that MCs were commonly detected in agricultural soils affected by CBs in southern
China, with average concentrations in the range of 3.4–15.6 µg/kg and maximum concentration up to
186.3 µg/kg [12].

MCs in soils can result in severely negative impacts on crops at perspectives of histology, cytology,
and morphology, thus decreasing their growth and yield [7,18,19]. MCs are bioaccumulative in crops,
posing a time- and concentration-dependent mode and raising a great concern on human health risks
via the food chain [12,17,20]. Concentrations of MCs in edible parts of vegetables planted in the
CBs-affected agricultural soils could be up to 382 µg/kg (fresh weight), with more than 60% of the
vegetables exhibiting moderate or high human health risk via intake [12]. In addition, MCs can pose
profound impacts on soil animals and microorganisms [21,22]. For example, microcystin-LR (MC-LR)
caused serious oxidative stresses in tissues of earthworms and greatly affected their hatchability
and survival, with medial lethal concentrations of 0.149 µg/cm and 0.460 mg/kg in filter paper test
and acute soil test, respectively [21]. MC-LR suppressed soil microbial diversity and altered the
dominant microbial genera of Exiguobacterium and Acinetobacter to Prosthecobacter, Dechloromonas,
and Agrobacterium [22]. Accordingly, there are ever-increasing concerns on bioaccumulation and toxic
effects of MCs in the soil ecosystem.

Main pathways of MCs entering soils from eutrophic waters include irrigation with polluted water
(IPW), application of cyanobacterial manure (ACM), and overflow accident [13,23,24]. It is reasonable to
expect that bioaccumulation and toxic effects of MCs vary greatly among their different input pathways
from waters to soils, considering the differences of MCs in speciation and bioavailability [1,12,13].
MCs exist mainly as intracellular speciation in cyanobacterial manure and they are not bioavailable
until their gradual release with lysis of cyanobacterial cells [12,25]. On the contrary, MCs in irrigation
water are extracellular, and they could enter soils with repetitive irrigation and continuously exhibit
bioavailability [12,16,26]. Upon overflow accident, MCs are released to soils promptly, and their
bioavailability can be weakened with microbial degradation [13,22,25]. It is necessary to understand
the bioaccumulation and toxicity of MCs in crops under different input pathways. However, to the
best of our knowledge, the information regarding whether and how the input pathways of MCs affect
their bioaccumulation in terrestrial plants and corresponding toxic effects has hardly been reported
until now.

MC-LR is among the most toxic MCs and categorized as a carcinogen in group 2B by the
International Agency for Research on Cancer [10,15]. In the present study, MC-LR was selected as
the target compound to conduct pot experiments using different treatments at the same total amount
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fortified. These treatments included IPW, cultivation with polluted soil (CPS), and ACM, which were
used to simulate various input pathways of MC-LR entering agricultural soils, i.e., irrigation, overflow
accident, and cyanobacterial manure. Three typical leaf vegetables widely planted in southern China,
namely Ipomoea batatas L. (sweet potato), Brassica juncea L. (leaf mustard), and Brassica alboglabra L.
were used in the present study. The aims of the present study were to compare the effects of three input
pathways on bioaccumulation and corresponding toxic effects of MC-LR in leaf vegetables, MC-LR
degradation in soils, and human health risks of MC-LR via consumption of the tested vegetables.
The findings of the study provided insights into how the input pathways affect bioavailability of MCs
in soil-plant ecosystem.

2. Results and Discussion

2.1. Microcystin-LR (MC-LR) Bioaccumulation in Vegetables under Various Treatments

Although quite a few papers have reported bioaccumulation of MCs in terrestrial plants [4,17,27,28],
they are hardly related to the effects of various input pathways on the bioaccumulation of MCs. In the
present study, bioaccumulation of MCs was observed in roots, stems, and leaves of the tested vegetables
under various input pathways, with MC-LR concentrations in I. batatas, B. juncea, and B. alboglabra
ranging from 0.63 to 10.7 µg/kg, 0.24 to 24.4 µg/kg and 0.1 to 15.0 µg/kg, respectively (Figure 1).
Among the input pathways, the concentrations of MC-LR in most organs of the three tested vegetables
in ACM treatment were significantly higher than those in IPW and CPS treatments (p < 0.05) up to
37.2 times, although there were comparable cases observed between ACM and IPW treatments in root
of I. batatas and leaf of B. juncea and B. alboglabra (Figure 1). ACM treatment showed generally higher
bioaccumulation of MC-LR in the vegetables than IPW and CPS. As for IPW and CPS treatments,
the former generally showed higher MC-LR bioaccumulation than the latter, with significant cases
observed in root and stem of B. juncea and root and leaf of B. alboglabra (p < 0.05, Figure 1).

Varying bioavailability and corresponding degradation capacity of MC-LR could account for the
differences in MC-LR bioaccumulation among different treatments. In ACM treatment, MC-LR is
mainly stored in cyanobacterial cells as intracellular-MCs, and the cyanobacterial cell may protect MCs
from rapid degradation in soils [12,25]. With lysis of cyanobacterial cell, MC-LR could be gradually
released and continually taken up by the vegetables, thus showing high bioaccumulation. In IPW
treatment, MC-LR exhibited as dissolved state and had relatively higher degradation capacity in
soils, but the repetitive irrigation offset MC-LR loss and made it show higher bioaccumulation in the
vegetables [12,16]. As for CPS treatment, MC-LR was subject to continuous degradation and loss once
it entered soils [21,25], thus likely displaying a lower residual content in soils and corresponding lower
bioaccumulation in the vegetables. On the other hand, MC-LR can be also metabolized in plants via a
glutathione (GSH) pathway, in which MC-LR can react with GSH and form GSH-MC-LR conjugates
via catalysis of glutathione transferase [4,26]. Depuration rates of MC-LR in lettuce and spinach were
determined at 9.5 and 8.1 µg/kg/d (dry weight), respectively [26]. In CPS treatment, MC-LR was taken
up and bioaccumulated in the vegetables, but it simultaneously underwent a depuration process.
The depuration rate of MC-LR can be close to and even exceed its uptake rate in plants with increasing
MC-LR degradation in soils, thus leading to a lower MC-LR bioaccumulation in CPS treatment. On the
contrary, the gradual release of MC-LR in ACM treatment or the repetitive input of MC-LR in IPW
treatment could maintain a higher MC-LR residual content in the soils and a corresponding greater
uptake rate in the vegetables. Therefore, although depuration process of MC-LR also occurred in
vegetables of ACM and IPW treatments, uptake rate of MC-LR can exceed its depuration rate, leading
to higher MC-LR bioaccumulation in the two treatments. Further studies should be conducted to
understand time-dependent uptake and depuration of MC-LR and corresponding mechanisms in
various terrestrial plants under different input pathways.
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LR concentration among different treatments (p > 0.05). These annotations mentioned above are no 
longer annotated hereinafter. 

2.2. Uptake and Transfer of MC-LR in Vegetables under Various Treatments 
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leaves (Figure 1). Meanwhile, MC-LR was not detected in the vegetables of control treatments 
without addition of MC-LR, denying the possibility of MC-LR uptake via leaf stomata of vegetables. 
The stomata uptake of MC-LR by the plants was also not observed even at the condition of using drip 
or spray irrigation [17,24]. Accordingly, MC-LR was absorbed mainly via the vegetable roots, with 
its subsequent translocation driven by transpiration stream [16,17]. 

Concentrations of MC-LR in the vegetables depended on species and organs of the vegetables 
and the input pathways of MC-LR. To be specific, higher MC-LR concentration in root was observed 
in B. juncea (24.4 μg/kg) than I. batatas (10.7 μg/kg) and B. alboglabra (15.0 μg/kg) in ACM treatment, 
but this trend was opposite in IPW and CPS treatments (Figure 1). Concentrations of MC-LR in the 
stems of B. juncea in ACM and IPW treatments were one order of magnitude higher than those of I. 
batatas and B. alboglabra. The MC-LR concentrations in B. juncea in CPS treatment were comparable 
with those of B. alboglabra and 3-fold lower than those of I. batatas (Figure 1). Concentrations of MC-
LR in the leaves of I. batatas were one order of magnitude higher than those of the other two 

Figure 1. Bioaccumulation of microcystin-LR (MC-LR) in different parts of three tested vegetables
upon various treatments. IPW, CPS, and ACM stand for irrigation with polluted water, cultivation of
polluted soil, and application of cyanobacterial manure, respectively. The same capital letter in each
treatment indicates no significant difference in MC-LR concentration among different vegetable parts
(p > 0.05). The same low case letter in each vegetable tissue indicates no significant difference in MC-LR
concentration among different treatments (p > 0.05). These annotations mentioned above are no longer
annotated hereinafter.

2.2. Uptake and Transfer of MC-LR in Vegetables under Various Treatments

Concentrations of MCs in roots were 1–2 orders of magnitude higher than those in stems and
leaves (Figure 1). Meanwhile, MC-LR was not detected in the vegetables of control treatments
without addition of MC-LR, denying the possibility of MC-LR uptake via leaf stomata of vegetables.
The stomata uptake of MC-LR by the plants was also not observed even at the condition of using drip
or spray irrigation [17,24]. Accordingly, MC-LR was absorbed mainly via the vegetable roots, with its
subsequent translocation driven by transpiration stream [16,17].

Concentrations of MC-LR in the vegetables depended on species and organs of the vegetables
and the input pathways of MC-LR. To be specific, higher MC-LR concentration in root was observed
in B. juncea (24.4 µg/kg) than I. batatas (10.7 µg/kg) and B. alboglabra (15.0 µg/kg) in ACM treatment,
but this trend was opposite in IPW and CPS treatments (Figure 1). Concentrations of MC-LR in the
stems of B. juncea in ACM and IPW treatments were one order of magnitude higher than those of
I. batatas and B. alboglabra. The MC-LR concentrations in B. juncea in CPS treatment were comparable
with those of B. alboglabra and 3-fold lower than those of I. batatas (Figure 1). Concentrations of MC-LR
in the leaves of I. batatas were one order of magnitude higher than those of the other two vegetables no
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matter which treatments were (Figure 1). This indicated higher translocation and bioaccumulation
capacities of MC-LR in edible parts of I. batatas, relative to B. juncea and B. alboglabra.

To quantitatively appraise the uptake and translocation of MC-LR in the tested vegetables using
various input pathways, the root concentration factor (RCF), root translation factor (RTF), and stem
translation factor (STF) were calculated, according to Equations (1)–(3) listed in Materials and Methods.
RCF values of MC-LR in the tested vegetables significantly decreased in the order of ACM > IPW > CPS
(p < 0.05, Table 1). This indicated that ACM enhanced MC-LR bioconcentration in the vegetable
roots, which was likely associated with gradual release of MC-LR and its continuous uptake by the
vegetables [12,25]. On the contrary, RTF and STF values of MC-LR in the vegetables varied little
among various input pathways of MC-LR (p > 0.05, Table 1). Accordingly, MC-LR bioaccumulation
in the vegetables in ACM was enhanced by root bioconcentration capacity rather than root/stem
translocation capacity.

Table 1. Root concentration factor (RCF), root translation factor (RTF), and stem translation factor (STF)
of MC-LR in three tested vegetables in various treatments.

Vegetable Treatment RCF RTF STF

Ipomoea batatas L. IPW 0.05 ± 0.02 Aab 0.12 ± 0.08 Ba 4.07 ± 1.54 Ba a

CPS 0.03 ± 0.01 Ba 0.21 ± 0.02 Ca 3.94 ± 0.39 Ba
ACM 0.07 ± 0.02 Ab 0.15 ± 0.03 Ba 2.87 ± 1.20 Ba

Brassica juncea L. IPW 0.03 ± 0.01 Ab 0.41 ± 0.11 Ca 0.31 ± 0.11Aa
CPS 0.004 ± 0.001 Aa 0.36 ± 0.07 Ba 1.90 ± 1.12 Ab

ACM 0.16 ± 0.02 Bc 0.25 ± 0.12 Ba 0.17 ± 0.01Aa

Brassica alboglabra L. IPW 0.06 ± 0.01 Ab 0.03 ± 0.01 Aa 2.62 ± 1.80 Ba
CPS 0.02 ± 0.01 Ba 0.02 ± 0.01 Aa 2.73 ± 0.80 ABa

ACM 0.19 ± 0.02 Bc 0.03 ± 0.01 Aa 1.03 ± 0.45 ABa
a The same small letters in each factor of one vegetable under different treatments or the same capital letters in each
factor of one treatment using different vegetables indicate no significant differences (p > 0.05).

Compared with RCF value, RTF and STF values of each vegetable were generally one and
two orders of magnitude higher, respectively (Table 1). The recent field study also showed high
bioconcentration factors (3.8–23.4) of MCs in edible parts of various leaf vegetables including celery,
lettuce, cabbage, and garlic chives [12]. These indicated MC-LR could be readily translocated into
the edible parts of leaf vegetables once it was absorbed by the vegetable roots. Consequently, root
uptake acted as a key factor determining MC-LR bioaccumulation in the leafy vegetables, which
explained higher MC-LR bioaccumulation in ACM treatment via enhancing the root bioconcentration.
Considering the degradation of MC-LR in soils [21,25], its RCF values could be underestimated when
they were calculated with the total fortified amount of MC-LR in soils based on Equation (1). Such a
calculation is still acceptable for comparing the root uptake capacity of MC-LR among different input
pathways. This is because complex and varying biochemical processes of MC-LR happen after it
enters soils by different pathways. The processes include gradual release and corresponding slow
degradation of MC-LR in ACM treatment, repetitive input and corresponding degradation of MC-LR
in IPW treatment, and relatively rapid MC-LR degradation in CPS treatment. It is difficult to identify
how much of the added amount of MC-LR is actually involved with the root uptake, and thus the total
added amount of MC-LR is used for calculation of RCF values.

In terms of various vegetables, STF values of Ipomoea batatas L. were significantly higher than those
of Brassica juncea L. in each treatment, with difference up to 16.9 times (Table 1). Meanwhile, MC-LR
concentrations in the edible parts (leaves) of Ipomoea batatas L. were significantly higher than the other
two vegetables (p < 0.05, Figure 1). Therefore, Ipomoea batatas L. showed higher bioaccumulation
capacity of MC-LR in the edible parts relative to the other two vegetables, although its STF values
were comparable with those of Brassica alboglabra L. (p > 0.05). It is thus not recommendable to grow
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Ipomoea batatas L. in the soils affected by CBs, because of its higher bioaccumulation capacity of MC-LR
and corresponding higher potential human health risk via diet.

2.3. MC-LR Degradation in Soils under Various Treatments

There were different concentration profiles of MC-LR in soils with increasing cultivation time
in various input pathways (Figure 2). Soil MC-LR concentrations in both ACM and IPW treatments
increased first, and then decreased with the increasing cultivation time. Soil MC-LR concentrations in
CPS treatment decreased continuously (Figure 2). The gradual release of MC-LR in ACM treatment
and repetitive input of MC-LR in IPW treatment [12,25,26], together with the subsequent microbial
degradation of MC-LR in soils, could account for the characteristic concentration profiles of soil MC-LR
in the two treatments. Because two different processes could change soil MC-LR concentrations in
the ACM treatment (release + degradation) and IPW treatment (input +degradation), a mono basic
quadratic equation was used to fit their data of soil MC-LR concentrations. As for CPS treatment,
an exponential equation was used to fit the data of soil MC-LR concentrations. Satisfactory determining
factors (R2 > 0.7) with p < 0.05 indicated a good match with the fitted equations (Table 2).
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Figure 2. MC-LR degradation in soils of various treatments.

A half-life (t1/2) of MC-LR was defined as a cultivation time when MC-LR concentration in soil was
decreased to half of the total MC-LR added amount, i.e., 75 µg/kg. According to the fitted equations,
half-lives of MC-LR in soils of various treatments were obtained (Table 2). The half-lives of MC-LR
in the ACM treatments were 1.3–2.2 and 2.6–4.6 fold longer than those in IPW and CPS treatments,
respectively. After 10-days cultivation, more than 75% of total MC-LR added amount remained in
the soils, except those planted B. juncea (42.9%) (Figure 2). These indicated that ACM limited MC-LR
degradation in soils. The lower degradation and higher residual concentrations of MC-LR in the
ACM soils could favor its root bioconcentration and corresponding bioaccumulation in the vegetables,
as observed in Figure 1 and Table 1. As for IPW treatment, the repetitive input rather than one-time
input could avoid rapid MC-LR degradation in the soils, thus half-lives of MC-LR in the treatment
were 1.4–2.2 fold longer than those of CPS treatment (Table 2). However, MC-LR residuals in soils of
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IPW treatment decreased rapidly with increasing cultivation time (Figure 2). After 10-days cultivation,
only ~10% of total MC-LR added amount was kept in the soils of IPW treatment (Figure 2), similar to
CPS treatment. This may indicate that repetitive input of MC-LR via irrigation water was conducive
to MC-LR-degrading bacteria, and thus enhanced MC-LR degradation with increasing cultivation
time [22].

Table 2. The fitted equations for MC-LR degradation in soils grown in different vegetables.

Vegetable Treatment Equation a R2 b Half-life (t1/2, d) c

Ipomoea batatas L. IPW y = −3.9x2 + 35.6x + 36.5 0.744 * 7.7
CPS y = 203.1e−0.28x 0.936 ** 3.6
ACM y = −3.15x2 + 30.0x + 135.1 0.786 ** 11.3

Brassica juncea L. IPW y = −3.1x2 + 30.1x + 25.4 0.832 ** 7.6
CPS y = 203.9e−0.28x 0.863 ** 3.6
ACM y = −1.9x2 + 12.0x + 136.0 0.827 ** 9.8

Brassica alboglabra L. IPW y = −3.1x2 + 27.9x + 38.4 0.750 * 7.4
CPS y = 187.3e−0.26x 0.792 ** 3.5
ACM y = −0.61x2 + 5.2x + 146.9 0.643 * 16.0

Non-planted vegetable IPW y = −2.0x2 + 16.2x + 50.0 0.726 * 6.1
CPS y = 213.4e−0.24x 0.947 ** 4.3
ACM y = −2.7x2 + 23.2x + 140.8 0.800 ** 11.4

a “x” and “y” in the equation indicate cultivation days and MC-LR concentration in soil, respectively. b “*” and “**”
indicate p < 0.05 and p < 0.01, respectively. c Half-life indicates a cultivation time when MC-LR concentration in soil
was decreased to half of the total amount of added MC-LR, i.e., 75 µg/kg.

Compared to CPS treatment without plantation, the CPS treatments with plantation showed
~1.2-fold shorter half-life of MC-LR and 1.0–1.3 fold lower MC-LR residual after 10-days cultivation
(Table 2), indicating enhanced MC-LR degradation in soils by plantation. Uptake amount of MC-LR
(vegetable MC-LR concentration × vegetable weight) in all vegetables accounted for only 0.001–0.05%
of total amount of added MC-LR in soils (Figure 2 and Table 3). This could indicate that enhanced
microbial degradation rather than plant uptake played a key role in increased MC-LR degradation in
soils with plantation, relative to the soils without plantation in CPS treatment. As for IPW treatment
after 10-days cultivation, 1.2–1.3 fold longer half-life and 1.2–1.5 fold lower residual of MC-LR
were observed in soils with plantation than without plantation (Table 2 and Figure 2). This can be
associated with the adaptation period between the planted vegetables and the MC-LR-degrading
bacteria stimulated by IPW [29,30]. Such an adaptation period prolonged the half-lives of MC-LR in
soils of IPW treatments, but the degradation rates of MC-LR increased rapidly after the adaptation
period (i.e., after 6-days cultivation, Figure 2), thus leading to a low MC-LR residual in soils after
10-days cultivation. In the terms of ACM treatments, the effects of plantation on MC-LR degradation
were vegetable-dependent. Compared to the ACM treatment without plantation, only plantation with
B. juncea was conducive to MC-LR degradation, while I. batatas and B. alboglabra showed no favored
and even unfavourable effects on MC-LR degradation in soils (Table 2 and Figure 2).

Two groups of bacteria degraded MC-LR in soils of ACM treatments. The lytic-cyanobacteria
bacteria, including Arthrobacter sp., Oxalobacteraceae sp. and Pedobacter sp., can restrain cyanobacteria
growth or lyse the cells via releasing extracellular enzymes and algal-lytic compounds [31,32].
The second group is MC-degrading bacteria that include the genera Sphingopyxis and Sphingomonas.
This group of bacteria contain a mlrBDAC gene capable of degrading MC analogues [15,33]. A recent
study reported a complete biodegradation pathway of MC-LR by an indigenous bacterium, i.e.,
Sphingopyxis sp. YF1, in which MC-LR was gradually degraded to linear MC-LR, tetrapeptide,
3-amino-9-methoxy-2, 6, 8-trimethyl-10-phenyl-deca-4, 6-dienoic acid (Adda) and phenylacetic acid
acting as precursor of acetyl-CoA [15]. It was noteworthy that a single Acinetobacter sp. or a single
enzyme (Microcystinase A) was identified to degrade MC-LR and inhibit growth of Microcystis aeruginosa
simultaneously [14,34]. The specific distribution of lytic-cyanobacteria bacteria and MC-LR-degrading
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bacteria accounts for the vegetable-dependent MC-LR degradation in soils of ACM treatments.
Further studies are recommended to identify which genera of bacteria and corresponding key genes
are responsible for MC-LR degradation in soil-plant ecosystem under different input pathways.

Table 3. Biomasses of the tested three vegetables in various treatments.

Vegetable Treatment Plant Height
(cm)

Main Root
Length (cm)

Total Weight
(g/plant)

Aerial Part Weight
(g/plant)

Ipomoea batatas L. CK a 69.5 ± 7.8 a c 25.5 ± 0.7 b 26.4 ± 2.6 b 25.1 ± 2.3 b
IPW b 67.7 ± 18.0 a 24.0 ± 1.0 b 16.4 ± 0.1 a 15.5 ± 0.9 a
CPS 69.0 ± 5.7 a 25.0 ± 0.1 b 15.5 ± 3.2 a 15.1 ± 4.2 a

ACM 53.8 ± 5.6 a 16.8 ± 1.9 a 14.3 ± 3.4 a 13.1 ± 3.7 a

Brassica juncea L. CK 58.0 ± 10.2 b 21.7 ± 8.1 b 55.6 ± 5.2 b 54.1 ± 3.3 c
IPW 39.7 ± 6.1 a 10.0 ± 1.0 a 39.8 ± 8.7 a 37.6 ± 7.9 ab
CPS 46.7 ± 7.5 ab 11.0 ± 2.7 a 46.0 ± 2.0 ab 39.6 ± 0.8 b

ACM 32.7 ± 4.7 a 8.7 ± 0.6 a 30.6 ± 7.5 a 28.4 ± 0.4 a

Brassica alboglabra L. CK 44.0 ± 7.0 c 13.0 ± 6.1 b 35.4 ± 4.6 c 34.5 ± 4.5 c
IPW 34.3 ± 1.8 b 8.0 ± 0.1 a 17.6 ± 5.5 b 15.6 ± 7.5 ab
CPS 35.0 ± 1.4 ab 10.5 ± 2.1 ab 16.5 ± 2.2 b 15.9 ± 2.2 b

ACM 25.6 ± 1.4 a 8.7 ± 0.6 ab 9.4 ± 0.9 a 8.9 ± 0.9 a
a CK indicates control treatment without addition of MC-LR. b IPW, CPS, and ACM indicate irrigation of polluted
water (IPW), cultivation of polluted soil (CPS), and application of cyanobacterial manure (ACM), respectively. c The
same letter in each biomass index of one vegetable indicates no significant difference (p > 0.05).

2.4. Toxicity to Vegetables from MC-LR under Various Treatments

MCs, especially MC-LR, can induce reactive oxygen species (ROS) and cause oxidative damage
to terrestrial plants [7,18,35]. In the present study, the effects of MC-LR on content of total protein
(TP) and malondialdehyde (MDA), activities of antioxidant enzymes (superoxide dismutase, SOD;
peroxidase, POD), and biomass indicators (plant height, main root length, total weight, and aerial part
weight) were investigated. Such effects of MC-LR varied with the toxicity indicators, input pathways
of MC-LR and species, and organs of the vegetables (Figure 3 and Table 3). Generally, MC-LR in ACM
treatment significantly increased TP contents in all the organs of the vegetables (p < 0.05), but MC-LR in
CPS and IPW treatments caused little change in the TP contents (p > 0.05). An exception was observed
in B. alboglabra leaf where MC-LR in all treatments significantly inhibited TP contents (p < 0.05).
The increased TP contents by MC-LR in ACM treatment could be associated with activation of some
functional enzymes, e.g., glutathione S-transferase (GST) and glutathione reductase (GR) [4,26,36].
Plant GST could be activated by MC-LR exposure, which catalyze formation of glutathione-MC-LR
complex as the first step of MC-LR detoxification [26,37,38]. To maintain glutathione pool expended by
MC-LR, plant GR are usually activated by MC-LR exposure [4,26]. On the other hand, the decreased
TP content in the leaf of B. alboglabra can be associated with damage of the antioxidative enzymes by
the MC-LR exposure [4,26,36].
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Plant SOD and POD can effectively remove superoxide anions (·O2
−) and hydrogen peroxide

(H2O2) induced by MC-LR, thus protecting plant cell from oxidative damage [18,36]. In the present
study, MC-LR posed generally significant inhibition on activities of SOD and POD in roots and stems
of the vegetables (p < 0.05), with higher inhibition rates in ACM treatment (32.7~92.3%) than in IPW
(10.8~68.7%) and CPW treatments (16.7~60.1%, Figure 3). The decreased activities of SOD and POD
were likely because the excessive ROS induced by MC-LR damaged their structures [18]. It was
different from roots and stems of the vegetables that their leaves were observed with complex situations
regarding the effects of MC-LR on activities of SOD and POD. For example, MC-LR in ACM treatment
caused little influence on activities of SOD and POD in leaf of B. juncea, but significant inhibition on
SOD activity in leaf of I. batatas (p < 0.05) and significant activation on activities of POD and SOD
in leaf of B. alboglabra (p < 0.05). Varying responses of SOD and POD to MC-LR exposure reflected
their different scavenging activities of ·O2

- and H2O2 in various vegetable leaves. Besides antioxidant
enzyme, non-enzymatic antioxidant substance in plant can play an important role in detoxification of
MC-LR. For example, phenolic compounds widely exist in plants [39]. They have powerful antioxidant
capacity and can protect plant cell from oxidative damage [39]. The different toxicity responses
of various vegetables to MC-LR stress could be related to different content of these non-enzymatic
antioxidant substances, e.g., phenolic compounds (Figure 3).

MDA in organisms was formed by the peroxidation reaction between ROS and unsaturated fatty
acids in cellular membranes, which was considered as an important index for intracellular oxidative
damage [21,40]. In the present study, MC-LR in all treatments generally resulted in significant increase
of MDA contents, with higher increase rates in ACM treatment (1.8–10.9 fold) than in IPW (0.5–11.9 fold)
and CPW treatments (0.7–5.3 fold, Figure 3). The increase of MDA content indicated that antioxidant
systems of the vegetables failed to eliminate the ROS induced by MC-LR, thus causing oxidative
damage. The highest contents of MDA and TP but lowest activities of SOD and POD observed in
the vegetables of ACM treatment indicated that ACM caused the greatest oxidative stresses in the
vegetables among the different MC-LR treatments.

As expected, MC-LR in ACM treatment caused the greatest inhibition on biomasses of the
vegetables, with inhibition rates of 22.5~43.7%, 34.0~60.0%, 45.0~73.6%, and 47.5~74.2 for plant height,
main root length, total weight, and aerial part weight, respectively (Table 3). The inhibition rates of
MC-LR in ACM treatment on all the biomasses indicators were about 1.2–2 fold higher than those in IPW
and CPS treatments (Table 3). The high inhibition of vegetable biomasses observed in ACM treatment
indicated great phytotoxicity of MC-LR in the treatment. Based on Pearson correlation analyses, there
were negative correlations between biomasses indicator values and both MC-LR concentrations and
MDA contents of the vegetables, but positive correlations between MC-LR concentrations and MDA
contents (Tables S1–S3). Taking I. batatas as an example, root MC-LR concentration, stem MC-LR
concentrations, stem MDA contents, and leaf MDA contents showed significantly negative correlations
with main root length and plant height (p < 0.05); but there were significantly positive correlations
between root MC-LR concentrations and leaf MDA contents, between stem MC-LR concentration and
stem and leaf MDA content, as well as between leaf MC-LR concentrations and leaf MDA content
(p < 0.05, Table S1). These indicated that MC-LR bioaccumulation can cause great phytotoxicity by
inducing oxidative damage. Accordingly, ACM could cause high toxicity to the vegetables, mainly
due to high MC-LR bioaccumulation observed in the treatment (Figure 1), although other bioactive
compounds could be contained in the ACM treatment, microcystin-RR and microcystin-YR [13,28].

2.5. Health Risk from Consuming the Vegetables under Various Treatments

MCs bioaccumulation poses a threat to human health via diet [12,16,17]. To assess the health risk
of MC-LR via consuming the edible parts (leaves) of the planted vegetables, the estimated daily intake
(EDI) and risk quotient (RQ = EDI/RfD) were calculated. EDI values and RQ values of MC-LR in
ACM treatment ranged, respectively, from 0.003 to 0.022 µg/kg/d and 0.09 to 0.55, both of which were
1.1~4.8 folds higher than those in IPW and CPS treatments (Table 4). A widely-acceptable criterion for
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evaluating health risk was used in this study, namely, high health risk (RQ > 1), moderate health risk
(0.1 ≤ RQ ≤ 1), and low health risk (RQ < 0.1) [12,41]. In ACM treatments, the consumption of I. batatas
and B. alboglabra showed medium health risk; while in IPW or CPS treatments, just consumption of
I. batatas displayed medium health risk; in the other situations, only low health risks were estimated
(Table 4). This indicated that ACM could likely result in higher health risks of consuming the vegetables
relative to IPW and CPS, although significant difference in RQ value was only observed between CPS
and ACM of Brassica alboglabra L. (p < 0.05). The situation can be much worsened when common
co-existence of multiple MC analogues in the cyanobacterial manure is considered [12,13] and they
could also pose severe health risks during ACM. Injection of MCs can cause severe multiple organ
injuries and even stimulate the expression of proto-oncogenes and oncogenes cytokines in liver and
colon, thus enhancing the cancer incidences [10,11,42]. Therefore, ACM is not recommended for soil
fertility improvement, especially those affected by CBs, which may cause higher MCs bioaccumulation
and corresponding greater phytotoxicity and higher human health risks.

Table 4. Estimated daily intake (EDI) of MC-LR and risk quotient (RQ) via consuming the vegetables.

Vegetable Treatment EDI (µg/kg/d) RQ Risk Level a

Ipomoea batatas L. IPW 0.013 ± 0.003 a b 0.32 ± 0.08 a Medium risk
CPS 0.019 ± 0.002 a 0.47 ± 0.04 a Medium risk

ACM 0.022 ± 0.008 a 0.55 ± 0.20 a Medium risk

Brassica juncea L. IPW 0.002 ± 0.000 a 0.06 ± 0.008 a Low risk
CPS 0.002 ± 0.001 a 0.05 ± 0.016 a Low risk

ACM 0.003 ± 0.001 a 0.09 ± 0.022 a Low risk

Brassica alboglabra L. IPW 0.004 ± 0.003 ab 0.10 ± 0.01 ab Low risk
CPS 0.001 ± 0.000 a 0.02 ± 0.01 a Low risk

ACM 0.004 ± 0.001 b 0.11 ± 0.01 b Medium risk
a Risk level was evaluated based on RQ value, i.e., high health risk (RQ > 1), moderate health risk (0.1 ≤ RQ ≤ 1),
low health risk (RQ < 0.1). b The same letter in each biomass index of one vegetable indicates no significant difference
(p > 0.05).

3. Conclusions

Various input pathways of MC-LR can result in its bioaccumulation in edible parts of leaf
vegetables from soils, including irrigation with polluted water (IPW), cultivation of polluted soil (CPS),
and application of cyanobacterial manure (ACM). ACM treatment causes higher bioaccumulation of
MC-LR relative to IPW and CPS treatments. This is associated with limited degradation and high
residual content of MC-LR in soils of ACM treatment. Such a high bioaccumulation of MC-LR in ACM
treatment may cause high phytotoxicity due to oxidative damage and great human health risks via
diet. The findings of this study raise great concerns about MCs entering terrestrial ecological system by
different input pathways, especially by ACM. Further studies should be conducted to reveal microbial
populations and key genes responsible for MCs degradation in soils and their metabolism in terrestrial
plants under different input ways.

4. Materials and Methods

4.1. Materials

MC-LR standard was bought from Taiwan Algal Science, Inc. Fresh cyanobacterial bloom was
collected from Lake Dianchi that is a typical eutrophic water in Yunnan province of southern China,
usually containing MCs-producing Microcystis viridis (61.9%) and non-toxic Microcystis wesenbergii
(24.8%) [12]. Cyanobacterial manure was obtained from the collected cyanobacterial bloom by
freeze-drying and then grinding. Concentration of MC-LR in the cyanobacterial manure was detected
as 50 ± 8.7 µg/g (dry weight) using a HPLC-MS/MS method based on our recent literature [12].
Agricultural soil (0~20 cm) used in this study was obtained from an organic farm in Guangzhou,
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China, with no MC-LR detected. Its basic physicochemical properties were measured according
to a recommended method [43], including pH (7.5), organic matter (43.9 g/kg), cation exchange
capacity (16.0 cmol/kg), and soil texture (36.9% of sand, 40.5% of silt, and 22.7% of clay). Seeds of
Ipomoea batatas L., Brassica juncea L., and Brassica alboglabra L. were obtained from Guangdong Academy
of Agricultural Science. Ethylene diamine tetraacetic acid (EDTA) and sodium pyrophosphate were
purchased from Guangzhou Chemical Reagent Co., Ltd. (Guangzhou, China). HPLC-grade methanol
and trifluoroacetic acid were bought from Sigma-Aldrich (Steinheim, Germany). Ultrapure water was
prepared by a Unique-R20 equipment purchased from Research Scientific Instruments Corporation,
Xiamen, China.

4.2. Methods

4.2.1. Pot Design

Based on actual concentration of MCs in agricultural soils [12], three types of treatments (including
IPW, CPS, and ACM) with a same added amount (150 µg/kg) of MC-LR were set to investigate
bioaccumulation, toxicity, and health risk of MC-LR in the selected leaf vegetables. In IPW and
CPS treatments, MC-LR solution prepared by adding MC-LR standard to ultrapure water was used.
In brief, 100 mL of MC-LR solution (0.525 mg/L) was irrigated into per pot per day for IPW treatment.
Such an irrigation was repeated for 10 days continuously. Five-hundred milliliters of MC-LR solution
(1.05 mg/L) was spiked into per pot at one time for CPS treatment. As for ACM treatment, 10.5 g
of the prepared cyanobacterial manure (50 µg/g of MC-LR) was added into per pot at one time and
then homogenized. The treatment without addition of MC-LR was set as control. Each treatment was
conducted in quadruplicate.

Polypropylene pots with ~20 cm of inner diameter and ~18 cm of height were used in this
study. Each pot was loaded with 3.5 kg of soils containing 8 g of base fertilize, i.e., monopotassium
phosphate and urea at mass ratio of N/P/K of 4:3:4. Before pot cultivation, plant seeds were germinated
and incubated in a nutrient substrate prepared from unpolluted plant straw compost and soils [44].
To evaluate the uptake and translocation of MC-LR in mature plant, plants incubated for 40 days were
used in this study, with three plants per pot. The pot experiments were carried out for 10 days in
a greenhouse at natural temperature (24~32 ◦C) in April 2016, with all the pots randomly arranged.
Deionized water was used to keep moisture content of the soils, based on the evaporation capacity.
During the pot experiments, soil samples were collected for all treatments at days 1, 3, 5, 7, and 10,
respectively. The collected soil samples were freeze-dried, ground, and then filtered (0.42 mm) for
analysis of MC-LR. After 10 d of cultivation, all the plants were collected and then washed by deionized
water to remove the adhesive soil particles. The biomass indicators of the collected plant samples were
measured after drying by tissue paper, including height, root length, and fresh weight. Afterwards,
all the plant samples were cut into three parts, i.e., root, stem, and leaf. Each part of the plant samples
was divided into two portions for analysis of MC-LR and determination of antioxidant activities and
MDA, respectively. The portion used for MC-LR analysis was pretreated as mentioned above for the
soil samples.

4.2.2. Extraction and Analysis of MC-LR in Soil and Vegetable Samples

Based on our developed methods [45,46], extraction of MC-LR in both soil and vegetables was
conducted by ultrasonic extraction, followed by solid-phase extraction cleanup using C18 cartridge.
The extractants used for extraction of the soil and vegetables were 0.1 M EDTA-sodium pyrophosphate
solution and acidified methanol solution (methanol/water/trifluoroacetic acid at 80/19.9/0.1, v/v/v),
respectively. Analysis of MC-LR was performed on an alliance 1100 liquid chromatograph (Agilent,
Palo Alto, CA, USA) interfaced with an API 4000Q-Trap triple-quadrupole mass spectrometer (Applied
Biosystems, Foster city, CA, USA), with 5 µL of injection volume. The mass spectrometer was set in
positive mode electrospray ionization with multiple-reaction monitoring mode. Separation of MC-LR
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was used by Eclipse Plus C18 column (150 mm × 2.1 mm i.d., 5 µm). Mobile phases A and B were
selected as acetonitrile and 0.2% formic acid solution (v/v), with flow rate at 0.3 mL min−1. In the
gradient program, mobile phase A was linearly enhanced from 20% to 80% in 2 min (kept for 4.5 min)
and then returned to 20% within 0.1 min (kept for 9.4 min). Retention time of MC-LR in the gradient
program was 5.33 min, and it was quantified by selected reaction monitoring, with precursor ion of
996.1 [M+H]+, production ion of 135/213, decluster potential of 96/91, and 100/85 of collision energy
voltage. For ease of evaluating risk calculation, the detected concentration of MC-LR in the freeze-dried
vegetable sample was converted to the concentration in the fresh weight, based on water content of the
fresh vegetables (Table S4).

In the analytical conditions used in this study, the limit of quantification of MC-LR, i.e.,
a concentration producing 10-fold signal-to-noise was detected as 0.25 ng/g (fw) and 1.6 ng/g (dw) for
soil and vegetable sample, respectively. The spiked recoveries of MC-LR at 5 ng/g were in the range of
72.6~97.4% and 61.3~107.9% for soil and vegetable samples, respectively (Table S5). During analysis of
MC-LR in the samples, a spiked sample at 5 ng/g, a procedural blank, and a random duplicate sample
were determined with each batch of seven samples to ensure the analytical quality.

4.2.3. Determination of Antioxidant Enzymes and MDA Content

Fresh plant sample (0.2 g) was fully ground at ice-bath in the presence of 10 mL of phosphate
buffer solution (pH = 7.4). The sample homogenate was centrifuged for 10 min at 5000 rmp/min and
4 ◦C to obtain sample supernatant. The contents of TP and MDA and activity of SOD were determined
using a UV-2450 spectrophotometer (Shimadzu, Japan), based on instructions of testing kits purchased
from Nanjing Jiancheng Bioengineering Institute, China [47]. Activity of POD was determined using
a guaiacol method, in which POD catalyzed oxidation of guaiacol by H2O2 to form a dark brown
compound having a visible response at 470 nm [48]. A 0.01-unit change in absorbance of formed dark
brown compound at 470 nm within 20 s was recorded as one unit of POD activity [48].

4.2.4. Data Processing

Root concentration factor (RCF) and translation factor (TF) of MC-LR in the tested vegetable were
calculated without considering its degradation and metabolism, according to the following equations:

RCF = cr/cs (1)

RTF = cst/cr (2)

STF = cs/cl (3)

where cs indicates total MC-LR amount added into soil (150 µg/mg); cr, cst, and cl indicate MC-LR
concentration in root, stem, and leaf of vegetable sample, respectively; RTF and STF indicate translation
factor of ML-LR from root to stem and from stem to leaf, respectively.

Health risk quotient (RQ) via consumption of the vegetable was evaluated according to the
following Equations (4) and (5):

RQ = EDI/RfD (4)

EDI = (cl × DC)/BW (5)

where EDI indicates estimated daily intake, RfD is daily reference dose (0.04 µg/kg/d) of MC-LR set by
World Health Organization, cl has been defined in Equation (3), DC and BW indicate daily consumption
of vegetable (335.5 g) and average body weight (65 kg) of Chinese adult, respectively, whose values
were obtained from Exposure Factors Handbook of Chinese Population [49]. Besides tuberous root
or seed, leaves of I. batata and B. juncea are popular food in Asian countries, especially China [50,51].
Because no tuberous root or seed of I. batata and B. juncea were generated in the pot experiments, leaves
of the tested vegetables were selected as the focused edible parts for conducting health risk assessment.
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In addition, basic statistics including calculation of mean and standard deviation (SD) were
finished by Microsoft Excel 2013 (Microsoft Co., Redmond, WA, USA). Pearson correlation, principal
component analysis (PCA), and one-way analysis of variance (ANOVA) followed by a Duncan’s (D)
test were performed on SPSS 21.0 (SPSS Inc., Chicago, IL, USA). During ANOVA analysis, the Dunnett’s
T3 (3) test was used when equal variance assumption was invalid based on Levene’s test of equality of
error variances. Statistical significance was defined at p < 0.05.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6651/12/8/523/s1,
Table S1: Pearson’s correlation coefficients among MC-LR concentration, MDA contents and biomass of Ipomoea
batatas L. (n = 12), Table S2: Pearson’s correlation coefficients among MC-LR concentration, MDA contents and
biomass of Brassica juncea L. (n = 12), Table S3: Pearson’s correlation coefficients among MC-LR concentration,
MDA contents and biomass of Brassica alboglabra L. (n = 12), Table S4: Water contents (%) of the tested vegetables,
Table S5: Spiked recoveries (%, n = 4) of MC-LR at 5 ng/g in the tested vegetables and corresponding soil.
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