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Abstract
Meeting the challenges brought by the COVID-19 pandemic requires an interdisciplinary approach. In this context, 
integrating knowledge of immune function with an understanding of how genetic variation influences the nature of 
immunity is a key challenge. Immunogenetics can help explain the heterogeneity of susceptibility and protection to 
the viral infection and disease progression. Here, we review the knowledge developed so far, discussing fundamental 
genes for triggering the innate and adaptive immune responses associated with a viral infection, especially with the 
SARS-CoV-2 mechanisms. We emphasize the role of the HLA and KIR genes, discussing what has been uncovered 
about their role in COVID-19 and addressing methodological challenges of studying these genes. Finally, we comment 
on questions that arise when studying admixed populations, highlighting the case of Brazil. We argue that the interplay 
between immunology and an understanding of genetic associations can provide an important contribution to our 
knowledge of COVID-19.
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Introduction
The coronavirus disease 19 (COVID-19) caused by 

the severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) is imposing severe humanitarian, social, and economic 
consequences. The ongoing pandemic has affected the lives 
of millions of people around the world. As of April 2021, 
Brazil has recorded the third-highest number of COVID-19 
cases worldwide, with nearly 15 million infected individuals 
and the second-highest number of about 400,000 deaths by 
COVID-19 (WHO COVID-19 | Brazil, 2021).

Two genera of coronaviruses cause human disease: 
alphacoronaviruses HCoV-229E and HCoV-NL63, and 
betacoronaviruses HCoV-HKU1, HCoV-OC43, SARS-CoV 
(presently named SARS-CoV-1), MERS-CoV (Middle East 
respiratory syndrome), and SARS-CoV-2 (Ogimi et al., 
2020). The four HCoV-* viruses cause mild self-limiting 
respiratory infections, but MERS-CoV, SARS-CoV-1, and 
the new SARS-CoV-2 may cause significant morbidity and 
mortality (Song et al., 2019; Ogimi et al., 2020). The most 
likely natural reservoir of these three viruses are bats, and the 
possible intermediate hosts are the palm civet for SARS-CoV-1 
and the dromedary camel for MERS-CoV (Song et al., 2019; 
Ogimi et al., 2020). Whether SARS-CoV-2 was transmitted 
directly from bats to humans or through an intermediate host 
is still an open question (Lam et al., 2020).

The SARS-CoV-2 is phylogenetically close to SARS-
CoV-1, which emerged in 2002 in China and caused more 
than 8,000 cases in 29 countries over eight months, with 
a case mortality rate of around 10% (Song et al., 2019). 
The total number of cases reported for MERS was 2,254 
from 2012 through January 2020, with 35% mortality (Song 
et al., 2019; Rabaan et al., 2020). Comparing data from 
different diseases and sources is tricky, yet the case fatality 
rate of COVID-19 is definitely much lower, estimated at 2.2% 
worldwide (WHO COVID-19 Dashboard, April 13 2021). 
However, the socioeconomic impact of this disease widely 
surpasses SARS and MERS, because of the high infectivity 
and rapid spread of the SARS-CoV-2, and the extreme burden 
placed on healthcare systems due to the need for hospitalization 
and artificial ventilation for severe cases. 

The symptoms after infection by SARS-CoV-2 range 
from asymptomatic to severe disease and death (McIntosh 
et al., 2020; Wu and McGoogan, 2020). The most common 
clinical symptoms are fever, dry cough, dyspnea, fatigue, 
dysgeusia, and anosmia (taste and smell disorders). Other 
common symptoms are myalgia, rhinorrhea, sore throat, 
diarrhea, nausea and/or vomiting, and headache. About 15% of 
patients develop severe disease with exuberant inflammatory 
response, lymphopenia, thromboembolic complications, and 
hypoxemia that eventually leads to acute respiratory distress 
syndrome (ARDS) and multiple organ dysfunction syndromes 
(MODS) (McIntosh et al., 2020; Wu and McGoogan, 2020). 
Patients may also experience arrhythmias, acute cardiac injury, 
kidney injury, liver dysfunction, or neurologic manifestations. 
Possible neurological damage after SARS-CoV-2 infection, 
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even among recovered patients, increases its impact on the 
healthcare system (Ellul et al., 2020; Kotfis et al., 2020; 
Moriguchi et al., 2020; Varatharaj et al., 2020; Zanin et al., 
2020). Some features of severe COVID-19 and ARDS are 
presented in Figure 1.

The risk factors for severe illness are older age, male 
sex, and medical comorbidities such as diabetes mellitus, 
cardiovascular disease, hypertension, chronic kidney disease, 
cancer, obesity, and smoking (Espinosa et al., 2020; McIntosh 
et al., 2020; Wu and McGoogan, 2020). However, these factors 
do not explain all the variation, as exemplified by reports of 
young individuals without comorbidities, including children, 
that developed severe forms of the disease (e.g., van der Made 
et al., 2020) and several anecdotal reports of elderly patients 
with other illnesses that fully recovered from COVID-19. 
Undoubtedly, host genetics plays a pivotal role in influencing the 
human response to infection, and rare as well as polymorphic 
genetic variants are expected to underlie the consequences of 
SARS-CoV-2 infection. Understanding the role of immune-
related genes in the response to SARS-CoV-2, as well as the 
distribution of associated genetic variants in populations across 
the world, is a critical element in understanding the disease 
and in seeking strategies to respond to it. 

Human populations have been locked in a coevolutionary 
arms race with pathogens for thousands of years, with natural 
selection favoring protective genetic variants against pathogenic 
viruses, bacteria, and other microorganisms. The findings that 
as many as 30% of all adaptive amino acid changes in the 
human proteome are related to selective pressures imposed 
by viruses underscores the critical participation of viruses in 
this process (Enard et al., 2016).

Pathogens also evolve in response to host adaptive 
changes, increasing their capacity to evade the immune 
response, and to invade, multiply, and be transmitted to other 
hosts. As a result, the host-pathogen arms race is a dynamic 
process that leaves signatures in the human genome (reviewed 
in Karlsson et al., 2014). Therefore, identifying these traces 
allows discovering genes involved in adaptive response against 
pathogens (Fan et al., 2016).

Scans for natural selection signatures have identified 
a conspicuous enrichment of genes related to the immune 
function in the human genome (Hedrick, 2002; Sabeti et al., 
2006; Andrés et al., 2009; DeGiorgio et al., 2014; Bitarello 
et al., 2018). The group of immune-related genes identified 
to be under selection is broad, encompassing components 
of both adaptive and innate immune responses (Akey et al., 

Figure 1 ‒ Features of severe COVID-19 and acute respiratory distress syndrome (ARDS) in the lung. SARS-CoV-2 enters the body by the airways 
and infects lung cells (1). Immune cells, including macrophages (2), and the infected cells (3) react to the virus and produce cytokines, interferons, 
and additional inflammatory signals (4), which attract other leukocytes. These also produce cytokines (5) that may lead to hyper inflammation and the 
“cytokine storm” (6). The inflamed capillaries allow fluid to sweep into the alveoli and fill the lung cavities (7). Damage to the lung occurs through several 
processes, including the consequences of surfactant loss (8), the accumulated liquid, and the formation of fibrin and scar tissue (9). With the participation 
of complement components, coagulation factors, neutrophils, and platelets, blood clots are formed in the inflamed blood vessel (10). The association 
between thromboembolic events and higher levels of von Willebrand’s factor (vWF) and factor VIII with non-group O (see main text) may underlie 
the association of blood group A with increased susceptibility to severe COVID-19. The deregulated immune response and disturbed coagulation spark 
inflammation throughout the body damaging other organs and fuels the respiratory failure responsible for most deaths caused by COVID-19. Moreover, 
the virus may evade the immune response by blocking the effect of immune cells and soluble as well as membrane-bound mediators of immunity and 
complete its cycle in infected cells, spreading throughout the body. Figure created with Biorender.
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2004; Fumagalli et al., 2011). These results show that immune 
responses against pathogens have been critical for local 
adaptation of human populations since ancient times. While 
scans for selection only identify genomic signatures shaped by 
selection in the past, it is much more challenging to identify 
evidence of ongoing natural selection.

Many studies have surveyed the association between 
host genetic variation and susceptibility to infection or disease 
outcomes. The associations between genetic variants and 
response to pathogens are the contemporary counterpart of the 
selective process that generates the evolutionary signatures. Not 
surprisingly, genes related to immune responses systematically 
appear in association studies of infectious diseases, with 
specific variants associated with increased susceptibility, 
while others are associated with the protection from different 
diseases (Hill, 2012). 

In this review, we discuss the importance of association 
studies focusing on variation in genes related to immune 
function, emphasizing HLA (human leukocyte antigen) and 
KIR (killer-cell immunoglobulin-like receptor) gene families 
when searching for host determinants of the response to 
SARS-CoV-2, without ignoring the paramount importance 
of other genes involved in fighting viral infections and 
diseases. The prominent role of the HLA and KIR genes 
in the viral immune responses, and of HLA in vaccine 
development, make them natural candidates in the search for 
COVID-19 disease-relevant variants. We draw attention to 
the peculiar characteristics of these gene families (e.g., their 
high polymorphism, distinct allele frequencies in worldwide 
populations, and their interaction with each other), which 
impose technical challenges especially for genomewide 
studies and therefore demand targeted strategies. We list 
and discuss these challenges and alternative approaches to 
minimize errors in association studies. Finally, we introduce 
some research strategies and how the scientific community has 
been engaged to combine resources, share data, and accelerate 
the knowledge about the immunogenetics of COVID-19. 

HLA in viral infections
The HLA molecules were initially investigated due to 

their determinant role in allogeneic transplantation outcomes 
(Dausset, 1958; Klein, 1986; Thorsby, 2009), but their major 
functions are immunomodulation and the triggering of adaptive 
immune responses (Bjorkman et al., 1987; Brown et al., 
1993; Jones et al., 2006). The classical HLA class I molecules 
(class Ia), HLA-A, HLA-B, and HLA-C, are expressed in all 
nucleated cells and present peptides of cytosolic origin to CD8+ 
T lymphocytes, and together with accessory signals stimulate a 
cytotoxic response against target cells. The non-classical HLA 
class I molecules (class Ib) are expressed in specific tissues 
and their primary function is immunomodulation (Donadi 
et al., 2011; Kraemer et al., 2014; Persson et al., 2020). In 
contrast, the classical HLA class II molecules (HLA-DR, 
HLA-DQ, and HLA-DP) are expressed by antigen-presenting 
cells and present exogenous antigens to CD4+ T lymphocytes, 
which in the context of costimulatory signals trigger adaptive 
immune responses. 

The HLA genes are located within the human major 
histocompatibility complex (MHC), in chromosome region 

6p21.3 (Klein and Sato, 2000), and are extraordinarily 
polymorphic (Robinson et al., 2020) with thousands of alleles 
in some loci (IPD-IMGT/HLA | Statistics, 2020). The HLA 
genotypes directly influence the range of antigens presented 
by a given individual to the T lymphocytes and how the 
HLA molecules interact with other receptors on NK cells. 
Consequently, there is variation among individuals regarding 
the set of viral peptides that they can present and eventually 
create an efficient response to. 

Infectious diseases are one of the leading causes of 
human mortality (Burgner et al., 2006) and a major selective 
pressure for human survival (Sabeti et al., 2002; Frodsham and 
Hill, 2004; Walsh et al., 2006). Among the plethora of genes 
involved in human immune responses, HLA variants are among 
those with the strongest reported associations with infection 
risk and progression (Cooke and Hill, 2001; Tian et al., 2016). 

A well-documented example of how HLA alleles 
influence viral infections is HIV (human immunodeficiency 
virus) infection outcome (Fellay et al., 2007; Kawashima 
et al., 2009; International HIV Controllers Study et al., 
2010). While some HLA-B molecules can accommodate 
specific HIV antigens and trigger an immune response, 
others cannot. The homozygosity of class Ia genes was also 
strongly associated with rapid progression of HIV infection 
(Carrington et al., 1999; Tang et al., 1999) while differential 
HLA expression levels were associated with HIV viral load 
control (Apps et al., 2013; Kulkarni et al., 2013; Ramsuran 
et al., 2018). Moreover, the HLA variation has been also 
associated with hepatitis B, hepatitis C, and several other 
infectious diseases (Blackwell et al., 2009). 

During the SARS-CoV-1 (2002-2003) and MERS-CoV 
(2012) epidemics, several studies demonstrated that HLA 
alleles were associated with differential susceptibility, but 
these results were not consistent among studies (Sanchez-
Mazas, 2020). The discrepancies are probably explained by 
the fact that SARS-CoV-1 and MERS-CoV transmission was 
in specific geographic regions (Asia and the Middle East) and 
the consequently limited pool of HLA alleles identified in those 
populations. Due to the pandemic nature of SARS-CoV-2, 
case-control studies are required to assess a broader range 
of HLA alleles, potentially revealing new sets of associated 
alleles differing among geographic regions and populations. 
Different populations may present distinct alleles associated 
with susceptibility, depending on the pool of HLA alleles 
present in each population. Besides differences in study design 
and statistic power issues, this may be a reason why thus far 
no conclusive associations between COVID-19 and HLA have 
been reported (Ellinghaus et al., 2020; Novelli et al., 2020; 
Wang et al., 2020a,c; Amoroso et al., 2021; Anzurez et al., 
2021; Leite et al., 2021; Lorente et al., 2021; Shkurnikov et 
al., 2021; Yung et al., 2021).

Mapping the potential response to SARS-CoV-2 
mediated by HLA peptide presentation

Understanding the repertoire of viral epitopes that 
specific HLA allotypes can bind provides a mechanistic 
basis for interpreting genetic associations and contributes to 
developing vaccines and identifying viral escape epitopes 
(reviewed in Gfeller and Bassani-Sternberg, 2018).
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Despite significant methodological advances in the 
experimental screening of peptide repertoires presented by HLA 
(e.g., mass spectrometry and in vitro binding assays), only a 
few HLA allotypes have been studied (Bassani-Sternberg et 
al., 2015; Caron et al., 2015; Gfeller and Bassani-Sternberg, 
2018). Experimental data, together with genetic sequences 
from pathogens in combination with HLA alleles, make up 
the reference databases for predictive computational methods 
(e.g., machine learning, neural network). The success of the 
computational prediction depends on the availability of large-
scale training datasets (Abelin et al., 2017; Dhanda et al., 2019) 
and the accuracy of the prediction models (Rivino et al., 2013). 

SARS-CoV-1 and MERS-CoV experimentally-determined  
epitopes can be found in several public databases (e.g., the 
Virus Pathogen Database and Analysis Resource, ViPR (Pickett 
et al., 2012); The Immune Epitope Database, IEDB (Vita et 
al., 2019)). Due to their genetic similarity, several studies 
have used the information obtained experimentally for SARS-
CoV-1 to make predictions for SARS-CoV-2 (Ahmed et al., 
2020; Grifoni et al., 2020; Lee and Koohy, 2020). However, 
Ahmed et al. (2020) showed that only 23% of known SARS-
CoV-1 and SARS-CoV-2 T-cell putative epitopes are identical. 
Even though part of the SARS-CoV-2 epitope information 
may not be captured in these comparisons, regions that are 
identical in SARS-CoV-1 and SARS-CoV-2 are possibly 
those with a low substitution rate. Consequently, vaccination 
strategies designed to target the immune response toward 
these conserved epitope regions could generate immunity 
that is cross-protective to SARS-CoV-2 and also to other 
coronaviruses (Grifoni et al., 2020).

HLA affinity prediction for SARS-CoV-1 has been 
studied based on a limited number of alleles (e.g., HLA-A*02:01, 
HLA-A*11:01, HLA-A*24:02), identifying potential affinities 
with epitopes from spike (S) and nucleocapsid (N) proteins 
(Tsao et al., 2006; Rivino et al., 2013). A later study applied 
an immunization prime-boost strategy to increase the number 
of memory CD8+ T-cells in the respiratory tract, finding 
that structural proteins S and N are highly immunogenic 
and induce longer-lasting neutralizing antibodies than other 
coronavirus proteins (Channappanavar et al., 2014). Nowadays, 
many studies of SARS-CoV-2 focus on antigens from these 
viral structural proteins (Kiyotani et al., 2020; La Porta and 
Zapperi, 2020; Sanami et al., 2020), as well as on non-structural 
proteins (Marchan, 2020).

At first, many studies of SARS-CoV-2 were limited to 
presenting a predicted list of potential candidate epitopes with 
high affinity to certain HLA allotypes (Grifoni et al., 2020; 
Kiyotani et al., 2020; Lucchese, 2020; Vashi et al., 2020). 
However, studies have recently taken a step forward and started 
evaluating other characteristics of HLA+epitope complexes, 
such as antigenicity, toxicity, and population coverage (Joshi 
et al., 2020; Mukherjee et al., 2020; Yarmarkovich et al., 
2020). HLA-A*68:01, B*15:03, and DRB1*07:01 are recurrent 
among the lists of HLA allotypes showing a stronger binding 
with SARS-CoV-2 predicted peptides (Barquera et al., 2020; 
Joshi et al., 2020; Iturrieta-Zuazo et al., 2020; La Porta and 
Zapperi, 2020). Conversely, HLA-B*14:02, B*35:03, and 
B*46:01 have a low predicted binding for SARS-CoV-2 
peptides, raising the hypothesis that individuals expressing 

this molecule may be more vulnerable to COVID-19 (Nguyen 
et al., 2020). The frequency of each of these HLA alleles 
varies among populations. For instance, the predicted strong 
binder HLA-B*15:03 is frequent in most African populations, 
particularly in Guinea-Bissau and Uganda, and very rare in 
Europe and Asia (Figure 2, upper right panel). The predicted 
weak binder HLA-B*14:02 is frequent in Europe, Africa, and 
America, particularly in Brazil (Figure 2, lower right panel). 
Other examples include the weak binders HLA-B*35:03, 
highly frequent in India and Pakistan, and B*46:01, highly 
frequent and mostly detected in East Asia. This underscores 
the potential for the genetic basis of response to COVID-19 
differing among populations.

Many other HLA alleles were included in some studies 
but not in others (Barquera et al., 2020; Joshi et al., 2020; 
Mukherjee et al., 2020; Yarmarkovich et al., 2020; Leite 
et al., 2021; Shkurnikov et al., 2021). This heterogeneity 
highlights the methodological differences among studies and the 
differences in the sets of the selected HLA alleles, which may 
be restricted to a geographic region in some cases (Kiyotani 
et al., 2020) (Figure 2, lower left panel), or cosmopolitan 
(Figure 2, upper left panel) in others (Barquera et al., 2020).

For successful vaccination strategies, it is critical to 
identify epitopes that can be recognized not only by one 
but multiple HLA allotypes and, consequently, cover a wide 
diversity of populations (Ahmed et al., 2020; Barquera et 
al., 2020). Studies with SARS-CoV-1 drew attention to the 
binding affinity of viral epitopes based on the functional 
classification of HLA supertypes (groups of molecules sharing 
chemical properties in the B and F pockets of the peptide 
binding region). As expected, allotypes belonging to the same 
supertype had an affinity to similar viral peptides. In contrast, 
those belonging to different supertypes had little overlap in 
the repertoire of viral peptide sets (Sylvester-Hvid et al., 
2004). The A3 supertype (HLA-A*03:01 and HLA-A*11:01) 
has an affinity to the greatest range of SARS-CoV-1 epitopes 
(Sylvester-Hvid et al., 2004; Blicher et al., 2005).

Certain HLA supertypes are geographically widely 
distributed. For example, supertype A3 (alleles from the 
A*03, A*11, A*30, A*31, A*33, A*66, A*68, and A*74 allele 
groups) is present in at least 44% of the world population 
(Sette and Sidney, 1999). Moreover, the frequency distribution 
of supertypes is relatively conserved worldwide (Dos Santos 
Francisco et al., 2015), which allows the distribution and 
frequencies of supertypes to also be taken into account in the 
development of vaccines. In studies for SARS-CoV-2 vaccines, 
there has been an active effort to identify candidate peptides 
for which the widely distributed supertypes A3 and B7 have 
a strong affinity (Kalita et al., 2020), however, these studies 
are still in the early stages of development.

A major effort of vaccine development is to induce 
CD8+ cytolytic T lymphocytes (CTL) and CD4+ T-helper 
immune responses (Ahlers and Belyakov, 2010), and the 
HLA+peptide complex plays a crucial role in this process. 
Vaccine development requires a detailed investigation of 
how SARS-CoV-2 antigens interact with the immune system. 
However, experimental approaches require long periods of 
study, which represents a challenge due to the urgency required 
for the development of effective COVID-19 vaccines. 
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Figure 2 ‒ Global distribution of HLA alleles that are either strong or weak binders of SARS-CoV-2 epitopes. Upper left panel: The frequency of the 
predicted SARS-CoV-2 strong binder HLA-B*15:03 is high in African populations (usually > 8%) and rare among Europeans, Asians, and Americans. 
Lower left panel: The frequency of the predicted SARS-CoV-2 weak binder HLA-B*14:02 is high in American populations, particularly Brazil, and 
also among European and Africans. Upper right panel: The frequency of the cosmopolitan allele A*24:02. Lower right panel: The frequency of the 
Asian-restricted B*46:01 allele. Frequency data were obtained from the Brazilian and 1000 Genomes high-coverage sequencing data processed with 
specific HLA bioinformatics workflow (Naslavsky et al., 2020), and from the allelefrequencies.net website (Gonzalez-Galarza et al., 2020). 

Reverse vaccinology assesses the pathogen genome 
using bioinformatic tools to predict promising target epitopes. 
Combining it with HLA binding predictions may be an 
interesting path for vaccine discovery (Enayatkhani et al., 
2020; Ong et al., 2020; Tahir Ul Qamar et al., 2020). However, 
it selects a reduced set of antigens that can better meet a 
vaccine’s requirements: activation of the immune response 
and effectiveness for most individuals in the population. This 
strategy does not rule out the vaccine development and testing 
validation steps required by regulatory agencies to prove the 
safety and effectiveness of vaccines.

HLA expression in the context of infectious diseases

The differential expression of HLA is also associated 
with susceptibility to viral infections. For example, higher 
HLA-C expression leads to a better control of HIV-1 infection 
(Thomas et al., 2009; Kulkarni et al., 2011; Apps et al., 
2013; Bachtel et al., 2018; Parolini et al., 2018); HLA-DP 
expression has been associated with HBV clearance (Thomas 
et al., 2012; Ou et al., 2019); HLA-DR levels were shown 
to correlate with susceptibility to infection by bat Influenza 
A viruses in human cell lines (Karakus et al., 2019). In a 
transcriptome-wide association study, Kachuri et al. (2020) 
identified a predominance of associations in HLA class II genes 

between expression levels and antibody response to multiple 
prevalent viruses (such as EBV, Herpes, and polyomavirus 2).

Understanding how HLA expression varies among 
individuals, alleles, and tissues can illuminate the role of 
HLA genes in SARS-CoV-2 infection. Many studies have 
profiled HLA alleles with respect to their ability to present 
SARS-CoV-2 peptides and have identified strong and weak 
binders. The integration of such data with expression levels 
could lead to the identification of HLA alleles which are 
both strong binders and have sufficient expression levels to 
efficiently elicit an immune response to the virus. 

The study of HLA expression is an area of active 
research and can be undertaken using a wide array of methods. 
Developments include qPCR-based (Ramsuran et al., 2015) 
and antibody-based (Apps et al., 2013) approaches to estimate 
mRNA and surface protein levels, respectively, as well as 
next generation sequencing (NGS) assays (RNA-seq) that 
aim to estimate HLA expression at the levels of isoforms or 
HLA alleles (Cole et al., 2020), and bioinformatics pipelines 
to extract accurate HLA information from standard RNA-seq 
data for whole transcriptomes (Boegel et al., 2012; Lee et al., 
2018; Aguiar et al., 2019; Orenbuch et al., 2020).

However, there is still scarce knowledge on HLA 
expression in COVID-19. Previous studies of SARS-CoV-1 and 
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MERS-CoV indicate that coronaviruses induce transcription 
changes in infected tissues, including the modulation of HLA 
genes (Josset et al., 2013; Menachery et al., 2018). The few 
studies so far on HLA expression in SARS-CoV-2 infection 
suggest a down-regulation of HLA expression at the mRNA 
level (Vastrad et al., 2020; Wilk et al., 2020) and at the  
protein level (Zhang et al., 2020c). These findings indicate 
that obtaining expression estimates at different levels (mRNA, 
protein) may help understand HLA regulation in COVID-19.

Whether and how HLA expression affects SARS-CoV-2 
infection will also require  the disentanglement of different 
effects to pinpoint which are causal. For example, the protective 
effects of some HLA alleles may result from the overall gene 
expression levels which they mark (Thomas et al., 2009; 
Thomas et al., 2012; Apps et al., 2013; Wissemann et al., 
2013); some HLA GWAS SNPs may be non-independent of 
HLA eQTLs, and HLA eQTLs may be linked to specific HLA 
lineages (Aguiar et al., 2019).

It may also be necessary to investigate factors located 
elsewhere in the genome. For example, HLA-C surface levels 
were associated with a 3’-UTR microRNA binding site, and 
variation in the microRNA expression itself influences HLA-C 
levels (Kaur et al., 2017). For HLA class II genes, CIITA is an 
important transactivator that affects HLA expression regardless 
of the HLA allele (Carey et al., 2019). Although CIITA plays 
additional roles in antiviral responses which are not mediated 
by HLA (Forlani et al., 2016; Bruchez et al., 2020), previous 
studies reported a downregulation of both CIITA and HLA 
in MERS-CoV (Josset et al., 2013; Menachery et al., 2018), 
thus indicating a putative role of the CIITA-HLA interaction 
in coronavirus diseases.

Killer-Cell Immunoglobulin-Like Receptor  
(KIR) Molecules Bind HLA and Are Essential  
for Innate Immunity

Although the primary focus of HLA research is related 
to antigen presentation to T cells, certain HLA molecules 
evolved and specialized as ligands for natural killer (NK) cell 
receptors, activation of the immune response or modulation 
of its effectiveness (Kiessling et al., 1975; Herberman and 
Ortaldo, 1981) (Figure 3). Their cytotoxicity against target 
cells is mediated by surface receptors that recognize abnormal 
patterns that are characteristics of infected and neoplastic cells 
(Parham, 2004; Bottino et al., 2005).

Among the variety of NK cell receptors, the killer-cell 
immunoglobulin-like receptor (KIR) family stands out as the 
most polymorphic and most explored in the context of diseases. 
KIR molecules control NK cells’ activating and inhibitory 
signals toward target cells and are regulated by interactions 
with HLA class I molecules. Infection by several pathogens 
or neoplastic transformation frequently results in abnormal 
expression of HLA class I on the cell surface. Abnormal HLA 
expression ultimately affects the balance of activating and 
inhibitory signals transduced by NK cell receptors, which 
triggers the cytotoxic response (Ljunggren and Kärre, 1990; 
Yawata et al., 2008).

The KIR complex is located at the chromosome region 
19q13.42 (Wilson et al., 1997; Wende et al., 1999) and consists 
of 13 genes and two pseudogenes that exhibit an uncommon 

structural variation of presence and absence of genes and a 
high allelic polymorphism. There is growing evidence that KIR 
and HLA are coevolving as a unique and complex system and 
are important for human survival (Augusto and Petzl-Erler, 
2015). Among all HLA class Ia molecules, HLA-C originated 
more recently and evolved to primarily bind KIR and regulate 
NK cell response, while HLA-A and HLA-B retained their 
primary function as T cell ligands (Older Aguilar et al., 2010). 
Combinations of KIR-HLA have been associated with diseases 
(Williams et al., 2005; Kulkarni et al., 2008; Augusto, 2016; 
Boudreau and Hsu, 2018), including infection (Martin et al., 
2007; Podhorzer et al., 2017; Alves et al., 2019; Auer et al., 
2020), cancer (Middleton et al., 2007; Al Omar et al., 2010; Kim 
et al., 2014), and autoimmunity (Suzuki et al., 2004; Augusto 
et al., 2012; Hollenbach et al., 2016; Anderson et al., 2020).

Variation in genes encoding receptors for natural killer 
(NK) cells deserves special attention in host genetics affecting 
the susceptibility to any viral infection, including SARS-
CoV-2. For SARS patients, low CD3+, CD4+, CD8+, and NK 
cell counts might be prognostic indicators to predict admission 
to intensive care unit (ICU) for SARS patients (Chan et al., 
2004). The number of NK cells increased with recovery from 
SARS, but did not return to normal levels even at the 5th week 
after the disease onset (Dong et al., 2004). Not only were NK 
cell counts significantly reduced in SARS patients, but so was 
the proportion of NK cells expressing the receptor KIR2DL2/3 
(CD158b) (National Research Project for SARS, Beijing Group 
2004). Moreover, the number of NK and also KIR2DL2/3+ 
NK cells correlated with disease severity and anti-SARS 
coronavirus-specific antibodies. More recently, as previously 
observed for SARS-CoV-1 infection, severe COVID-19 cases 
exhibited lower counts of NK cells (Jiang et al., 2020; Qin 
et al., 2020; Sun et al., 2020; Wang et al., 2020b), especially 
COVID-19 patients admitted to ICU in comparison to no-
ICU patients (Bordoni et al., 2020). Combined with the high 
infiltration of NK cells in the lung from mice infected with 
SARS-CoV-1 (Yao et al., 2020), these observations provide 
compelling evidence that NK cells and their receptors may 
be critical players for immune responses to coronaviruses.

The presence of KIR2DL2/3, whose expression on 
the NK cell surface was previously implicated with SARS 
(National Research Project for SARS, Beijing Group 2004), 
and of their HLA-C ligands were associated with hepatitis 
B (Gao et al., 2010; Di Bona et al., 2017; Auer et al., 2020). 
The extensive variation of the KIR genes and the associations 
with other viral diseases certainly make the KIR family a 
critical candidate for NK-cell-related COVID-19 studies. A 
recent meta-analysis (Leite et al., 2021) found no association 
between the presence/absence of KIR genes and COVID-19 
case fatality rate. However, few studies addressed KIR in 
COVID-19 and much additional work is needed to ascertain if 
KIR haplotypes, genotypes, and alleles, as well as KIR/HLA 
compound genotypes are involved in the risk of SARS-CoV-2 
infection and COVID-19 outcomes.

The NKG2A (NK group 2 member A) in another  
NK cell receptor that may be involved in the SARS-CoV-2 
response. This receptor recognizes HLA-E as a ligand, 
suppressing NK cell cytokine secretion and cytotoxicity 
(Borrego et al., 1998; Braud et al., 1998; Lee et al., 1998). 



Immunogenetics and COVID-19 7

 

Figure 3 ‒ Predicted HLA involvement in T cell, B cell, and NK cell responses to SARS-CoV-2 infection. Left: T and B cells are central to adaptive 
immunity, whose effectivity is influenced by the individual’s HLA genotype. (1a) Dendritic cells (DC) present viral peptides bound to HLA Ia and HLA 
II to, respectively, CD8+ and CD4+ T cell clones displaying specific TCR. (1b) The effector cytotoxic CD8+ T cell recognizes the infected target cell by 
interaction of its specific receptor (TCR) with HLA Ia/peptide on the target and lyses the infected cell. (2a) B cells bind viral antigens through specific 
membrane immunoglobulin receptors (BCR). The internalized antigens go through the class II pathway and HLA II plus viral peptide displayed at the B 
cell membrane are recognized by the previously primed helper CD4+ T cell to activate the B cells. (2b) The activated B cells differentiate in antibody-
secreting plasma cells. The neutralizing specific antibodies bind to the virus’s antigen, blocking the viral entry into the cell. Other types of antibodies 
(not shown) may bind to viral antigens at the surface of infected cells to recruit NK cells or trigger the complement cascade. Besides, all the cell-cell 
interactions indicated in this schematic view depend on signals by accessory membrane molecules (not shown) and soluble factors such as interferons 
and specific sets of cytokines. Right: The natural killer cells (NKc) are important players in innate immunity. NKc repertoires differ among individuals 
due to the high polymorphism of KIR and HLA class I, resulting in differential susceptibility to infection and disease. (3a) Each individual has numerous 
NK cell clones that differ for the number and types of inhibitory and activating KIR receptors. (3b) During NKc development, the high-affinity binding 
of inhibitory KIRs (iKIR) with HLA class I (HLA I) enhances the functions of NKc through a process known as licensing. The strength of the interactions 
depends on the individual’s HLA and KIR genotype and dictates the efficiency of mature NK effector function. (4a) The KIR/HLA I interaction inhibits 
apoptosis of the infected cells even in the presence of activating interactions, especially of NKc licensed by strong interactions; (4b) signaling by the 
activating receptor/ligand leads to apoptosis of the infected target cell when HLA I is absent; (4c) strong activating signals may overcome the iKIR/HLA 
I interaction especially if this interaction is weak, resulting in apoptosis of the target. Moreover, in severe COVID-19, NKc often are reduced in number 
and dysregulated. Figure created with Biorender.

Moreover, NKG2A expression induces NK and CD8+ T cells 
to functional exhaustion in viral infections (Li et al., 2013; 
André et al., 2018). COVID-19 patients exhibited increased 
expression of NKG2A in comparison to controls, as well 
as characteristics of functional exhaustion of cytotoxic 
lymphocytes (Zheng et al., 2020). Like KIR, NKG2A is critical 
for the education of NK cytotoxicity in early developmental 
stages (Fauriat et al., 2010; Boudreau and Hsu, 2018; Zhang 
et al., 2019), and variation in KIR, NKG2A, and their HLA 
ligands could be responsible for differential immune responses 
against SARS-CoV-2.

GWAS or Candidate Gene Approaches?
The position of HLA and KIR at the interface between 

hosts and pathogens, and the extensive list of associations 
between these loci and diseases, make them obvious candidates 
when looking for genetic variation associated with COVID-19. 

However, in the contemporary era of genomic studies, when 
the whole genome can be routinely queried to identify genetic 
variants contributing to a phenotype of interest, what could be 
the rationale for carrying out methods that focus specifically 
on a subset of loci (i.e., a candidate gene approach)?

The ability to analyze hundreds of thousands or millions 
of SNPs in microarray-based or NGS-based genome-wide 
association studies (GWAS) allows the discovery of multiple 
susceptibility loci in a single study. This exploratory approach 
is not based on hypotheses, thus permitting the identification 
of associations with variants that would not even be suspected 
to be involved in the disease. In fact, GWAS have already 
identified loci associated with phenotypes of SARS-CoV-2 
infection (Ellinghaus et al., 2020; Pairo-Castineira et al., 2020). 

However, here we argue that GWAS as implemented 
leave out relevant variation at HLA, KIR, and other immune-
related loci (also discussed in Kwok et al., 2020). These loci 
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warrant the development of specific approaches to generate 
data for candidate gene studies, or that can be integrated 
into a GWAS, allowing to appropriately analyze their role 
in the host’s responses to infection by SARS-CoV-2 and the 
development of COVID-19.

Even though microarray-based methods can be cost-
effective and provide genome-wide genotypic data, they can 
offer only a coarse map of associations. The SNP microarrays 
include a limited number of variants in comparison to the 
total existing variation, and a substantial portion of genetic 
variation is not captured. This may prove critical in analyses 
of HLA or KIR, where tag-SNPs in the microarray capture 
only a fraction of their variation. 

Another limitation that affects both SNP microarray-
based GWAS and whole genome sequencing-based approaches 
is the existence of technical hurdles that preclude genotyping 
coverage for several immune-related regions. Many genes 
involved in immune responses are extraordinarily polymorphic 
and were originated by duplications or recombination events. 
For example, the uncommon structural variation of KIR 
and high homology among genes result in a lack of suitable 
reference alignments to include KIR specific SNPs in GWAS 
arrays. The extensive gene-content variation in KIR haplotypes 
is incompatible with pre-analysis quality control thresholds 
typically used in GWAS. Even the ImmunoChip, which was 
explicitly enriched for this region, only identifies non-coding 
variants of a single common KIR haplotype (Cortes and Brown, 
2011). For example, associations between hepatitis B and C 
viral infections or diseases and KIR have been observed in 
candidate gene studies (Gao et al., 2010; De Re et al., 2015; 
Di Bona et al., 2017; Shan et al., 2018; Auer et al., 2020), but 
were missed in GWAS (Li et al., 2016; Vergara et al., 2019).

Consequently, the direct association of disease risk with 
KIR variation has only been detectable by targeted approaches. 
Other immune system genes, such as immunoglobulin genes, 
LILR, among others, are also poorly covered in GWAS for 
similar reasons (Horton et al., 2006; Calonga-Solís et al., 
2019; Guselnikov and Taranin, 2019; Lefranc and Lefranc, 
2020). HLA genes, on the other hand, may be imputed from 
SNP microarray data. However, as discussed below, this 
approach has limitations that may prevent the discovery of 
relevant associations. Although the MHC region is frequently 
observed in GWAS (Lenz et al., 2016), the associated HLA 
alleles or haplotypes are usually missed. Thus, for example, 
known associations of HLA and malaria were not found in 
GWAS (Kwok et al., 2020).

Taken together, these points suggest that generating 
data for KIR, HLA and other genes of the immune system 
using specific methods may be essential to obtain reliable 
data for these loci.

Strategies for obtaining HLA and KIR data

The analysis of HLA and KIR loci and their effects on 
a complex phenotype such as COVID-19 can be carried out 
in three main frameworks. First, extracting SNP data from 
microarray-based genotyping methods (SNP microarrays). 
Secondly, when whole-genome sequencing (WGS) or whole-
exome sequencing (WES) data are available, the sequence 
reads that align to the loci of interest can be selected and 

processed with appropriate bioinformatics tools to generate 
SNP and allele calls. Finally, it is possible to obtain HLA 
data from targeted sequencing through either amplicon or 
probe-based capture approaches, as many commercial HLA-
genotyping kits also do. 

When using microarray-based genotyping data, it is 
possible to infer genotypes of different HLA and KIR genes 
using SNP data from surrounding regions, an approach known 
as imputation. The advantage of extracting HLA and KIR data 
from SNP microarrays is the possibility of analyzing these 
genes jointly with the genome-wide information, boosted with 
the relatively reduced costs of the SNP microarrays. Although 
powerful, HLA imputation is hampered in cases where there is 
a sparsity of informative markers, which varies among different 
SNP microarrays and platforms. Imputation methods have 
delivered HLA genotyping at two-field resolution (protein-
level) with accuracy ranging from 89% to 98%, depending 
on the locus and the population (Zheng et al., 2014; Pappas et 
al., 2018; Geffard et al., 2020; Chen et al., 2021). Therefore, 
high-resolution genotypes may be missed, and the inaccuracies 
could eventually lead to false discoveries. For KIR, imputation 
methods from SNP microarrays are limited to the assessment 
of the presence and absence of specific genes (Vukcevic et 
al., 2015; Chen et al., 2021) because the platforms usually 
include very few SNPs within the KIR region.

In addition, a major challenge to imputation is the 
informativeness of the reference panel (i.e., a large subset of 
samples with both the SNP microarray data and also HLA and 
KIR alleles genotyped by other methods) for the target sample. 
Despite efforts (Levin et al., 2014; Okada et al., 2015; Tian 
et al., 2016; Naslavsky et al., 2020), most reference panels 
are underrepresented for non-European and/or populations 
of mixed ancestry (Zheng et al., 2014; Neville et al., 2017), 
compromising the accuracy of HLA allele imputation for these 
groups (reviewed in Meyer and Nunes, 2017). For these reasons, 
there are worldwide initiatives to build better reference panels 
that include samples of under-represented populations, such 
as the Brazilian (Naslavsky et al., 2020; Vince et al., 2020). 

In this context, WGS and WES data are more attractive 
– though costly – source of HLA and KIR data. However, the 
paralogy and extreme polymorphism make it challenging to 
obtain accurate HLA genotypes from WGS. Mapping short 
sequencing reads to reference genomes leads to mapping 
bias and loss of information (Brandt et al., 2015), potentially 
resulting in erroneous genotyping. Mapping bias is related 
to two different issues. First, reads carrying many nucleotide 
differences compared to the reference often fail to align, leading 
to an overestimation of reference alleles. Second, the cross-
mappings between very similar genes reinforce the previous 
problem and result in the detection of false-positive variants. 
Bioinformatic approaches have been developed to overcome 
these difficulties for HLA genes: hla-mapper (Castelli et al., 
2018) and MHC-PRG (Dilthey et al., 2015) improve mapping 
at the HLA region and accuracy of SNP calls; SNP2HLA (Jia 
et al., 2013), HLA*PRG (Dilthey et al., 2016), HLA-VBSeq 
(Nariai et al., 2015), Kourami (Lee and Kingsford, 2018), 
HLAminer (Warren et al., 2012), and OptiType (Szolek et al., 
2014) infer HLA alleles directly from short-read sequencing 
data. There are fewer methods available for KIR genes.  
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KIR allele genotypes can be obtained from NGS data using 
the software PING (Norman et al., 2016; Marin et al., 2021), 
however the cost and computational efforts of analyzing WGS 
data is a limitation. 

Each method has pros and cons, depending on the data 
available, the number of samples, and the level of resolution 
needed. For instance, OptiType is highly accurate to predict 
two and three-field resolution alleles in a single sample basis. 
However, its database is outdated, and it fails to discriminate 
alleles differing only in introns and regulatory sequences. 
HLA-VBSeq also predicts HLA alleles for individual samples, 
but its accuracy is lower than other methods. Hla-mapper 
optimizes read alignment in HLA genes, allowing accurate 
detection of SNP-level genotypes in exons, introns, and 
regulatory sequences, at the cost of large sample sizes to 
obtain correct haplotypes. Another essential issue is the 
bias potentially introduced by hybridization-based capture 
panels not specifically designed for HLA and KIR genes 
(such as WES). The polymorphic nature of HLA and KIR 
may jeopardize the capturing, losing some exonic regions, 
or only capturing the segments that resemble the reference 
genome, thus leading to an overestimation of reference alleles. 
Although some of the methods presented above are compatible 
with WES, the use of exome data to determine HLA and KIR 
alleles should be carried out with caution, since the outcome 
might not represent the correct genotype distribution. Thus, 
accuracy of HLA and KIR allele calls may be lower for WES 
when compared to WGS unless specific panels designed for 
HLA and KIR genes are used.

Finally, targeted sequencing can provide the most 
precise high-quality data for HLA and KIR. However, this 
strategy lacks information that allows the analysis of HLA 
and KIR in combination with other regions of the genome. 
An interesting alternative is integrating targeted sequencing 
with a genome-wide approach. For example, Ellinghaus et 
al. (2020) used microarrays to perform a GWAS and applied 
targeted sequencing to genotype HLA for the association 
analysis with respiratory failure in COVID-19 patients.

None of these approaches for generating HLA and KIR 
data is universally preferable. The strategy to be used will 
depend on the research aims, available funding, synergy with 
other projects, and the intended speed of delivering results. 
Regardless of the approach, we emphasize that the complexity 
of HLA and KIR requires customized methods, or at least 
specific bioinformatic tools to process sequencing data.

Analytical strategies for HLA and KIR in association 
studies

Our understanding of how HLA influences susceptibility 
and resistance to autoimmune and infectious diseases and 
how HLA and KIR genes have evolved, helps in planning 
the statistical analyses used in association studies. First, in 
addition to interrogating SNPs, it is possible to test individual 
HLA and KIR alleles or HLA supertypes (Ellinghaus et al., 
2020), since these are more informative about the functional 
effects of the HLA molecules. Besides, it is feasible using HLA 
and KIR alleles as covariates to identify SNP associations that 
are independent of the HLA alleles or haplotypes (Kachuri 
et al., 2020).

Another strategy is to code individuals with respect to 
their heterozygosity over all classical HLA loci, the premise 
being that individuals that carry a larger number of distinct 
alleles are more likely to mount an effective response to 
viral epitopes. This last approach can be further refined by 
quantifying how much the alleles of an individual differ from 
each other at the amino-acid level, a measure which Arora et al. 
(2020) found to be correlated to HIV replication. Ellinghaus et 
al. (2020), in their association study of severe COVID-19 with 
respiratory failure, tested for both the multilocus heterozygosity 
and the amino acid divergence, but neither was significantly 
different between cases and controls in their study.

A final challenge for studies on host genetics of COVID-19  
refers to the study design itself. While association studies 
of HLA or KIR and disease phenotypes are most frequently 
developed in a case-control format, it is by no means clear 
that this is appropriate for COVID-19. In many countries, 
including those most affected by the pandemic, the first set 
of GWAS were carried out at a time when less than 10% of 
the population had been infected. Thus, random population 
samples of unaffected individuals comprised a mixture of 
genetic backgrounds, ranging from possibly susceptible to 
resistant. This problem likely affected previous studies of SARS 
and MERS. However, it may be overcome for COVID-19 
due to the substantially larger number of infected individuals, 
and the wide range of disease phenotypes. Accordingly, most 
studies have focused on comparing “extreme phenotypes”, a 
strategy that may increase the power to detect genetic effects. 
In this context, it is of utmost importance to carry on studies 
comparing the genetic background of individuals that have 
been exposed to the infection without developing the disease 
(e.g., individuals living in the same house as infected patients) 
and compare them to those who have contracted COVID-19.

Host Genetics Beyond HLA and KIR
Apart from HLA and KIR, we will now focus on the 

genes and genetic systems involved in antiviral immune 
responses that may also be strong candidates for hypothesis-
driven COVID-19 studies. Some of the proteins whose genetic 
variants may be involved in the infection by SARS-CoV-2 
or COVID-19 are presented in Figure 4, in the context of an 
effective antiviral response. The examples we present do not 
intend to cover the full scope of the genetics of viral infections. 
Instead, they reveal a small portion of the complexity of the 
immunogenetics of infectious diseases. 

Cytokines and chemokines and their receptors
The cytokine release syndrome (CRS) or “cytokine 

storm” results from the over-production of soluble mediators 
of inflammation, which, in turn, sustain an uncontrolled 
systemic inflammatory response. The CRS characterizes a 
broad spectrum of non-infectious and infectious diseases, 
including SARS and MERS, and is common in patients with 
severe COVID-19 (Coperchini et al., 2020). CSR contributes to 
the disease’s pathophysiology, including hyper inflammation, 
thrombosis, hypotension, and pulmonary dysfunction in acute 
respiratory distress syndrome (ARDS) (Moore and June, 2020; 
Coperchini et al., 2020). 

The levels of multiple cytokines and chemokines were 
significantly higher in SARS-CoV-2 infected patients and 
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Figure 4 ‒ Some critical molecules involved in antiviral innate immune response, whose loss-of-function mutations and polymorphisms may result in 
severe COVID-19. SARS-CoV-2 entry into the cell is mediated by TMPRSS2 (transmembrane protease, serine 2) and the receptor ACE2 (angiotensin-
converting enzyme 2). (1) The interferon-induced transmembrane proteins (IFITM) may inhibit the entry of viruses to the host cell cytoplasm. (2) The 
interferon-induced GTP-binding protein MXA may block endocytic traffic of incoming virus particles. (3) The 2’-5’-oligoadenylate synthase 1 (OAS1) 
binds ribonuclease L (RNase L) leading to its activation with subsequent degradation of the viral and cellular RNA, thus terminating viral replication. (4) 
Toll-like receptors 3 and 7 (TLR3, TLR7) recognize viral RNA leading to activation and (5) nuclear translocation of transcription factors NF-kappa-B 
(NF-kB) and IFN regulatory factors 3 and 7 (IFR3, IRF7). (6) IFR3 and IRF7 regulate the transcription of type I IFN genes (IFN-alpha and IFN-beta) 
and IFN-stimulated genes (ISG); NF-kB is a pleiotropic transcription factor crucial for regulation of numerous genes involved in immunity and other 
biological processes, such as apoptosis. (7) The lysosomal enzymes digest viral components in the phagolysosome. (8) Type I and III (IFN-lambda) 
interferons, NF-kB, and cytokines promote expression of numerous genes involved in innate and adaptive immune responses in different cells, including 
(9) up-regulation of HLA gene expression in antigen-presenting cells. Figure created with Biorender.

were associated with the severity of COVID-19 (Chi et al., 
2020; Huang et al., 2020). Dysregulated activation of the 
mononuclear phagocyte compartment may contribute to the 
COVID-19-associated hyper inflammation (Merad and Martin, 
2020). Activation of monocyte-derived macrophages by 
factors released from SARS-CoV-2 infected alveolar epithelial 
cells, activated T cells, and others, release massive amounts  
of IL-6 and other proinflammatory cytokines that initiate 
downstream signaling pathways. Also, the interaction of 
circulating activated monocytes and activated or damaged 
endothelial cells may trigger the extrinsic coagulation 
pathway, leading to intravascular blood clotting. This process 
can be amplified by the recruitment of neutrophils by the 
activated endothelial cells, which triggers the intrinsic / contact 
coagulation pathway (Merad and Martin, 2020).

Associations with variants in the genes encoding 
inflammatory cytokines, chemokines, and their receptors, 
have been reported for many diseases. They include anti-
inflammatory cytokines or those that exert both pro- and 
anti-inflammatory effects, like TGF-b, IL-4, IL-10, and IL-27. 
Examples of viral diseases are the respiratory syncytial virus 
(RSV) infection (Gentile et al., 2003) and hepatitis B virus 
infections (Gusatti et al., 2016). No doubt, a comprehensive 
study of cytokine and chemokine genetic variation and 
expression levels will shed light on COVID-19 and its 
complications. 

A strong association between COVID-19 and respiratory 
failure with a genomic region at 3p21.31 was reported in a 
GWAS of Italian and Spanish patients with severe disease 
(Ellinghaus et al., 2020). The association signal revealed a 
cluster of several protein-coding and lncRNA genes, although 
the data could not reliably implicate a causal gene. However, 
three of the six protein-coding genes encode chemokine 
receptors, including the C-C motif chemokine receptor 9 
(CCR9), the C-X-C motif chemokine receptor 6 (CXCR6), 
and the X-C motif chemokine receptor 1 (XCR1) (Ellinghaus 
et al., 2020). Thereafter, results from two GWAS confirmed 
the association with this region at chromosome 3p21.31 
(COVID-19 Host Genetics Initiative 2020) | GWAS meta-
analyses round 5 2021; Shelton et al., 2021). This genomic 
region has a large effect on COVID-19 morbidity and mortality. 
The effects are similar to or larger than the ones of most 
established risk factors and are age-dependent, such that the 
risk is higher in younger individuals (Nakanishi et al., 2021). 

The associated genetic variants in 3p21.31 are all in 
strong linkage disequilibrium - LD (r2 > 0.98) and span almost 
50 kb. This haplotype occurs in South Asia at a frequency 
of 30%, in Europe at 8%, and at lower frequencies in East 
Asia, but is absent in Africans. Therefore, the analysis of 
Africans could help to narrow-down the COVID-19 causal 
variant(s). Interestingly, the same extended haplotype was 
found in 50,000 to 120,000 old Neanderthal genomes, leading 
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to the conclusion that it is inherited from Neanderthals 
(Zeberg and Pääbo, 2020). The unusually contrasting haplotype 
frequencies between South and East Asia indicate the effect 
of natural selection, possibly because of the exposure of these 
populations to different pathogens in the past. Concerning 
the SARS-CoV-2 pandemic, the chromosome 3 haplotype is 
now under negative selection with dramatic consequences 
(Zeberg and Pääbo, 2020). 

The complement system

The complement system comprises a network of dozens 
of soluble and cell membrane proteins that work in a coordinated 
manner towards the activation of three pathways – the classical, 
alternative, and lectin pathways (reviewed in Beltrame et al. 
(2015) and Reis et al. (2019)). These pathways are crucial 
in innate immunity and crosstalk with the adaptive response 
components, influencing disease outcomes. 

Both deficient and excessive activation of the complement 
molecules may be harmful to the host. Complement system 
deficiencies are frequently associated with increased 
susceptibility to infections and adverse manifestations in 
other diseases, especially in immunocompromised patients 
(reviewed in Beltrame et al., 2015; Reis et al., 2019). Conversely, 
abnormally increased levels of complement proteins, which 
are partially explained by genetic variation, may contribute 
to hyperinflammatory responses, observed also in severe 
COVID-19. Further, the complement system is also involved 
in other biological processes, including coagulation, which 
has been implicated in various COVID-19 complications 
(Bumiller-Bini et al., 2021). 

Some features of severe COVID-19 suggest that 
complement activation is possibly playing a critical role 
in the pathogenesis of this disease, particularly during 
exaggerated immune responses (Java et al., 2020). Genetic 
variants of several complement regulatory proteins and 
factors, including CD55(DAF), CFH, C3, C4BPA, and 
COLEC11, have been associated with adverse COVID-19 
clinical outcomes (Ramlall et al., 2020). The comparison of 
postmortem lung biopsies of COVID-19 and H1N1 patients 
and control patients who died of causes not involving lung 
lesions showed higher expression of FCN3 (ficolin 3) in 
both diseases compared to the control group. The MBL2 
(mannose-binding lectin) level was increased only in the  
COVID-19 group (Malaquias et al., 2020). Instead, low MBL2 
serum levels and a variant of the gene MBL2 were pointed 
out as risk factors for SARS-CoV-1 infection that causes the 
COVID-19-related disease SARS (Zhang et al., 2005).

Toll-like receptors and genes involved in type I 
interferon regulated immunity

Cells detect pathogen-associated molecular patterns 
(PAMP) through pattern-recognition receptors (PRR), which 
allows semi-specific recognition of pathogenic microorganisms 
and viruses and influences innate and adaptive immune 
responses. The toll-like receptors (TLR) constitute one of 
the PRR classes (reviewed by Frazão et al., 2013). The 
surface receptors TLR1, TLR2, TLR4, TLR5, TLR6, and 
TLR10 are mainly responsible for detecting components from 
extracellular bacteria and fungi. However, these receptors 

also detect viral capsid proteins, including the SARS-CoV-2 
S-protein (Choudhury and Mukherjee, 2020). Conversely, 
the intracellular TLR3, TLR7, TLR8, and TLR9 primarily 
recognize nucleic acids from viruses and bacteria. The TLRs 
upregulate anti-viral and pro-inflammatory mediators and, 
therefore, modify the infection’s outcome positively, limiting 
the viral load, or negatively, by triggering the exacerbated 
inflammation associated with the CRS.

In the Netherlands, whole-exome sequencing was 
performed for four young men hospitalized with severe 
COVID-19, all without a history of major chronic diseases. 
The two brother pairs were aged 32 and 29 (family 1, Dutch 
ancestry), 23 and 21 (family 2, African ancestry). One of 
the patients died. The study identified two different rare 
novel TLR7 loss-of-function variants (van der Made et al., 
2020). The analysis of men with severe COVID-19 aged 
less than 60 years found TLR7 deleterious missense variants 
in 2.1% of the patients and in none of the asymptomatic 
participants (Fallerini et al., 2021). In both studies, the 
TLR7 variants were associated with impaired type I and II 
IFN responses. Recessive or incompletely dominant loss-of-
function mutations of TLR7 and other X-chromosomal genes 
such as ACE2 (that encodes angiotensin-converting enzyme 
2, the cellular receptor for SARS-CoV-2) and NEMO (encodes 
NF-kappa-B essential modulator, a regulatory protein involved 
in antiviral response) may be partly responsible for the 
higher risk of severe COVID-19 and higher death rates in 
men compared to women (Espinosa et al., 2020; Patil et al., 
2020). Moreover, less detrimental common and rare variants 
of TLRs and other PRRs could contribute to the polygenic 
component of the COVID-19 susceptibility. 

Rare variants at 13 genes known to govern TLR3- 
and IRF7-dependent type I interferon (IFN) immunity to 
viruses were searched in 659 patients with severe COVID-19 
pneumonia and 534 individuals with asymptomatic infection or 
mild disease. The study unveiled 24 loss-of-function variants 
underlying autosomal recessive or dominant deficiencies in 
23 (3.5%) of critically ill patients, aged 17 to 77 (Zhang et al., 
2020a). The 24 mutations were found in 8 of the 13 genes: 
TLR3, UNC93B1 (protein unc-93 homolog B1 that regulates 
nucleotide-sensing TLR signaling), TICAM1 (TIR domain-
containing adapter molecule 1, a cytoplasmic viral sensor which 
participates in activation of transcription factors and induction 
of proinflammatory cytokines), TBK1 (a multifunctional serine/
threonine-protein kinase that plays an essential role in the 
TLR3- and IFN-dependent control of viral infections), IRF3 
and IRF7 (IFN regulatory factors 3 and 7, key transcriptional 
regulators of type I IFN-dependent immune responses against 
DNA and RNA viruses), and IFNAR1 and IFNAR2 (IFN 
alpha/beta receptors 1 and 2, which associate to form the 
type I IFN receptor) (Zhang et al., 2020a). Polymorphisms 
of IFNAR2 and TYK2 (involved in the initiation of type I IFN 
signaling) were also associated with critical COVID-19 in 
a recent GWAS of individuals of mostly European descent 
(Pairo-Castineira et al., 2020). Moreover, evidence in support 
of a causal link between low expression of IFNAR2 and 
high expression of TYK2 with life-threatening COVID-19 
was reported (Pairo-Castineira et al., 2020). Remarkably, 
life-threatening COVID-19 pneumonia can also result from 
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auto-immune phenocopies of these inborn errors of type I 
IFN immunity. At least 10.2% (2.6% of women and 12.5% of 
men) of 987 critically ill COVID-19 patients had neutralizing 
IgG autoantibodies against type I IFNs; they were aged 25 
to 87 years and 95 were men. None of the 663 subjects with 
asymptomatic SARS-CoV-2 infection or mild COVID-19 had 
these autoantibodies, which were present in only 0.0033% of 
1,227 healthy individuals (Bastard et al., 2020). 

Proteins that antagonize viral entry into the host cell  
and replication

The 2’-5’oligoadenylate synthetase (OAS) protein 
family consists of the OAS1, OAS2, OAS3, and OAS-like 
(OASL) proteins. Type I and II IFNs induce synthesis of the 
OAS proteins that recognize exogenous nucleic acid to initiate 
antiviral pathways (Hovanessian and Justesen, 2007). The 
OAS1 is a tetrameric interferon-induced dsRNA-activated 
antiviral enzyme. It leads to dimerization and activation 
of ribonuclease L (RNase L), culminating in cellular and 
viral RNA degradation, thus inhibiting protein synthesis 
and viral replication. Alternatively, the antiviral effect can 
also be mediated via a pathway independent of RNase L 
(Uniprot | P00973, 2020). The paralogous genes OAS1-3 are 
closely linked at the chromosomal position 12q24.13 and are 
involved in the same general function of inhibiting the early 
viral replication. The fourth member of the family, OASL, is 
located at 12q24.31 and has anti- and pro-viral dual functions, 
which depend on various mechanisms and the phase of the 
infection (Choi et al., 2015).

The SNP rs2660 G>A in OAS1 was associated with 
SARS-CoV-1 infection in Han Chinese from Beijing. The 
allele rs2660*G conferred a dominant protective effect on 
SARS infection (He et al., 2006). Other viral infections are 
influenced by OAS gene variants or expression levels as well. 
OAS1-OAS3-OAS2 haplotypes were associated with clinical 
outcomes of dengue virus infection in India (Alagarasu et al., 
2013). The Zika virus (ZIKV) infection of A549 cells induces 
OAS2 expression that inhibits ZIKV replication through 
enhanced IFNβ expression, which leads to the induction of the 
Jak/STAT signaling pathway (Liao et al., 2020). Association of 
critical COVID-19 with rs10735079 in the OAS1-3 gene cluster 
was reported for a sample of mostly European ancestry in a 
recent GWAS (Pairo-Castineira et al., 2020) and increased 
levels of OAS1 decreases the susceptibility to COVID-19 
and, in particular, severe COVID-19 (Hernández-Cordero 
et al., 2021). The splice-site variant rs10774671*G in the 
gene OAS1 is associated with greater OAS1 expression and 
has strong alternative splicing quantitative trait loci (asQTL) 
effect on OAS1 (Sams et al., 2016) that results in higher levels 
of the p46 isoform and reduced COVID-19 susceptibility 
and severity (Zhou et al., 2021). Interestingly, rs10774671 
presents strong linkage disequilibrium (LD; r2 > 0.8) with 
other ~130 SNPs in non-Africans (including rs2669 and 
rs10735079 (cited above). In Africans, however, only weak 
LD is observed between rs10735079 and all other SNPs  
(r2 ≤ 0.5), according to LDlink (Machiela and Chanock, 2015). 
The reason for such distinct LD patterns among continental 
populations was explored and discussed in detail by Sams 
et al. (2016). The OAS genomic region exhibits an elevated 

frequency of Neandertal-derived alleles in non-African 
populations, despite the known purifying selection against 
Neandertal ancestry observed in humans (Sankararaman 
et al., 2014; Gallego Llorente et al., 2015). Therefore, the 
OAS Neandertal-introgressed haplotype was subjected to 
positive selection in human populations, possibly because it 
reintroduced the ancestral splice-site variant rs10774671*G 
(Sams et al., 2016). This is a magnificent example of the 
relevance of studying population genetics and evolution of 
immune-related genes and highlights why differences between 
African and non-African populations must be considered in 
future studies of OAS variation and SARS-CoV-2 infection.

The members of the interferon-induced transmembrane 
(IFITM) family are antiviral cell-intrinsic restriction factors 
that inhibit the viral entry into the host cells by restricting 
the membrane fusion. The IFITM proteins are active against 
SARS-CoV-1, influenza A virus, Ebola virus, dengue virus, 
HIV-1, among others (Bailey et al., 2014), and therefore are 
candidates for genetic studies in SARS-CoV-2 infection. The 
three paralogous IFITM1-3 genes are located at chromosome 
region 11p15.5. In a preliminary study of COVID-19, 
homozygosity for the C allele of rs12252 in the gene IFITM3 
was associated with more severe outcomes in an age-dependent 
manner (Zhang et al., 2020b). The splice-site variant rs12252 
is also a 5’UTR and synonymous variant of IFITM3, as well 
as a long non-coding RNA (lncRNA) variant (Ensembl | 
rs12252, 2020; GTEx Portal | rs12252, 2020). Future studies 
should explore multiple tag SNPs along the gene-dense 
genomic region that hosts the three IFITM genes (Ensembl | 
IFITM genes region, 2020), besides the NLRP6 (NLR family 
pyrin domain containing 6) gene that encodes the sensor 
component of the NLRP6 inflammasome and is involved in 
innate immunity and inflammation, and IRF7, already shown 
to be implicated in severe COVID-19 (see above).

The human myxovirus resistance protein MxA also plays 
an important role in the outcome of human viral infections. The 
intracellular MxA protein is induced by type I interferons and 
has broad activity against diverse RNA viruses and a few DNA 
viruses. MX2 produces nuclear and cytoplasmic MxB forms 
and has potent activity against human immunodeficiency virus 
type 1 (HIV-1) and herpesviruses (Staeheli and Haller, 2018). 
The MX1, MX2 and TMPRSS2 (transmembrane protease serine 
2, which is critical for SARS-CoV-2 host cell entry (Hoffmann 
et al., 2020), are closely linked at the chromosomal region 
21q22.3 and linkage disequilibrium in that region is strong (r2 
> 0.8) in non-African populations. The minor (less frequent) 
alleles of five SNPs correlated with high of MX1 expression in 
blood and a reduced risk of developing severe COVID-19 in 
Europeans (Andolfo et al., 2021). Previously, polymorphisms 
in the MX1 promoter associated with increased transcription 
in vitro were associated with decreased susceptibility to SARS 
in the Chinese Hong Kong population (Ching et al., 2010).

The blood groups

The biological role of ABO (alternatively ABH) blood 
groups and their effects on infections, immunity, thrombosis, 
cardiovascular disease, and metabolism have been thoroughly 
reviewed (Nordgren and Svensson, 2019; Stowell and Stowell, 
2019a,b). The synthesis of these histo-blood group antigens 
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is mediated by fucosyl- and glycosyltransferases under the 
genetic control of FUT2 (secretor), FUT3 (Lewis), and 
ABO(ABH) genes. The variants of these genes are associated 
with susceptibility to infection and the severity of many human 
pathogens, including Helicobacter pylori and Vibrio cholerae 
(Stowell and Stowell, 2019a) and Norovirus (Nordgren and 
Svensson, 2019). The highly diverse Noroviruses (or Norwalk-
like viruses) are the most common etiological agent of acute 
gastroenteritis worldwide, with the viral genotype GII.4 mostly 
implicated in human disease (Nordgren and Svensson, 2019). 
Disease susceptibility is dependent on the Norovirus genotype 
and is mediated by the presence or absence of the A, B, and/
or H antigens on gut epithelial surfaces, the so-called secretor 
phenotype (Nordgren and Svensson, 2019). Non-secretor 
individuals, those having a nonsense mutation in FUT2 that 
causes the expression of an inactive FUT2 enzyme, do not 
express these blood antigens in mucosal tissues and are also 
resistant to GII.4 and several other Norovirus genotypes. The 
FUT2 protective allele is fully penetrant against infection 
as none of the non-secretor individuals develop Norovirus 
infection (Nordgren and Svensson, 2019).

A study of SARS demonstrated that patients from blood 
group O exhibited a lower risk of infection by SARS-CoV-1 
when compared with non-O participants (Cheng et al., 2005). 
As to COVID-19, significantly decreased and increased risk 
was reported for individuals from blood groups O and A, 
respectively, in 2,173 hospitalized patients with a confirmed 
infection by SARS-CoV-2 in Wuhan and Shenzhen, China, 
compared to the frequencies in populations from the same 
regions (Zhao et al., 2020). Numerous studies in different 
populations followed. The consensus that emerged is that 
the association of COVID-19 with the ABO locus is highly 
significant and the risk of SARS-CoV-2 infection and possibly 
also COVID-19 severity is slightly lower for group O than 
for non-O groups (Ellinghaus et al., 2020; Liu et al., 2020; 
Pendu et al., 2021). 

Besides, associations between arterial and venous 
thromboembolic events with non-group O have been consistently 
observed in the literature. Interestingly, von Willebrand’s 
factor (vWF) and factor VIII levels are significantly higher 
in non-group O individuals, which might predispose them 
to pathologic clot formation (Stowell and Stowell, 2019b). In 
addition, there is evidence that ABO blood groups may affect 
vascular biology independently of, or in conjunction with, 
alterations in hemostasis (Stowell and Stowell, 2019b). For 
example, ABO blood group status may influence outcomes 
following acute vascular injury. Critically ill patients who 
presented a major trauma or severe sepsis were evaluated for 
ABO blood group status in addition to the development of 
acute respiratory distress syndrome (ARDS) or acute kidney 
injury (AKI). Among patients of European ancestry, but not 
African, blood group A individuals were more likely to develop 
ARDS or AKI (Stowell and Stowell, 2019b). In COVID-19, 
ARDS, AKI, and hemostasis alteration have also been reported 
(Wu et al., 2020, McIntosh, 2020). The analysis by a multi-
omics approach suggested that the increased ABO protein 
level is a causal risk factor for COVID-19 susceptibility and 
severity (Hernández-Cordero et al., 2021). Clinical COVID-19 
phenotypes, especially circulatory system complications, 

including thrombotic and coagulation-related phenotypes, 
were associated with genetically predicted increased ABO 
expression levels (Pathak et al., 2020). 

Genes involved in mucociliary clearance

Eight potential genomic regions (“super-variants”) 
associated with mortality by COVID-19 were identified in a 
GWAS with more than 18,600,000 SNPs (Hu et al., 2021). 
The white British patients’ sample included 1,096 SARS-
CoV-2 infected cases, of which 292 were deaths and 804 
were survivors. The disruption of DNAH7 (dynein heavy 
chain 7, axonemal) function may cause ciliary dysmotility 
and weakened mucociliary clearance capability, and CLUAP1 
(clusterin associated protein 1) is required for ciliogenesis. 
This finding evidences the importance of respiratory cilia 
functioning properly in COVID-19 patients. Interestingly, 
DNAH7 is the most downregulated gene after in vitro infection 
of human bronchial epithelial cells with SARS-CoV-2 (Nunnari 
et al., 2020). The protein WSB1 (WD repeat and SOCS 
box-containing protein 1) is involved in the innate immune 
response and antigen processing and presentation by HLA class 
I molecules and may enhance maturation of the IL-21 receptor, 
which is involved in NK and T cell functions. The other 
genomic regions contain variants related to thromboembolic 
disease, mitochondrial dysfunction, and cardiovascular disease 
(Hu et al., 2021).

Proteins of the mucin family are components of the 
mucociliary clearance system, and therefore are crucial for 
innate defense. The mucin 5B, oligomeric mucus/gel-forming 
protein (MUC5B), is secreted in the lung, saliva, and cervix 
(Uniprot | Q9HC84, 2020). A polymorphism in the MUC5B 
gene is strongly associated with protein expression levels 
and susceptibility to some diseases. Patients with idiopathic 
pulmonary fibrosis (IPF) had significantly higher levels of 
MUC5B in the lung than controls, and the allele rs35705950*T 
was strongly associated with risk, especially in homozygosis 
(Seibold et al., 2011). This SNP is located upstream of the 
MUC5B transcription start site and is predicted to affect the 
binding affinity of different transcription factors and to be a 
splice-site variant of the long non-coding RNA AC061979.1 
gene that overlaps the MUC5B gene (Ensembl | MUC5B 
gene region, 2020). The allele rs35705950*T, a risk factor for 
IPF, was associated with protection against the development 
of severe COVID-19 in older adults (Fadista et al., 2021). 
The observed association with rs35705950 could be due to a 
protective effect of high mucin production in the airways, but 
the authors could not rule out a patient selection bias associated 
with the rs35705950 SNP (van Moorsel et al., 2020) Other 
mucin family members might also be candidates for studies 
of COVID-19 complications in the gut and airways.

Consolidating Information
The importance of investigating genetic associations in 

diverse countries has recently become more evident (Hindorff 
et al., 2018), especially because the genetic basis of many 
complex phenotypes differs significantly among geographic 
regions (Martin et al., 2017). These differences may be explained 
by both geographic-related pathogen variability and variation 
in host genetics, which might influence the function of specific 
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genes (reviewed in Domínguez-Andrés and Netea, 2019).  
Differential allele frequencies and linkage disequilibrium are 
the major factors responsible for discordant associations in 
different populations. For example, LD in regions 3p21.31 and 
12q24.13 is strong and extended in Europeans, but absent in 
Africans and admixed Latin-American populations from the 
1000G project (LDlink April 19, 2021). These regions harbor, 
respectively, a multigene cluster and the OAS gene cluster, both 
associated with severe COVID-19 in Europeans (see Section 
“Host genetics beyond HLA and KIR”). A clear example 
of discordant results due to contrasting allele frequencies 
between populations comes from HLA in endemic pemphigus 
foliaceus. Among other differences, the HLA-DRB1 alleles 
associated with the highest risk in the Brazilian population 
of predominantly European ancestry are DRB1*01:02 and 
*04:04, but in Native Americans, highest risk is associated 
with DRB1*04:04 only, because DRB1*01:02 is not present 
(Petzl-Erler, 2020). Thus, the analysis of non-Europeans 
and admixed populations is urgently needed to identify the 
COVID-19 causal variants and to evaluate their impact on 
COVID-19 in worldwide populations. To this end, several 
collaborative initiatives and consortia have been launched 
and the first results are emerging (for example, Castelli et al.  
(2021); Castro et al. (2021); and Rede Genômica IPEC).

The extent of the admixture in Brazil poses challenges 
in study designing since ancestry heterogeneity is known to 
underlie spurious associations (Seldin et al., 2011; Thornton 
and Bermejo, 2014). The ancestry varies among Brazilian 
geographic regions, with a higher proportion of Native 
American contribution in the North, larger proportion of 
African in the Northeast, and a predominance of European 
background in the South and Southeast (reviewed by Souza et 
al. (2019). In addition, the ancestry of traditional communities 
such as Ribeirinhos and Quilombolas differs significantly 
from other populations within the same region (Kimura et 
al., 2013; Gontijo et al., 2018). 

Some reports suggest that ancestry may be associated 
with differential risk for COVID-19 (Sze et al., 2020; Andrasfay 
and Goldman, 2021; Shelton et al., 2021). However, it is 
challenging to disentangle the effects of ancestry from other 
confounding factors. For example, in countries such as the 
USA, UK, and Brazil, the non-European ancestry is associated 
with a lower socioeconomic status, which by its turn is also 
associated with higher incidence of some comorbidities 
(Franceschini et al., 2013; Musemwa and Gadegbeku, 2017) and 
with conditions that increase transmissibility and vulnerability. 
Among these conditions are overcrowded housing, occupation, 
access to healthcare, stress, unbalanced diets, use of public 
transport, and others (Hawkins, 2020; Sze et al., 2020). Several 
studies indicate that COVID-19 is more severe and deadly in 
groups with lower socioeconomic status (Demenech et al., 
2020; Figueiredo et al., 2020; Hawkins et al., 2020; Clouston 
et al., 2021). The conditions associated with socioeconomic 
deprivation may interfere in the immunological response to 
COVID-19, especially in an exacerbated pro-inflammatory 
response and senescent phenotypes (Holuka et al., 2020).

Notwithstanding, other studies have found that non-
European ancestries are associated with an increased risk of 
death by COVID-19, even after controlling for comorbidities 
and socioeconomic status (Harrison et al., 2020; Shelton  

et al., 2021). Contrasting frequencies of genetic variants that 
are implicated in differential susceptibility among populations 
is a plausible explanation for these results. However, it is still 
unclear if there are additional reasons for ancestry-related 
differential risk to COVID-19.

Investigating ancestry-associated risk may be even 
more challenging in studies of stratified admixed populations, 
in which it is necessary to adjust for population structure. 
This adjustment may eventually overcorrect and lead to 
a substantial loss in power to detect the effects of alleles 
that are geographically restricted and/or specific to certain 
ancestries (Martin et al., 2018). Consequently, studies of 
stratified populations require appropriate approaches that 
assume differential association according to genetic ancestry, 
as exemplified by admixture mapping and association mapping 
(Shriner, 2017; Skotte et al., 2019).

Research Strategies and Community Engagement
In only a few months, an impressive abundance of 

HLA-focused COVID-19 studies have been initiated or are 
in advanced stages. While most of them focus on specific 
questions regarding the relationship between genetic variation 
and COVID-19 outcomes, there are a myriad of different 
approaches. Large biobanks, donor registries, and others are 
leveraging pre-existing data resources to analyze genetic 
variants involved in immune responses, genotyped either as 
targeted candidate genes or in genome-wide methods. While 
many HLA laboratories intend to perform high-resolution 
genotyping in COVID-19 cohorts, multiple strategies are 
being employed in collecting these cohorts. It is expected that 
several research groups will perform genotyping of cohorts 
from their local clinic or hospital. Others will examine their 
previously genotyped HLA or KIR data of transplant donors 
and recipients, recontacting those individuals or accessing their 
medical records to ascertain COVID-19 status. This strategy 
is also being employed by donor registries with pre-existing 
genotype data. Likewise, large biobanks with either high-density 
SNP genotyping data suitable for imputation of HLA, or WGS 
or WES data from which HLA genotypes can be extracted, are 
being examined in light of either medical records or patient 
self-reported COVID-19 disease, outcomes, or symptoms. 

An important endeavor to coordinate research activities 
is the COVID-19 HLA & Immunogenetics Consortium 
(CHIC). This effort unites the global community of HLA 
and immunogenetics experts and thought leaders to focus 
efforts, combine resources and share data to accelerate 
discovery in understanding the role of HLA and other 
immunogenetic loci in disease outcomes. This consortium 
currently numbers over 100 members, including HLA and 
immunogenetics-focused academic research scientists, 
HLA clinical laboratory directors, leaders of the major 
international immunogenetics scientific societies, Editors-in-
Chief of immunogenetics-focused journals, and commercial 
vendors with HLA laboratory and bioinformatics products. 
A website describing these efforts and including information 
and resources for the research community can be found at 
hlacovid19.org. The intention of the web resources is to both 
centralize access to COVID-19-related HLA data through 
a dedicated database (HLA | COVID-19 Database portal) 
that includes HLA data-management and analysis tools, 
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as well as to connect COVID-19 researchers and clinicians 
seeking HLA genotyping services with the immunogenetics 
laboratories that can provide them.

The database is being funded under an emergency 
United States National Institutes of Health (NIH) COVID-19 
supplement to an existing grant. Under the parent grant, 
tools and services have been developed for the standardized 
analysis, collection, exchange and storage of immunogenomic 
data. Under the supplemental funding, efforts have begun to 
apply these tools and resources for HLA data management into 
this public database to promote data-sharing and accelerate 
discovery of the relationship between HLA variation and 
COVID-19. Because the complexity and extreme polymorphism 
of the HLA region make consolidation, equivalency, analysis, 
and biological interpretation of HLA data challenging, a 
centralized resource that aggregates data from disparate sources 
and platforms and provides well-curated bioinformatics and 
analytical tools will serve to accelerate discovery. This platform 
is intended to centralize access to COVID-19-related HLA data 
and HLA data-management and analysis tools. It will serve 
both as a knowledge base and technical resource for HLA and 
immunogenetics research on the COVID-19 pandemic. Many 
consortium members have already committed to depositing 
their data in the database.

Aside from the groups centered on HLA and KIR, numerous 
other international, national, and regional collaborative efforts 
have been established to discover the host genetic determinants 
of COVID-19 susceptibility, severity, and outcomes, and 
contribute to the knowledge of the biology of SARS-CoV-2 
infection and disease. The most associated variants localize in 
genes involved in the innate and adaptive immune responses, 
as exemplified by the initial results of The COVID-19 Host 
Genetics Initiative commented above in the topic Host genetics 
beyond HLA and KIR. 

Concluding Remarks
The prime importance of the immune responses in 

susceptibility to viral infections urges deep investigation to 
understand the impact of host immunogenetics in COVID-19 
pathogenesis.

The influence of HLA diversity on viral infections is well-
documented. The involvement of HLA may occur along different 
paths, which includes the innate response through interaction 
with KIR and other less well-defined receptors of innate 
lymphoid cells (ILC). Additionally, HLA is directly involved 
in the adaptive response, playing a crucial role in antigen-
presentation to CD4+ and CD8+ T-cells, with implications 
also for vaccine development. The great similarity between 
the paralogous genes and their astonishing polymorphism 
render the identification of genotypes at allele-level resolution 
a challenging endeavor for HLA and, especially, KIR, making 
targeted approaches and dedicated pipelines preferred over 
microarray-based or NGS-based GWAS.

Apart from HLA and their receptors, a vast collection of 
host molecules certainly also plays crucial roles in the immune 
responses to SARS-CoV-2 and COVID-19 pathogenesis. 
Included are viral restriction elements, toll-like receptors, 
cytokines and chemokines and their receptors, the complement 
system, among others. The genes of many (if not most) of these  

molecules present functional polymorphism. The GWAS as 
well as the screening of candidate genomic regions with a dense 
set of tag SNPs will identify genetic variants that modulate 
the host immune response to infection and COVID-19 
manifestations and severity. Moreover, to uncover rare highly 
penetrant variants, i.e., genetic variants that follow a Mendelian 
or oligogenic quasi-Mendelian inheritance, segregation and 
linkage studies in families with unusual SARS-CoV-2 infection 
outcomes and the comparison of patients with contrasting 
extreme disease phenotypes are desirable.

For HLA and their receptors as well as for other genes 
that participate in immune responses, differences of allele and 
haplotype frequencies among populations, along with genetic 
variations among SARS-CoV-2 strains implicate the need for 
carefully studying populations of diverse geographic regions. 
To maximize the likelihood of discovering the disease-relevant 
genetic variants, patient samples covering the whole spectrum 
of SARS-CoV-2 infection outcomes, from asymptomatic to 
critical COVID-19 and characterized for disease complications, 
should be investigated in local and worldwide collaborations.

Integrative host immunogenetic studies will likely deliver 
ground-breaking insight into the pathogenesis of COVID-19, 
with considerable biological and clinical implications.
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