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Abstract

The limited clinical success of anti-HGF/MET drugs can be attributed to the lack of predictive biomarkers that
adequately select patients for treatment. We demonstrate here that quantitative digital imaging of formalin
fixed paraffin embedded tissues stained by immunohistochemistry can be used to measure signals from weakly
staining antibodies and provides new opportunities to develop assays for detection of MET receptor activity.
To establish a biomarker panel of MET activation, we employed seven antibodies measuring protein expression
in the HGF/MET pathway in 20 cases and up to 80 cores from 18 human cancer types. The antibodies bind to
epitopes in the extra (EC)- and intracellular (IC) domains of MET (MET4EC, SP44_METIC, D1C2_METIC), to
MET-pY1234/pY1235, a marker of MET kinase activation, as well as to HGF, pSFK or pMAPK. Expression of
HGF was determined in tumour cells (T_HGF) as well as in stroma surrounding cancer (St_HGF). Remarkably,
MET4EC correlated more strongly with pMET (r 5 0.47) than SP44_METIC (r 5 0.21) or D1C2_METIC (r 5 0.08)
across 18 cancer types. In addition, correlation coefficients of pMET and T_HGF (r 5 0.38) and pMET and
pSFK (r 5 0.56) were high. Prediction models of MET activation reveal cancer-type specific differences in per-
formance of MET4EC, SP44_METIC and anti-HGF antibodies. Thus, we conclude that assays to predict the
response to HGF/MET inhibitors require a cancer-type specific antibody selection and should be developed in
those cancer types in which they are employed clinically.
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Introduction

Immunohistochemistry (IHC) is widely used clini-

cally to aid with challenging diagnostic decisions that

require formalin-fixed and paraffin embedded (FFPE)

tissues. In the era of precision medicine, the ease

associated with detecting proteins and phosphopro-

teins in single cancer cells via IHC is ideal for devel-

opment of companion diagnostics needed to stratify

patients for treatment with targeted therapies. How-
ever, technical problems diminishing the accuracy of
quantifying the expression of drug targets by IHC
hinder this biomarker development. The recent emer-
gence of whole slide imaging and digital image anal-
ysis generates quantitative numerical data associated
with protein expression in FFPE tissues [1,2]. In
theory, this approach could provide new opportunities
for measuring the expression of drug targets in
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cancer tissues obtained from patients during routine
medical care. However, the use of digital image anal-
ysis for biomarker development and companion diag-
nostics is still in its infancy [1] because it requires
multidisciplinary interactions between pathologists,
experts in image processing and software developers.

The MET receptor tyrosine kinase is a documented
oncoprotein in human cancer (visual database avail-

able here: http://www.vai.org/met/). Our and other
groups linked MET to epithelial-to-mesenchymal
transition, invasion and metastasis in human cancer

cells and in mouse models [3]. Germline activating
mutations of MET cause hereditary papillary renal

carcinoma and MET expression is associated with
adverse outcome in practically all solid tumours

[4,5]. In addition, the human MET gene lies in an
unstable genomic region on chromosome 7 that is

prone to amplification [6,7]. Hence, clonal expansion
of cancer cells with multiple copies of the MET gene

or with autocrine production of the MET ligand,
Hepatocyte Growth Factor/Scatter Factor (HGF), can

cause resistance to drugs that inhibit other receptor
tyrosine kinases [8]. The key role of MET in onco-
genesis and drug resistance provides a strong ration-

ale for extensive drug development [9]. While most
clinical trials with MET kinase inhibitors have not

demonstrated an overall survival advantage, a subset
of patients clearly experienced cancer control [10].

The lack of appropriate companion diagnostics
compromises the success of clinical trials with MET

inhibitors [11] and the limited success may stem
from inadequate selection of patients. Measuring the

active MET kinase, ie, the drug target, relies on
detection of protein phosphorylation, which consti-

tutes an inherently unstable posttranslational modifi-
cation. In addition, biomarker development is

complicated by the sequestration of MET in signal-
ling endosomes and shedding from the cell surface

[12,13]. Companion diagnostic assays for MET inhib-
itors employed MET FISH and MET IHC [14]. How-
ever, association of these measurements with

activation of the MET kinase varies among cancer
types [15]. Because of extensive post-translational

regulation of MET protein expression, MET mRNA
expression has not been explored as a biomarker of

MET activation. Furthermore IHC to measure MET
protein expression has not been stringently validated

in FFPE tissues [16]. Collectively, the different
mechanisms of MET kinase activities, ie, genomic

mutations, binding of HGF and overexpression and/
or crosstalk with other cell surface receptors [3,17],

have so far not resulted in the development of a uni-
form assay of MET receptor activation.

To analyze the activation of the MET pathway, we
generated a tissue microarray (TMA) of 18 different
cancer types. We employed seven antibodies that
react with proteins in the MET pathway.
SP44_METIC and D1C2_METIC bind epitopes within
the cytoplasmic C-terminus of MET and MET4EC

recognizes a motif in the MET receptor alpha-chain,
which is extracellular [18]. We also utilized an anti-
body reactive with HGF. To determine the activation
of cytoplasmic MET signalling pathways, we selected
antibodies that bind phospho-MAPK and phospho-
SRC-family kinases (SFK). Using quantitative digital
imaging of slides stained by IHC, we generated a
dataset consisting of 9139 individual measurements.
The analysis of the data revealed that antibodies
most predictive of MET activation differ amongst
cancer types. This approach highlights the importance
of cancer-type specific development of companion
diagnostic assays for drugs against the active MET
receptor kinase.

Materials and methods

Selection of cases and TMA construction

For TMA construction, 20 cases from 18 cancer
types, which were randomly retrieved from the
pathology archive, were displayed and confirmed by
a subspecialty pathologist (Dataset S1 and Table S1).
The MET genomic status was presumed to be identi-
cal to germline [19]. The core diameter was 0.6 mm
except for sarcoma, melanoma, lymphoma, glioblas-
toma, head and neck cancer, and colon cancer, where
it was 1 mm. Normal control blocks included kidney,
tonsil, liver and colon. TMAs were constructed with
the TMArrayerTM (Pathology Devices, Inc.).

Immunohistochemistry

Antibodies were obtained from Cell Signaling Technol-
ogy (CST) or from other sources as indicated: MET-
pTyr1234/pTyr1235 (clone D26), MET4 [18], c-Met
(clone SP44, Spring Bioscience), c-Met (clone D1C2),
HGF (LifeSpan, BioSciences), Src-family-pTyr416,
pErk1/2 (clone 137F5). Where needed, the specificity of
antibodies was confirmed by western blotting before and
after treatment with inhibitors (Figures S1A, S1B) [20].
The pSRC family-Tyr416 has not been optimized for
IHC by the company (CST) and we therefore followed a
published protocol [21], which we also validated in a
neoadjuvant bladder cancer study [22]. The HGF anti-
body has been characterized in the Vande Woude labora-
tory [23] and our protocol provides a staining pattern that
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is consistent with staining in mesenchymal cells. The
specificity of the MET4 antibody was published in [18].
For each antibody, dilution, signal amplification and
incubation conditions are listed in Table S2. Staining
was performed as described previously [24]. Secondary
antibodies were purchased from CST. The tyramide sig-
nal amplification system (TSA) was purchased from Per-
kin Elmer and the polymer amplification system was
obtained from VECTOR labs. The immunofluorescent
staining was performed with the Opal multiplex immu-
nofluorescent system (Perkin Elmer) and fluorescent
staining with MET4EC and SP44_METIC was followed
by IHC with the pMET antibody.

For every core, the percent coefficient of variation
(%CV) for between-days (five slides) or within-day
(three slides) assays was calculated by dividing the
mean core intensity by the standard deviation. The
total %CV was calculated by first averaging the
squares of individual %CV values followed by taking
the square root this value.

The IHC staining variability amongst cores within
a case was compared to the variability across cases
using F-statistics. Details of calculations are provided
in the material.

Digital image acquisition, image processing and
pathology annotation of TMA cores

TMA slides were digitized on the high-resolution
Leica SCN400NF whole-slide scanner and images
were sequentially analyzed with the Tissue IA Optm-
iser (Leica) software installed on the Leica Digital
Image Hub as described in [25]. Cancer and stromal
areas were annotated by one of three pathologists
and confirmed by second pathologist. The mean sig-
nal intensity (staining concentration) per unit area
was calculated within annotated regions and exported
for statistical analysis (Dataset S2).

Data acquisition and normalization

All statistical analyses were conducted in R v3.1.3
[26]. Plots were generated with the use of the follow-
ing packages in R, beeswarm [27], extrafont
[28], plyr [29], RColorBrewer [30], reshape2
[31], scales [32]. TMA data were subjected to
background intensity subtraction (lowest core inten-
sity of individual slide) and log2 transformation.
Intensity values were normalized to the average sig-
nal intensities of kidney and tonsil control cores
within respective slides. The final data represent the
log2 transformed fold change from control. As a sec-
ond normalization method, control adjusted TMA
data values (without background subtraction) were

quantile normalized across slides and antibodies
using limma [33] package in R.

Determination of distributions and correlation
coefficients

Histogram density profiles of each antibody were
constructed using ggplot2 [34] package in R.
Unsupervised hierarchical clustering of pairwise
Pearson’s correlation matrix was calculated using
hclust function based on Euclidean distance and
complete linkage method. p-values of correlations
generated for each antibody pair using data from all
cancer types combined were adjusted using the strin-
gent Bonferroni correction. p-values of pairwise cor-
relations performed in cancer types individually were
adjusted using the less stringent FDR correction [35].
Heatmaps were generated using heatmap.2() in
gplots package [36]. The Dendrogram in Figure
S5A of the correlation matrix was generated using
cluster package [37]. The Wilcoxon rank-sum test
was used to determine the significance of the differ-
ence between of T_HGF and St_HGF signal
intensities.

pMET z-score

In order to compare average levels of pMET expres-
sions across cancer types, z-scores of pMET staining
intensities were calculated as the difference of the
cancer-type mean and grand mean, divided by the
standard deviation of all samples, and then multiplied
by the square root of number of cases in that particu-
lar cancer type. See supplementary material for
details of the calculations.

Random forest classification

The expression of pMET was dichotomized at the
7th decile to classify cases as positive or negative.
Levels of pMET were predicted by fitting a Random
Forest model to all data with the following features:
cancer-type plus all antibodies, or cancer-type plus
either 1 of the antibodies (MET4, SP44_MET,
D1C2_MET, T_HGF, St_HGF). Random forest clas-
sification analyses were conducted using the ran-
domForest function [38]. 10-fold cross validation
was performed and the area under the curve (AUC)
of the receiver operating characteristic (ROC) curves
was determined for each model using the ROCR
package [39]. Variable importance for each model
was calculated using the cforest function in the
party package [40–42].

Groups of five cancer-types (n 5 100 cases) were
constructed for all possible cancer-type combinations
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Figure 1.
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(n 5 8568). Random Forest models were constructed

in each group to predict pMET positivity with indi-

vidual antibodies as predicting variables. Five-fold

cross validation was performed for each model and

the AUC was calculated.

Results

Differences in tissue staining between antibodies
to the extra- and intracellular domain of MET

To identify potential differences in staining patterns of

antibodies that react with the intracellular and extracellu-

lar domains of MET and with MET-pY1234/pY1235

(pMET), we stained tissue sections of renal cortex with

a-pMET, SP44_METIC (antibody against MET intracel-

lular domain) and MET4EC (antibody against MET

extracellular domain) (Figure 1A). Surprisingly, we

observed marked heterogeneity of staining in renal

tubules. In particular, individual cells in collecting duct

epithelium preferentially reacted either with MET4EC or

SP44_METIC. Tubules that stained with a-pMET reacted

with MET4EC, but not with SP44_METIC. These data

highlight cell specific differences in availability of the

MET4EC and SP44_METIC epitopes and suggest that

antibodies against total MET protein might differ in their

correlations with pMET levels. To take advantage of this

result for development of companion diagnostics, we
assembled a biomarker panel to investigate the relation-

ship between MET phosphorylation, total MET protein

expression, expression of HGF and activation of MET

signalling pathways through SFK and MAPK.

Quantitative imaging of IHC with 7 antibodies in
18 cancer types

In order to test the MET-associated biomarker panel,

we constructed a multi-cancer TMA consisting of 18

cancer types (lung adeno- and squamous carcinoma,

mesothelioma, endometrium, ovary, breast, prostate,

kidney clear cell, bladder, sarcoma, melanoma, pan-

creas, stomach, liver, lymphoma, glioblastoma, head
and neck, and colon), 20 cases per cancer type and
four cores per case (Figure S3, Dataset S1). In total,
1440 cores from 360 cases were displayed on seven
glass slides. The average core loss after IHC was
equally distributed across cancer types, such that 16–
20 cases per cancer type provided data for statistical
analysis. In addition, normal tissue cores were used
for normalization and comparison of staining inten-
sities across the seven slides.

Each TMA was stained with seven antibodies (Figures
1B, S3, Table S1). In order to overcome the problem of
low sensitivity of measuring MET autophosphorylation
at Y1234/Y1235 [43], we combined polymer and tyra-
mide amplification systems without compromising the
dynamic range (Figures S1C, S2B). The improved
amplification method applied to a-pMET IHC resulted
in TMA cores above the limit of quantification in all 18
cancer types. Control rabbit and mouse antibodies were
negative (data not shown). We acquired 1180–1230
measurements per antibody in areas of cancer and 726
measurements in the stroma (Figure 1B). For all antibod-
ies and cancer types together, we obtained 9139 meas-
urements (Dataset S2).

To compare the staining intensities from each anti-
body across seven slides, we subtracted the back-
ground staining and calculated the fold change
relative to control cores in the same slide (Figure
S4). The resulting distributions of control-adjusted,
log2-transformed staining intensities were normally
distributed, ie, ‘bell-shaped’ (S2A). The expression
of pMET levels in 18 cancer types is shown in Fig-
ure 2A. Phospho-MET staining was highest in blad-
der cancer and lymphoma. In addition, outlier cases
with high pMET levels were identified in lung ade-
nocarcinoma, endometrial, prostate, stomach and
liver cancer, and in melanoma. In order to assess the
biological variability, we compared expression values
between cases to those within a case. Between-case
variability was significantly higher than within-case
variability (F-test, adjusted p< 0.05) (Figure 2B,
Dataset S2), indicating that the within-tumour

Figure 1. Antibody-based analysis of the MET pathway in 18 cancer types. (A) SP44_METIC and MET4EC staining in renal tubules.
Normal kidney tissue was stained with SP44_METIC (green) and MET4EC (red) by immunofluorescence and with a-pMET by immuno-
histochemistry (purple) and a representative case is shown. The low power image reveals heterogeneous staining patterns of the MET
antibodies in multiple renal tubules. The arrow in the magnified panels points to the overlap between MET4IC and a-pMET staining.
(B) Data acquisition. 18 cancer types are listed and the numbers of cores with data are indicated in parentheses next to each
cancer-type. Each cancer type was stained with seven antibodies. The total number of TMA cores providing data for each antibody is
indicated in the legend. Number of cores analyzed per antibody in individual cancer types is plotted on the y-axis. (C) Specificity of
antibody staining and annotation of cancer and stromal regions. Tissue cores were stained with antibodies indicated above each
image and consist of areas of cancer and non-cancer tissue. The insert for each core shows an enlarged area of the cancer-to-
stroma interface. For measurement of staining intensities, multiple areas in the cancer are circled in each core (red outline) and for
cores stained with the HGF antibody, additional areas of stroma (blue) are circled for analysis.
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heterogeneity was less than the heterogeneity exhib-
ited across cases. Furthermore, the a-pMET within-
day coefficient of variation (%CV) 5 8.5% and the
between-day %CV 5 26.7%, both acceptable for IHC
assays (Figure 2C) [44].

A switch from paracrine to autocrine HGF has been
demonstrated during progression of AML and in the clo-
nal selection of lung adenocarcinoma [8,45]. However,
the prevalence of autocrine HGF in other primary solid
tumours is not known. To determine the relationship

Figure 2. Protein expression levels. (A) Quantative imaging of pMET levels. Each TMA with its cancer types is listed on the x-axis and
the number of cases per cancer type is listed in parentheses. Control-adjusted staining intensities are plotted on the y-axis. Horizon-
tal lines in boxes represent the 1st, 2nd and 3rd quartiles. Whiskers are indicated outside the box with limits of 1.53 the inter-
quartile range (IQR). (B) Inter- and intra-tumour variance. One-way analysis of variance was used to calculate the variance within
cores of a case (within-case variability) and across all cases within a cancer type (between-case variability). Each colour indicates
one of 18 cancer-types stained with a single antibody. (C) Within- and between-assay concordances. To determine within day (WD)
technical variability of the assay, three slides of TMA 7 (WD1–3) were stained with the pMET antibody on the same day. To deter-
mine day-to-day variability, a single TMA 7 slide was stained on five different days (BD 1–5). Pairwise correlations for WD and BD
slides are shown and the coefficients of variation (CV) are indicated for within day and between day variability. (D) HGF expression.
The boxplots depict the control adjusted log2 expression of St_HGF and T_HGF in each cancer type. St_HGF expression could not be
measured in cancer types that did not display sufficient regions of stroma with peritumoural mesenchymal cells (lymphoma, glioblas-
toma, sarcoma). A significant difference in expression between T_HGF and St_HGF is indicated by **p< 0.01, *p< 0.05.
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between HGF expression and MET activation, we pro-
filed tumour HGF levels (T_HGF) in 1188 cores from 18
different cancer types. In addition, we measured HGF
levels in the stroma adjacent to tumour (St_HGF) in 726
cores. The highest stromal HGF levels were detected in
prostate and stomach cancer (Figure 2D). In addition,
tumour and stromal HGF were correlated (r 5 0.56,
p< 0.001) (Figure 3A).

Correlations between antibodies in the MET
pathway and MET kinase activation

We reasoned that a better understanding of associa-

tions between antibodies that report the activation

state of the MET pathway might allow for selection

of surrogate biomarkers of MET activation. Thus, a

correlation matrix was generated through

Figure 3. Correlations of protein expression levels determined by quantitative imaging (QI). (A) Correlation matrix for all cancer types.
Pairwise correlations were calculated across all cases from 18 cancer types stained with the antibodies listed on the x- and y-axes.
Pairwise correlation matrix was used in an unsupervised cluster analysis. The three main clusters are labelled above the matrix. (B–E)
Scatter plots of normalized, relative staining intensities. A regression line is shown for each scatter plot and Pearson’s correlation
coefficients are indicated on the bottom right. (F) Correlations with pMET in individual cancer types. Pearson’s correlation coefficients
between levels of pMET and the MET and HGF antibodies listed next to the heatmap. The last row shows the pMET z-score (normal-
ized average level), which was calculated by normalizing the average pMET level of an individual cancer type to the mean of pMET
levels across all cancer types. Values in the heatmap are matched to the color bar.
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unsupervised clustering of pairwise correlations
between the seven antibodies. The clustering revealed
three major groups (Figures 3A, S5A). The first
group consists of the SP44_METIC and D1C2_METIC,
which both bind the C-terminus of the MET receptor.
While measurements with SP44_METIC and
D1C2_METIC were significantly correlated (r 5 0.45,
p< 0.001), correlations of the SP44_METIC and
D1C2_METIC antibodies with MET4EC were lower
(r 5 0.11, p 5 1 and r 5 0.11, p 5 1, respectively)
(Figures 3A, 3B, S5B). The second group contains
all the phospho-antibodies. The highest correlation in
this group is observed between a-pSFK and a-pMET
(r 5 0.56, p< 0.001). In contrast, the correlation
between a-pMAPK and a-pMET is only r 5 0.20
(p 5 0.0053), suggesting greater pMET to pSFK than
pMET to pMAPK signalling (Figure 3A, C).
MET4EC demonstrated the highest correlation with a-
pMET (r 5 0.47, p< 0.001), while correlation coeffi-
cients of SP44_METIC and D1C2_METIC with a-
pMET were lower (r 5 0.21 and r 5 0.08, respec-
tively) (Figure 3A, D). The third group consists of
MET4EC, T_HGF and St_HGF. T_HGF and St_HGF
are significantly correlated (r 5 0.56, p< 0.001) and,
in addition, T_HGF is significantly correlated with
MET4EC (Figure 3E, r 5 0.65, p< 0.001). Next, we
performed an unsupervised hierarchical clustering
analysis of pairwise correlation coefficients from 28
antibody pairs across the 18 cancer types (S6). Two
major clusters were observed. The smaller cluster of
five antibody pairs corresponds to pairs with the
highest correlations in the correlation matrix in Fig-
ure 3A. To exclude a bias from the normalization
method, we performed control-adjusted and quantile
normalization method (S7) and observed similar cor-
relation matrices (S8 and Figure 3A). In summary, the
main observation from the correlation matrix is the
stronger correlation between MET4EC and a-pMET
compared to either SP44_METIC or D1C2_METIC

and a-pMET. In addition, MET4EC is strongly corre-
lated (p< 0.001) with T_HGF and a-pSFK.

MET protein expression and MET phosphorylation
in individual cancer types

Since MET can be activated through overexpression,
we determined the relationship between MET protein
expression and MET receptor phosphorylation in
individual cancer types. MET protein expression lev-
els measured with MET4EC, SP44_METIC and
D1C2_METIC differed between cancer types (Figure
S4A, one-way ANOVA, pMET4< 0.001,
pSP44< 0.001, pD1C2< 0.001). We calculated the cor-
relation coefficients between pMET levels and total

MET protein expression measured with MET4EC,
SP44_METIC or D1C2_METIC in individual cancer
types (Figure 3F). Correlation coefficients r> 0.5 are
twice as frequent for SP44_METIC/pMET than for
D1C2_METIC/pMET (Figure S9A). Two cancer types
(glioblastoma and endometrial) revealed high correla-
tion coefficients (r> 0.4, FDR adjusted p< 0.1) for
all three a-MET antibodies with a-pMET. The corre-
lations with a-pMET in individual cancer types were
not related to the z-score (normalized average level)
of pMET expression (p> 0.1) (Figure S10). Collec-
tively, the results demonstrate that across cancer
types, MET4EC, which reacts with an epitope in the
extracellular domain, reports pMET more faithfully
than the antibodies that bind the cytoplasmic C-
terminus of MET and that MET activation and pro-
tein levels are not related.

Next, we determined the correlations between HGF
and pMET expression in individual cancer types. Cor-
relations r� 0.5 (FDR adjusted p< 0.1) between
pMET and T_HGF were identified in four cancer types
(head and neck, lymphoma, lung squamous and blad-
der carcinoma). While T_HGF (r 5 0.38) and St_HGF
(r 5 0.29) were significantly correlated with pMET
levels overall (Figures 3A, S5B), no correlation was
observed with the z-scores of pMET levels (p> 0.1)
(Figure S10). The results suggest that in some cancer
types, either autocrine or paracrine HGF expression
may contribute to the activation state of MET.

Predictive models of MET activation

The ultimate goal of this multi-cancer investigation is
to compare the accuracy of antibodies for predicting
MET activation. We applied a random forest (RF)
classification approach to determine which antibodies
singly or in combination best predict MET receptor
phosphorylation. The activation state of the MET
receptor was set at the 70th percentile cutoff of sig-
nal intensities of a-pMET. We constructed ROC
curves using 10-fold cross validation for RF models
that consisted either of a combination of all a-MET
and a-HGF antibodies or of single antibodies. The
accuracy of predicting pMET levels was based on
the area under curve (AUC) (Figure 4A). In addition,
a variable importance measurement is provided by
the RF model for the contribution of each antibody
and of the cancer type to the prediction. As previ-
ously noted, data normalized by both background
with control adjustment or by quantile normalization
methods generated similar results (Figure S11). The
results from the RF prediction model underscore the
important role of the cancer type in the prediction of
MET activation status.
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To further examine the role of the cancer type
in the prediction model, we combined data from
five cancer types to increase the sample size. We
also excluded D1C2_METIC and St_HGF from fur-
ther evaluation because of the low variable impor-
tance of D1C2_METIC and the absence of St_HGF
in some cancer types. Figure 4B shows the combi-
nations of five cancer types with the greatest AUC
for MET4EC, SP44_METIC and T_HGF. These
cancer type combinations were obtained from a
total of 25,704 ROC curves for the three antibod-
ies in all possible 5-cancer type combinations.

Since a different combination of cancer types is
obtained for each of the antibodies, the ROC
curves confirm the important role of the cancer
type in the prediction of pMET activation by
MET4EC, SP44_METIC and T_HGF.

Discussion

This study demonstrates for the first time that digital

image analysis of IHC stained slides can be used as a

general approach to improve the selection of

Figure 4. Random Forest (RF) models predicting MET activation status. (A) Variable importance. The y-axis of the top panel shows
the AUC as determined by a RF model with 10-fold cross validation. Each bar depicts the total AUC from a model fitted with cancer
type and antibodies indicated on the x-axis. The bottom panel shows the contributions of cancer type and antibody (RF variable
importance) to the prediction by the model. The RF variable importance is shown on a scale from 0 to 1. (B) Prediction of pMET sta-
tus in groups of five cancer types. Cases were combined from groups of five cancer types listed at the top. ROC curves were gener-
ated to determine the accuracy of the model predicting pMET activity status for each antibody (MET4EC, SP44_METIC or T_HGF) with
fivefold cross-validation. The AUC with the highest value across all possible combinations of five cancer types is shown for MET4EC,
SP44_METIC or T_HGF. ROC curves of St_HGF and D1C2_METIC are included for comparison.
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biomarkers for companion diagnostics to drugs target-
ing HGF/MET. We demonstrate that quantitative digi-
tal imaging (QI) can overcome difficulties of
accurately measuring the inherently unstable and low
abundance phosphorylation of the active MET receptor
kinase in patient tissues by IHC. Replacing traditional
categorical measurements with numerical measure-
ments on a continuous scale improves the statistical
data analysis in IHC assays. While a system for auto-
mated quantification of fluorescent antibody signals
(AQUA) has been available for a long time [46], the
method is not transferrable to chromogenic detection
of antibody staining. In particular for IHC, QI lowers
the limit of detection, reduces observer bias, lowers the
technical variability and permits the normalization of
experimental data to internal controls.

Using a robust pipeline we demonstrate that (1) it is
feasible to measure levels of MET receptor activation
and signalling in archival tissues from 18 cancer types;
(2) in agreement with pre-clinical systems (reviewed in
[3]), the magnitude of MET activation correlates with
HGF and total MET protein expression levels; (3) an
antibody reactive with an extracellular epitope in MET
(MET4EC) [18] more faithfully reports MET phosphoryl-
ation than antibodies that react with intracellular epitopes
(SP44_METIC, D1C2_METIC); (4) intratumoural HGF
expression levels predict MET activation more accu-
rately than HGF expression in the tumour microenviron-
ment [8,45], and (5) the prediction of MET activation is
cancer type-specific. Collectively, the data provide novel
insights into the choice of antibodies to measure the
active MET receptor kinase and are consistent with
cancer-type specific mechanisms of MET activation.

The comparison of MET antibodies that react with
epitopes in the intracellular and extracellular domain of
the receptor was prompted by the surprising differences
of staining patterns in renal tubules (Figure 1A). The
nature of MET receptor proteins that preferentially react
with MET4EC versus SP44_METIC or D1C2_METIC is
not known. MET4EC binds to an epitope in the 25 kDa
alpha-chain of MET [18] and not to the transmembrane
140 kDa MET receptor beta-chain that interacts with
SP44-METIC and D1C2_METIC at its C-terminus. The
MET C-terminal domain contains docking sites for mul-
tiple proteins that form a large signalling complex in
response to MET kinase activation and autophosphoryla-
tion [47]. It is conceivable that this protein complex hin-
ders the binding of SP44_METIC and D1C2_METIC to
active MET, particularly after tissues are fixed by forma-
lin treatment. The steric hindrance is also consistent with
the weaker correlation of SP44_METIC and
D1C2_METIC with a-pMET. In addition, MET4EC and
a-pMET staining intensities correlate strongly with
intratumoural HGF and with a-pSFK, suggesting that

the heightened MET activation is associated with an
HGF–MET–pSFK signalling axis (Figures 3A, S12).
Previous measurements of tissue and plasma HGF in
clinical trials with AMG-102 utilized HGF-specific
ELISA assays and did not distinguish between intra-
and extracellular HGF [48]. As confirmed by our pre-
diction model, intratumoural HGF qualifies as a novel
biomarker of MET activation status that might improve
the prediction of pMET activation status.

There are limitations of this study that remain to
be addressed. One is the true clinical predictive
power of biomarkers in the MET pathway. While we
have improved the reproducibility and sensitivity of
detection of pMET through a combination of signal
amplification and QI, the clinical significance of
measuring pMET using this approach remains to be
determined. It is also unclear whether pMET is suffi-
cient as a treatment response biomarker and whether
a-MET protein and a-HGF measurements are
required to improve the prediction. Since phosphoryl-
ation is unstable and rapid fixation of biopsies is
required to preserve the phosphoproteome [49], it is
a reasonable assumption that antibodies that are not
dependent on phosphorylation will be needed to
determine the MET activation status in clinical sam-
ples. An answer to these questions can be obtained in
the future by analysis of tissues from clinical trials
with MET inhibitors. Another limitation is the small
sample size of individual cancer types. Based on the
marked differences of biomarker expression among
cancer types, expanding cohorts of individual cancer
types will be necessary to obtain conclusive results
for each of the cancer types included in the study.
Our attempts to build a prediction model by using 5-
cancer type combinations is the most detailed analy-
sis that our sample size permitted and the prediction
of MET activation by MET4 and T_HGF expression
levels is consistent with the correlations between
pMET and MET4 or T-HGF.

The results in our study explain conclusions by
others demonstrating the lack of strong correlation
between MET expression and response to MET
inhibitory antibodies [50–53] and highlight the
importance of a cancer type specific development of
companion diagnostics to MET inhibitory drugs.
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Figure S2. TMA data distribution and dynamic range. (A) Distribution of signal intensities for each antibody. (B) Dynamic ranges of antibody

measurements
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Figure S10. Scatterplots of pMET z-scores and pMET correlation coefficients

Figure S11. Model performance and variable importance of quantile normalized data
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