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OBJECTIVE—Diabetic nephropathy is associated with dediffer-
entiation of podocytes, losing the specialized features required
for efficient glomerular function and acquiring a number of
profibrotic, proinflammatory, and proliferative features. These
result from tight junction and cytoskeletal rearrangement, aug-
mented proliferation, and apoptosis.

RESEARCH DESIGN AND METHODS—Experiments were
performed in conditionally immortalized human podocytes de-
veloped by transfection with the temperature-sensitive SV40-T
gene. Cells were then cultured in the presence of transforming
growth factor (TGF)-b1 or angiotensin II in the presence or ab-
sence of a selective inhibitor of the TGF-b type I receptor kinase,
SB-431542. Gene and protein expression were then examined by
real-time RT-PCR and immunofluorescence, and correlated with
changes observed in vivo in experimental diabetes.

RESULTS—Treatment of cells with TGF-b1 resulted in dynamic
changes in their morphology, starting with retraction and short-
ening of foot processes and finishing with the formation of broad
and complex tight junctions between adjacent podocytes. This
dedifferentiation was also associated with dose- and time-
dependent reduction in the expression of glomerular epithelial
markers (nephrin, p-cadherin, zonnula occludens-1) and increased
expression of mesenchymal markers (a2smooth muscle actin,
vimentin, nestin), matrix components (fibronectin, collagen I, and
collagen IV a3), cellular proliferation, and apoptosis. The induc-
tion of diabetes in mice was also associated with similar changes
in morphology, protein expression, and proliferation in glomerular
podocytes.

CONCLUSIONS—In response to TGF-b and other TGF-dependent
stimuli, mature podocytes undergo dedifferentiation that leads to
effacement of foot processes, morphologic flattening, and increased
formation of intercellular tight junctions. This simplification of their
phenotype to a more embryonic form is also associated with reentry
of mature podocytes into the cell cycle, which results in enhanced
proliferation and apoptosis. These “pathoadaptive” changes are
seen early in the diabetic glomerulus and ultimately contribute
to albuminuria, glomerulosclerosis, and podocytopenia. Diabetes
60:1779–1788, 2011

D
iabetic kidney disease is associated with sig-
nificant podocyte injury and dysfunction (1–3).
Foot process retraction and flattening (known
as effacement) enhances the loss of protein into

the primary urine by altering the architecture of the slit
pore and subpodocyte space (4) and reducing the ultra-
filtration coefficient leading to glomerular hypertension
(1). Podocytes are also responsible for the maintenance of
the glomerular basement membrane, its charge barrier,
and the shape and integrity of the glomerular capillary
loop, all functions that are compromised in the diabetic
glomerulus. In addition, mature podocytes can dedifferentiate,
losing the specialized features required for efficient glo-
merular function, and in the process acquire a number of
profibrotic (5–7), proinflammatory (3), and proliferative
features (8).

A number of factors have been suggested as potential
initiators of podocyte effacement in response to chronic
hyperglycemia, including angiotensin II, advanced glyca-
tion end products, interleukin-1, and mechanical and oxi-
dative stress (9–17). Each of these stimuli seems to require
the induction of transforming growth factor (TGF)-b
(18,19). It has been shown that exposure of differentiated
podocytes to hyperglycemia in vitro results in upregulation
of TGF-b expression (20), paralleling its upregulation in
diabetic glomeruli (21). High glucose also augments the
response of the podocyte to ambient levels of TGF-b (20).
TGF-b is known to have concentration-dependent effects
on podocyte differentiation (22) and apoptosis (22–24). In
this article, we explore the mechanics of dedifferentiation
in glomerular epithelial cells in high glucose using a con-
ditionally immortalized differentiated human podocyte cell
line and show that cultured podocytes undergo a dynamic
range of functional and structural morphologic changes
equivalent to those observed in vivo in diabetic glomeruli,
which result from tight junction and cytoskeletal rear-
rangement, apoptosis, and augmented proliferation.

RESEARCH DESIGN AND METHODS

Cell culture models. Experiments were performed in conditionally immor-
talized human podocytes developed by transfection with the temperature-
sensitive SV40-T gene (25). Podocytes were propagated and seeded at 33°C in
RPMI with 25 mmol/L glucose with 10% FCS and 13ITS media supplement
(Sigma-Aldrich, St. Louis, MO), which contains 1.0 mg/mL insulin from bovine
pancreas, 0.55 mg/mL human transferrin, and 0.5 mg/mL sodium selenite.
When cells had grown to ;60% confluence, they were transferred to 2% FCS
media and incubated at 37.5°C for 10–14 days. Under these conditions, the
podocytes undergo growth arrest, display the typical arborized pattern of foot
process extensions, and express markers of mature podocytic differentiation
in vivo, including Wilm’s tumor (WT)-1 and nephrin. Cells were then cultured
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in RPMI with 25 mmol/L glucose in the presence or absence of TGF-b1 (2, 5, or
10 ng/mL, R&D Systems, Minneapolis, MN) or angiotensin II (1 nM, Auspep,
Parkville, Victoria, Australia) with or without the selective inhibitor of the
TGF-b type I receptor kinase, SB-431542 (10 mmol/L, TOCRIS, Ellisville, MO).
Live cell imaging. Contraction of individual podocytes was observed using
time-lapse video microscopy on the stage of an inverted phase-contrast mi-
croscope (Zeiss, Oberkochen, Germany). Images were recorded by time-lapse
video intervals and stored as stacks, processed, and displayed as eight frames
per second (ImageJ).
Immunofluorescence. Cells were grown on coverslips, washed twice with
PBS, fixed in 4% paraformaldehyde for 20 min, permeabilized using 1% SDS, and
incubated in a blocking buffer (1% BSA, 0.25% Triton 3100 in PBS, pH 7.4).
Primary and secondary antibodies were diluted in blocking buffer, and the
cells with antibodies were incubated overnight at 4°C. Coverslips were then
mounted onto glass microscope slides using Prolog Gold antifade reagent with
DAPI (Invitrogen, Carlsbad, CA) or TO-PRO-3 (Invitrogen). F-actin was visu-
alized by fluorescent phalloidin (Alexa Fluor 594 phalloidin, Invitrogen). Cells
were viewed using an Olympus (Tokyo, Japan) BX61 fluorescence micro-
scope, and images were captured on a Zeiss 510 Meta laser scanning confocal
microscope (Zeiss) using LSM 510 software (version 3.2 SP2; Zeiss) or an
Olympus BX61 fluorescence microscope. Primary antibodies used included
the following: a smooth muscle actin (aSMA Clone 1A4; Dako, Cupertino, CA),
or P-cadherin (R&D Systems), nestin (R&D Systems), zonnula occludens-1
(ZO-1; Invitrogen), vimentin (Sigma, St. Louis, MO), a-tubulin (Sigma), colla-
gen I (Southern Biotech, Birmingham, AL), collagen I (Southern Biotech), fi-
bronectin (Sigma), nephrin (Santa Cruz Biotechnology, Santa Cruz, CA),
synaptopodin (Santa Cruz Biotechnology), proliferating cell nuclear antibody
(PCNA; Santa Cruz Biotechnology), and WT-1 (Santa Cruz Biotechnology).
Secondary antibodies used for immunofluorescence detection included Alexa
Fluor 488 (mouse anti-rabbit, goat anti-rabbit, and rabbit anti-mouse), Alexa
Fluor 594 (rabbit anti-goat, rabbit anti-mouse), and Alexa Fluor 689 (donkey
anti-goat). F-actin was stained with phalloidin red (Invitrogen). For nephrin
staining, a specific antibody to monoclonal antibody 5-1-6 antigen was used,
which is identical to rat nephrin (26).
Western blot analysis.Cells were homogenized in lysis buffer (20 mmol/L Tris
at pH 7.4, 150 mmol/L NaCl, 1% Triton X-100, 0.1% SDS, 10% glycerol, 1 mmol/L
EDTA, 1 mmol/L EGTA, 0.5% sodium deoxycholate, 50 mmol/L NaF, and 2
mmol/L Na3VO4) containing 5% Protease Inhibitor Cocktail (Sigma). Protein
quantity was determined by BCA protein assay kit (Pierce, Rockford, IL).
Samples were run on 6–12% SDS-PAGE and transferred onto PVDFmembranes
by semidry transfer (Semi Dry Transfer Cell; Bio-Rad Laboratories, Inc.,
Hercules, CA). After transfer, all incubations were conducted on a rocking
platform at room temperature. The membrane was blocked in 5% skim milk/
Tris-buffered saline with Tween overnight and then incubated for 1 h with
a-SMA (1:2,000; Dako), connective tissue growth factor (1:1,000 Abcam,
Cambridge, U.K.), P-cadherin (1:1,000 R&D Systems), ZO-1 (1:1,000 Invi-
trogen), vimentin (1:2,000 Sigma), collagen I (1:2,000 Southern Biotech), col-
lagen IV (1:1,000 Southern Biotech), fibronectin (1:1,000 Sigma), synaptopodin
(Santa Cruz Biotechnology), PCNA, p21Cip1 (1:1,000 Santa Cruz Biotechnology),
and p27Kip1 (1:20,000 Sigma). The membrane was washed with Tris-buffered
saline with Tween and then incubated with a peroxidase-conjugated goat anti-
mouse, goat anti-rabbit, or mouse anti-goat secondary antibody (EnVision;
Dako) for 1 h. Immunoreactivity was detected using an enhanced chemi-
luminescence kit (Amersham Pharmacia Biotech, Buckinghamshire, U.K.).
Quantitation of blots was carried out using Quantity One software on the
Chemidoc XRS imaging system (Bio-Rad Laboratories, Inc.).
Gene expression analysis. Gene expression was analyzed by real-time RT-
PCR, performed as described previously (22) using the TaqMan system based
on real-time detection of accumulated fluorescence (ABI Prism 7500; Perkin-
Elmer, Foster City, CA). Fluorescence for each cycle was quantitatively ana-
lyzed by an ABI Prism 7500 Sequence Detection System (Perkin-Elmer). To
control for variation in the amount of DNA that was available for PCR in the
different samples, gene expression of the target sequence was normalized in
relation to the expression of an endogenous control 18S ribosomal RNA (18S
rRNA TaqMan Control Reagent kit, ABI Prism 7500; Perkin-Elmer). Triplicate
experiments were performed, with six replicates. Results were expressed
relative to control (untreated) cells, which was arbitrarily assigned a value of
1. Values are shown as mean 6 SEM, unless otherwise specified. P , 0.05 was
considered significant (t test).
Assessment of proliferation, apoptosis, and detachment. To measure
cellular proliferation, mature podocytes were seeded (1,000 cells/well) in 96-
well plates and treated with TGF-b. Cell proliferation was monitored with
a VICTOR3 V Multilabel Counter (Perkin-Elmer) at a wavelength of 490 nm
using the Aqueous One Solution Cell Proliferation Assay (Promega, Madison,
WI). Apoptosis was estimated using the Apo-ONE Homogeneous Caspase-3/7
Assay (Promega). Both were performed according to the manufacturers’
protocols. To measure cell detachment, cells were grown in a 24-well culture

dish and treated with 10 ng/mL TGF-b for 24 h. Medium was removed, and
cells were trypsinized until all cells were suspended, which was optically
controlled. Hereafter, cells were left to settle again in culture medium con-
taining TGF-b for 1 h. Cells in suspension and adherent cells were collected
separately, and cell number was measured. Expression of cell-cycle mediators
was determined by real-time RT-PCR and Western blotting, as detailed above.
Assessment of albumin permeability. The amount of fluorescein iso-
thiocyanate (FITC)-labeled BSA that passed across a podocyte monolayer was
measured, as described by Maruo et al. (27) with minor modifications. In brief,
monolayers were grown on the surface of membrane filters (0.4-mm pore;
Corning Costar Corp., Cambridge, MA) on which FITC-BSA (10 mg/mL 100 mg/
mL; Sigma-Aldrich) was put into the top chamber. After incubation for dif-
ferent time periods, fluorescence in the basolateral compartment was mea-
sured using fluorescence spectroscopy (excitation = 490; emission = 525 nm).
To quantify the transmembrane flux of FITC-BSA in micrograms per hour, we
calculated the BSA concentrations in the lower chambers using fluorescent
arbitrary units of the albumin solution added to the apical compartment,
taking into account the volume of the basolateral compartment.
In vivo studies. To correlate changes observed in vitro with those seen in vivo,
the expression of key proteins was examined after the induction of diabetes in
apoE-KO mice with five daily injections of streptozotocin (55 mg/kg). Control
mice received an equivalent volume of citrate buffer. This model of diabetes
results in sustained chronic hyperglycemia (blood glucose .15 mmol/L) and
accelerated diabetic nephropathy, with glomerular lesions similar to those
observed in human diabetes (28). Control and diabetic mice were then fol-
lowed for 10 weeks, during which time they had access to standard mouse
chow and water ad libitum. After 10 weeks, animals were given a fatal over-
dose of anesthetic and exsanguinated by cardiac puncture. Both kidneys were
removed and fixed in 4% paraformaldehyde in PBS for subsequent immuno-
fluorescent histologic analysis using the techniques detailed above.
Statistical analyses. Values are shown as means 6 SEM unless otherwise
specified. Statview (Brainpower, Calabasas, CA) was used to analyze data by
unpaired Student t test or by ANOVA and compare using the Fisher protected
least significant difference post hoc test. Nonparametric data were analyzed
by Mann-Whitney U test. P values , 0.05 were considered significant.

RESULTS

Cell model and phenotype. This study used a condition-
ally immortalized differentiated human podocyte cell line,
incubated in 2% FCS at 37.5°C for 14 days. Under these
“nonpermissive” conditions, these cells show many of the
specialized characteristics of mature podocytes, including
dynamic motility, an aberrant appearance, interdigitating
actin-rich foot processes, cortical f-actin, microvilli, and
coated pits (Fig. 1, inset), as well as the expression of
specialized proteins associated with slit-pores (e.g., nephrin,
p-cadherin), filaments (e.g., nestin), and podocyte-specific
transcriptional factors (e.g., WT-1) (Fig. 2).
Induction of dedifferentiation by TGF-b1. Treatment
of immortalized human podocytes with TGF-b1 resulted
in rapid changes in morphology and motility that were
observed using time-lapse video microscopy (Fig. 3,
Supplementary Video). The first visible change was re-
traction and shortening of foot processes and contraction
of the podocyte cell body, which occurred rapidly after
exposure to TGF-b1 and was maximal at 60 min. During
this time period, the specialized arrangement of F-actin
containing filaments was significantly reorganized, with
the peripheral “ring”-like expression seen in mature
podocytes giving way to coarse filaments aligned along the
cell axis that act to retract foot processes and compact the
cell body (Fig. 3). This change was followed by flattening,
broadening, and elongation of the cell. During this transi-
tion, the microvilli and coated pits that covered the mature
podocyte surface were also lost, being replaced by the
smooth and featureless landscape of the dedifferentiated
phenotype (Fig. 1). The phenotypic transition was com-
pleted with the formation of broad and complex tight
junctions between adjacent podocytes (a process in-
appropriately called “fusion”). This was associated with
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reduced dynamic motility and increased expression of
tight junction proteins, ZO-1, as well as a significant shift in
their distribution, with the formation of continuous linear
“zipper-like” structures (Figs. 2 and 3). Dedifferentiation

was also associated with dose- and time-dependent re-
duction in the gene expression of glomerular epithelial
markers (nephrin, p-cadherin, and ZO-1) and increased
expression of mesenchymal markers (aSMA, vimentin,
and nestin) and matrix components (fibronectin, collagen
I, and collagen IV a3) (Fig. 4). Quantitatively similar changes
were also observed at a protein level (Fig. 4) and on immu-
nofluorescence staining (Fig. 2).

Finally, although mature podocytes are postmitotic, de-
differentiation induced after treatment with TGF-b1 was
associated with a time-dependent increase in cellular pro-
liferation, as assessed by a proliferation assay, cell counting,
and the induction of PCNA and cell-cycle regulators at a
gene and protein level (Fig. 5). At the same time, treatment
with TGF-b1 also resulted in increased apoptosis, as assessed
by the caspase 3/7 assay (Fig. 5).
Induction of dedifferentiation by angiotensin II. An-
giotensin II also plays an important role in diabetic podo-
cytopathy, because both ACE inhibitors and AT1 receptor
antagonists are able to attenuate podocyte foot process
effacement and loss of nephrin expression in experimental
models of diabetic nephropathy. In the study cells, angio-
tensin II was able to induce changes of dedifferentiation
(Fig. 6), similar to those observed with TGF-b1. Moreover,
angiotensin II-dependent dedifferentiation was blocked by
the selective inhibitor TGF-b type I receptor kinase, SB-
431542 (Fig. 6).
Functional effects on albumin permeability. Despite
significant morphologic changes, there was no evidence of
increased podocyte detachment. On the contrary, increased
tight junction formation between adjacent podocytes after
chronic treatment with TGF-b1 led to a time-dependent
reduction in the detachment from the monolayer (data not
shown). Consistent with this finding, the permeability of
the podocyte monolayer to FITC-labeled albumin was also
reduced by 38% after long-term treatment with TGF-b1 for
3 days (control 26 6 2 mg/min; TGF-b1 16 6 3 mg/min, P ,
0.01). However, an initial transient increase in albumin

FIG. 1. Morphologic changes induced in immortalized human podocytes
after treatment with TGF-b1 (10 ng/mL, right) for 3 days when com-
pared with control cells (left), as shown by scanning electron micros-
copy (A and B, magnification 1003, insert showing microvilli), light
microscopy (C and D, magnification 1003), immunofluorescence
staining for b-actin (green) and nestin (red) (E and F), and immuno-
fluorescence staining for F-actin (red) and ZO-1 (green) with a blue
nuclear counterstain (DAPI) (G and H). (A high-quality color repre-
sentation of this figure is available in the online issue.)

FIG. 2. Changes in the expression of key markers of differentiation in immortalized human podocytes in response to treatment with TGF-b1 (10
ng/mL) for 3 days when compared with control cells. Immunofluorescence staining for a-actin, b-actin, F-actin, vimentin, nestin, WT1, collagen IV
a3, and cytokeratin, with a blue nuclear counterstain (DAPI). (A high-quality color representation of this figure is available in the online issue.)
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FIG. 3. Dynamic changes in the morphology of immortalized human podocytes after treatment with TGF-b1 (10 mg/mL) over 6 h. A cartoon (top)
illustrates changes observed in real-time video microscopy (bottom, Supplementary Video). Initial retraction and shortening of foot processes and
contraction of the podocyte cell body are followed by flattening, broadening, and elongation of the cell and the formation of broad and complex
tight junctions between adjacent podocytes. (A high-quality digital representation of this figure is available in the online issue.)
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permeability was noted after exposure to TGF-b1 (30 min,
control 176 2 mg/min; TGF-b1 236 2 mg/min, P = 0.02), as
previously described by others (29), potentially reflecting
the retraction of foot processes and contraction of the
cell body that was observed on light microscopy, which
preceded the subsequent spreading, flattening, and in-
terconnection of adjacent podocytes observed at later time
points (Fig. 3).
Podocyte dedifferentiation in the diabetic kidney. The
induction of diabetes in mice was associated with changes
in both morphology and distribution of protein expression
in glomerular podocytes (Fig. 7). Most notably, the ex-
tensively arborized pattern of interlocking foot processes

was reduced in diabetic mice, with fewer, shorter, and
broader foot processes observed on the immunofluores-
cent stain for the intermediate filament, nestin, as a marker
for podocyte and foot processes. This change was asso-
ciated with changes in the expression and orientation of
f-actin, which change their circular configuration in con-
trol cells to linearize in diabetic podocytes and form stress
fibers. Increased expression of mesenchymal markers,
aSMA, and vimentin was also observed in diabetic podo-
cytes. In addition, changes in tight junction were also ob-
served in diabetic podocytes with reduced expression of
the slit-pore protein, nephrin. Finally, specific evidence of
podocyte proliferation was observed in diabetic podocytes

FIG. 4. The induction of dose-dependent (A) and time-dependent changes (B) in the expression of key target genes in immortalized human
podocytes after treatment with TGF-b1 (2–10 mg/mL) for 1–6 days, as measured by real-time RT-PCR (n = 6/group). C: Time-dependent changes in
the expression of a-SMA and vimentin protein induced by TGF-b1 (10 mg/mL), as measured by Western blotting and adjusted for actin and tubulin
expression, respectively. *P < 0.05 vs. control.
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in vivo, as evidenced by increased glomerular staining of
proliferation markers, PCNA and Ki67, specifically within
podocytes (Fig. 8).

DISCUSSION

The glomerular podocyte is believed to play a role in the
development and progression of albuminuria and glomer-
ulosclerosis associated with diabetes (1–3,30). Indeed, re-
cent studies show that mice with specific deletion of the
insulin receptor only from their podocytes develop signifi-
cant albuminuria together with histologic features that
recapitulate diabetic nephropathy, but in a normoglycemic
environment (31). Such data place podocytes, and more
particularly the dysregulation of their growth and differ-
entiation, at the very center of the pathogenesis of ne-
phropathy. In this study, we describe the morphologic and
phenotypic transition of immortalized human podocytes
in high glucose in response to TGF-b1 and angiotensin II,
two important and codependent mediators of diabetic

nephropathy. We also documented a range of novel effects
on podocyte differentiation, apoptosis, and proliferation
changes that were analogous to those observed in vivo in
diabetic glomeruli. Better understanding of these pheno-
typic changes provides important insights to the pre-
vention and management of diabetic renal disease.

The changes in podocyte structure and function induced
by TGF-b1 have been described as epithelial to mesen-
chymal transition (EMT) (8,10,13), because some profibrotic
elements that characterize a mesenchymal phenotype are
acquired, whereas some markers of glomerular epithelial
cell differentiation are lost. However, what is occurring in
podocytes in vitro or in vivo is not classic EMT, as recently
defined by Zeisberg and Neilson (32) and Wang et al. (33).
First, podocytes are embryonically derived from the meta-
nephric mesenchyme. Although podocytes also share posi-
tional characteristics of epithelial cells (e.g., they sit on
a basement membrane and line a cavity [Bowman’s space]),
mature podocytes do not express E-cadherin and may be
better considered pericytes, whose circumferential arms

FIG. 5. The induction of a time-dependent increase in cellular proliferation in immortalized human podocytes after treatment with TGF-b1 (10 ng/
mL) for 1–6 days as measured by proliferation assay (A), cell counting (B), and the induction of PCNA and cell-cycle regulators p21 and p27 at
a gene level (C) and protein level (D), as measured by real-time RT-PCR and quantified by Western blotting, respectively. At the same time,
treatment with TGF-b1 (10 ng/mL) for 1–3 days also resulted in increased apoptosis, as denoted by the caspase 3/7 expression (E). *P < 0.05 vs.
control.
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engirdle the vascular endothelium in both the brain and the
glomerulus. Second, after exposure to TGF-b1, epithelial
markers are increased in podocytes (e.g., ZO-1, cytokeratin)
associated with increased tight junction formation (34),
rather than reduced, as observed in classic EMT, which
facilitates cellular separation and invasion. In a reverse
process of podocyte maturation, ZO-1 migrates and trans-
locates from the basal to the lateral side of the podocyte
(35). Third, TGF-b1 and other stimuli of EMT act to sup-
press epithelial proliferation, whereas TGF-b1 enhances
podocyte proliferation in our human podocytes. Taken to-
gether, the phenotypic changes observed in our in vitro and
in vivo models are more appropriately described as de-
differentiation: the regression of a specialized cell to a sim-
pler, more embryonic, unspecialized form.

In common with EMT, both processes seem to be
a means by which intrinsic cellular plasticity facilitates
rapid structural and functional adaptations. Although ef-
facement of podocytes is generally regarded as an abnor-
mal response to injury, the formation of de novo tight
junctions between podocytes may act to counteract the
expansion of glomerular capillaries in response to injury.
Indeed, we show in this study that the dedifferentiation
of cultured podocytes results in increased podocyte
connections with reorganized of tight junctions, a flat
cobble-stone–like appearance that reduces albumin flux
across the monolayer, as previously described in epithelial
cells (36). However, although adaptive in the short-term,
these phenotypic transitions may ultimately become malad-
aptive, where their chronic activation may aggravate glomer-
ular fluid and shear stress, thereby leading to progressive
organ dysfunction.

Our findings are consistent with the known actions of
TGF-b and angiotensin II on podocyte differentiation and
apoptosis under normal glucose conditions (19,22–24).
However, with respect to ZO-1, diabetic mice have been
reported to show decreased glomerular expression of
this protein and a small but nonsignificant effect of hy-
perglycemia on primary rat glomerular epithelial cells (37).
By contrast, we found that the expression of ZO-1 was
increased by TGF-b in association with the increased

formation of tight junctions between adjacent dediffer-
entiated cells. It is possible that the loss of podocytes with
diabetes confounds interpretation of some of these findings.
Moreover, these results may also reflect the disparate
actions of hyperglycemia and TGF-b on podocytes (20), as
well as the various cell lines used in the different studies.
Previous studies of podocytes in culture have been criti-
cized because of lack of markers of mature podocytic
differentiation (e.g., p-cadherin and nephrin). The condi-
tionally immortalized human podocyte cell line established
by Saleem et al. (25) used in our experiments does not
share this problem (38,39); it shows both growth arrest
and clear differentiation when exposed to “non-permissive”
temperatures (37.5°C). However, the changes induced by
TGF-b1 in this model suggest that some of the criticisms of
earlier models may have been unfounded. For example, the
regular, cobblestone-like polygonal phenotype with non-
specific tight junctions and proliferating cells observed in
constitutively immortalized (SV40) human podocyte lines
was thought to demonstrate its unsuitability as an exper-
imental model. More likely, this dedifferentiated pheno-
type reflects podocytopathy and dysfunction as occurs
in vivo, because similar changes can be induced by
pathogenic stimuli in the podocyte line used in the current
study.

Mature podocytes are traditionally thought of as arche-
typal postmitotic cells, terminally differentiated with little
or no capacity for regenerative replication. This has led to
the misconception that podocyte proliferation cannot be
seen in renal disease. However, proliferating podocytes
are readily observed in experimental models of selective
glomerular injury (40), because some podocytes reengage
the cell cycle as an adaptive response to injury in the at-
tempt to mitigate podocyte loss. Dedifferentiated podo-
cytes can and do proliferate in vitro and in vivo in a range
of human diseases, including HIV nephropathy, crescentic
glomerulonephritis, and collapsing glomerulopathy. Our
studies demonstrate for the first time that podocytes
expressing proliferation markers are also observed in the
diabetic glomerulus. Moreover, we show that TGF-b1,
a well-known mitogen that is increased in the diabetic

FIG. 6. The induction in the expression of key target genes in cultured human podocytes after treatment with angiotensin II (1 nM) for 3 days in
the presence and absence of a selective inhibitor of the TGF-b1 type I receptor kinase, SB-431542, as measured by real-time RT-PCR (n = 6/group).
*P < 0.05 vs. control. #P < 0.05 vs. angiotensin II.
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kidney, is also able to stimulate podocyte proliferation,
in addition to its known effects on differentiation and ap-
optosis (22–24). Indirect evidence for podocyte pro-
liferation in human diabetes comes from the observation
that increased numbers of podocytes are seen in the urine
(7,41), long before any reduction in any glomerular
podocyte numbers. It is possible that podocyte pro-
liferation has not been suspected in diabetes, because it
is offset by detachment and apoptosis, meaning the net
effect is one of a progressive but modest podocyte loss.
Moreover, in advanced disease, there may be a critical
threshold of podocyte depletion that defines the point of
no return, beyond which proliferation and other meas-
ures to conserve this cell population also fail, and thus
glomerulosclerosis becomes irreversible (42). The co-
ordinate regulation of cell proliferation and death seems
to provide an organism with a mechanism to control em-
bryogenesis, as well as repair and regeneration. It is possi-
ble to speculate that dysregulated hyperplasia results in
cellular and collapsing hyperplasia, whereas dysregulated
apoptosis results in podocytopenia and segmental glomer-
ulosclerosis by exposing the basement membrane to form
synechiae. Indeed, in terminally differentiated neuronal
cells, reentry into the cell cycle more often leads to apo-
ptosis than proliferation, although both cellular processes
are always stimulated.

The precise mechanism by which cells regain their
ability to proliferate remains to be established. It probably
reflects an epiphenomenon of the wholesale change in
phenotype, rather than any specific change in proliferative
capacity. However, it is possible that alterations in cell-
cycle control proteins are important, including repression
of p27 expression, a cyclin-dependent kinase inhibitor that
promotes growth phase arrest in postmitotic cells like
podocytes (43). Studies reducing the expression of p27 in
other postmitotic cells have shown that cell-cycle reentry
and repression of podocytes may be involved in podocyte
proliferation in focal and segmental glomerulosclerosis.
Other pro-proliferative mediators induced by TGF-b1, in-
cluding nuclear factor-kB, may also play a role (44).

Although the dynamic changes in podocyte structure
and function demonstrated in this article seem consistent
with in vivo phenomena, several limitations should be
considered. The use of recombinant TGF-b in our in vitro
models may not reflect the complex array of growth fac-
tors and cytokines ambient in the diabetic glomerulus. The
concentration of TGF-b used in our experiments is none-
theless consistent with that observed in the diabetic glo-
merulus (45), as well as in the plasma of patients with
diabetes (46,47). Similarly, the angiotensin II dose used in
our experiments (1 nM) is consistent with the angiotensin
II concentration observed in vivo (48). Second, the behavior

FIG. 7. Immunofluorescent staining of cortical glomeruli showing expression of the podocyte marker, nephrin (green), f-actin (red), and the in-
termediate filament, nestin (blue); merged staining from control and diabetic apoE-KO mice (top); and immunostaining of cortical glomeruli
showing expression of a-SMA (green), nestin (red), DAPI (blue), and merged (bottom). (A high-quality color representation of this figure is
available in the online issue.)
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of podocytes in cell monoculture may not reflect their reg-
ulation within the glomerulus, which is substantially influ-
enced by other cells and local hemodynamic factors on
other pressures (oncotic pressure and shear stress). Third,
although the accelerated renal lesion associated with di-
abetes in the apoE-KO mouse is more consistent with hu-
man nephropathy (28), it may not be fully representative of
the human diabetic kidney.

In summary, the foot processes of podocytes are nor-
mally flexible, dynamic, and contractile structures, whose
configuration depends on rearrangements of an actin
cytoskeleton (49–53). In response to TGF-b and other
TGF-dependent stimuli, mature podocytes undergo de-
differentiation that leads to effacement of foot processes,
morphologic flattening, reduced motility, and increased
formation of intercellular tight junctions. This simplifi-
cation of their phenotype to a more embryonic form is
also associated with reentry of mature podocytes into the
cell cycle, which results in enhanced proliferation and
apoptosis. These “pathoadaptive” changes are seen early
in the diabetic glomerulus and potentially contribute to
albuminuria, glomerulosclerosis, and podocytopenia.
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