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Abstract

The main role of Telomerase Reverse Transcriptase (TERT) is to protect telomere length from shortening during cell division.
However, recent works have revealed the existence of a pool of TERT associated to mitochondria, where it plays a role in
survival. We here show that in fully differentiated neurons the largest pool of cytoplasmic TERT associates to TIA1 positive
RNA granules, where it binds the messenger RNA of the cyclin kinase inhibitor p15INK4B. Upon stress, p15INK4B and TERT
dissociate and p15INK4B undergoes efficient translation, allowing its pro-survival function. These results unveil another
mechanism implicated in the survival of fully differentiated neurons.
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Introduction

Senescence, or biological aging, can be defined as the

accumulation of changes in the biology of an individual over

time, correlated with increased susceptibility to disease and

mortality. Much of the changes that occur with aging are the

consequence of a process known as cellular senescence: i.e.

irreversible loss of replicative capacity after certain number of

divisions[1]. We now know that this time-associated replicative

impairment is due, to a large extent, to the shortening of telomeres

which occur with each division[2]. In turn, telomere shortening is

due to a combination of causes, including oxidative damage in

guanine triplets[3], which are abundant at telomeric ends, and the

decrease in the activity of the telomere shortening-inhibiting

enzyme telomerase reverse transcriptase (TERT)[4]. In prolifer-

ative cells, with the exception of germinal cells, stem cells and

committed progenitors, TERT activity decreases after 50–60

division cycles bringing cells into the replicative senescence state,

i.e. appearance of permanently post-mitotic cells which gradually

start to lose function: the aging process.

Neurons are a most suitable cellular system to dissect the

mechanisms implicated in survival-function homeostasis in the

post-mitotic stage. In fact, neurons become permanently arrested

in the G0 phase early in development and from this time (and

especially after the establishment of synaptic activity), these post-

mitotic cells are exposed to the constant presence of stress by-

products derived from the intense metabolic needs of the brain.

Still, the total number of neurons does not significantly decrease

with age, implying that a major effort in the biology of these cells is

dedicated to warrant cell survival [5][6][7]. Consistent with their

post-mitotic quiescence, telomere length in neurons does not

change with age[8]. However, TERT does remains abundant in

the fully differentiated neuron[9], suggesting that neuronal TERT

may play a telomere-independent role. In agreement with this

possibility, work in cancer cells[10] and in experimental paradigms

of brain excitotoxicity[9][11] have suggested a mitochondria-

associated, pro-survival function.

In this work, we have investigated the possibility that a similar

mechanism may be part of the constitutive survival machinery of

aging neurons. Our data show that TERT plays a pro-survival role

in fully differentiated neurons through its association to RNA

granules, where it contributes to the translational control of the

pro-survival gene p15INK4B (Cyclin-dependent kinase inhibitor

2B).

Materials and Methods

Primary culture of hippocampal neurons
Primary cultures were prepared from Wistar rat fetuses at

embryonic day 18–19 as described by Kaech and Banker[12]. The

pregnant mother is killed by anaesthetization and cervical

dislocation and the embryos are removed from the uterus under

sterile conditions. The hippocampi of the embryos are dissected

and dissociated by trypsinization.

Antibodies
For protein detection, the following antibodies were used: rabbit

anti-TERT (1:1000, Santa Cruz, Acris Antibody and LifeSpan

BioSciences, Inc.), mouse anti-Tubulin (Cell Signaling), p58,

ribophorin 1 (both gift from Wim Annaert, KULeuven), histone

3 (Cell Signaling), TIA1 (Sigma-Aldrich, Santa Cruz Biotechnol-
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Figure 1. Neuronal TERT is enriched in ribosome-containing compartments in vivo. a)-b) Western blot analysis of TERT localization in
subcellular fractions from the brains of 23 month-old mice and rats. Hsp60, RibophorinI, p58 and Histone3 are markers of, respectively, mitochondria,
ribosomes, microsomes and nuclei. TERT is clearly enriched in the microsome and ribosomal fractions in old mouse brain. Bar graph reflects these
differences (mean 6 s.d. of four different mice, mean 6 s.d. of three different rats, *p,0.05). c) Representative confocal images of 23 DIV
hippocampal neurons stained for TERT (red) and counterstained with MTT, mitochondrial selective dye (green) and p58 (green), microsomal marker.
Bar: 10 mm. Bar graph on the right: quantification of soluble TERT in mitochondria and microsomal fractions; bars represent the mean 6 s.d. of three

Role of TERT in Neuronal Survival during Ageing

PLOS ONE | www.plosone.org 2 June 2013 | Volume 8 | Issue 6 | e66602



ogy), LSM-1 (gift from Tilmann Achsel, KULeuven), P-eIF2a
(Cell Signaling), PABP (Santa Cruz Biotechnology). Images were

taken with the Fujifilm LAS-3000 system and analyzed with the

Image J software (NIH).

Immunofluorescence Microscopy
Neurons on glass coverslips were incubated with DAPI (Sigma-

Aldrich), and rabbit anti-TERT (1:1000, from either Acris

Antibody or LifeSpan BioSciences, Inc.). Samples were analyzed

on a confocal microscope (Biorad Radiance) and quantification

performed using the Mender’s coefficient plugin from NIH

ImageJ.

Immunohistochemistry
Anesthetised mice (black C57BL/6) were perfused intracardially

with 10 ml of 0.1 M PBS solution at pH 7.4, followed by 15 ml of

ice-cold 4% paraformaldehyde in PBS solution at room temper-

ature. Brains were first submerged in fixative and then in 30%

sucrose-PBS solution at 4uC until being frozen in isopentane and

cut in 20 mm -thick coronal sections. On the day of the

immunohistochemical staining, the sections were placed in a

humid chamber, rinsed with PBS and permeabilized with Triton

X-100 1% for 30 minutes. After incubation with the blocking

solution, the sections were incubated with the primary antibody

anti-TERT (LifeSpan BioSciences, Inc.) O.N. (together with the

antibody against the subcellular marker) and then with the anti-

Rabbit Alexa Fluor 488-conjugated secondary antibody (Invitro-

gen) and DAPI (Sigma-Aldrich) 1 hr at room temperature.

Subcellular fractionation
Preparation of different subcellular fractions was made from

brains of 23 months old mice (black C57BL/6, n = 4) and rats

(Wistar, n = 3) according to Gray and Whittaker’s protocol[13].

All the steps of the fractionation protocol were carried out at 4uC.

Briefly, total mouse brains were broken in the homogenization

buffer (0.32 M sucrose, 1 mM EDTA, 5 mM HEPES, 1 mM

NaV, 1 mM NaF and 25 mM protease inhibitors) using a Teflon/

glass homogenizer; 1 ml of the total homogenate was taken apart

and the left over centrifuged 3 times, at 1000 g for 10 minutes.

The pellet of the third centrifugation corresponds to the nuclear

fraction (P1). From the SN of each centrifugation the mitochon-

drial fraction (P2) was separated using a refrigerated angle-head

centrifuge at 17000 g for 55 minutes. The SN was then further

centrifuged at 10̂5 g for 60 minutes to obtain the microsomal

fraction (P3). Finally, the ribosomal fraction (P4) was prepared by

centrifuging the SN of P3 at 10̂5 g for further 2 hrs. The pellet

from each centrifugation was resuspended in 500 ml of STEN-lysis

Buffer. The same volume (30 ml) from each fraction was loaded on

NuPAGE 4–12% Bis–Tris gels (Invitrogen) after protein denatur-

ation at 70uC for 10 minutes in NuPAGE Sample buffer.

Polysome gradient
Total mouse brain from 23 months old mice (black C57BL/6,

n = 3) was homogenized in 3 ml of lysis buffer (100 mM NaCl,

10 mM MgCl2, 10 mM Tris-HCl pH 7.5, 1% Triton-X100,

1 mM dithiothreitol, 40 U/ml RNase inhibitor, 30 mg/ml cicloex-

imide, 0.5 mM Na-orthovanadate, 5 mM b-glycerophosphate,

10 mg/ml Sigma protease inhibitor). The lysates were incubated 5

min in ice, centrifuged for 5 min at 12,000 g at 4uC, and 500 ml of

supernatants (cytoplasmic extract) centrifuged through 15%–50%

(w/v) sucrose gradients for 110 min at 37,000 rpm in a Beckman

SW41 rotor. Each gradient was collected in 10 fractions. From

each fraction the proteins were precipitated with Magic Mix (50%

Ethanol, 25% Methanol and 25% Acetone) and analyzed by

Western blotting. For Puromycin treatment, before loading on

15%–50% sucrose gradient, brain cytoplasmic extracts were

treated with 1 mM Puromycin and 500 mM KCl for 15 min at

4uC.

Protein and RNA Immunoprecipitation
IP from brain extracts: 23 months old mice (black C57BL/6, n = 3)

were killed by anaesthetization and cervical dislocation, and the

brains were removed under sterile conditions. After homogeniza-

tion in the same lysis buffer for the polysome analysis (see above),

the lysates were incubated 5 min in ice, centrifuged for 5 min at

12,000 g at 4uC. 500 mg of proteins from the SN fraction were

loaded on 40 ml protein G sepharose beads (GE Healthcare) for 2

hrs at 4uC to eliminate unspecific bindings. After centrifugation at

1500 rpm for 1 minute, the SN was loaded on new 40 ml protein G

sepharose beads conjugated with 5 mg of specific antibodies

(hTERT, TIA1 Santa Cruz Biotech) overnight. The day after,

the beads were washed 3 times by centrifugation at 1500 rpm for 1

min at 4uC and RNA and proteins were purified and respectively

used for PCR amplification or analysed by western blot.

IP from neurons in culture: 10 days in vitro (DIV) hippocampal

neurons were scraped and lysed with Lysis Buffer (50 mM Tris-

HCl pH 7.4, 150 mM NaCl, 0.1% Triton, RNase and Protease

Inhibitors) using 0.33 mm needle and centrifuged at 2600 rmp for

12 minutes. The SN fraction was treated with benzonase and

200 mg of proteins were loaded on 40 ml protein G sepharose

beads following the same protocol described above for the in vivo

IP.

RNA purification: RNAs were first eluited with eluition buffer

(0,2 M NaOAc, 1 mM EDTA, 0,2% SDS), heating for 5min at

70uC, then extracted with 1 V of Phenol/Chloroform, and 1 V of

Chloroform and finally precipitated with 2,5 V of Absolute EtOH

and 20 ug of glycogen (o/n at –20uC). The day after, the samples

were centrifuged for 20min at 14000rpm at 4uC, the pellet washed

with 70% EtOH and resuspend in 10 ul of H2O. 5 ml of each

samples were used for RT-PCR using primers specific for different

cell cycle genes. Oligonucleotide primers were synthesized at

Invitrogen according to published mRNA sequences (NCBI).

Cell treatments
To induce oxidative stress, 10 DIV hippocampal neurons in

culture, were treated with Arsenite 0.5 mM for 1 hr, at 37uC, 5%

CO2.

To prevent TERT translocation from the nucleus to the cytosol,

10 DIV TERT overexpressing neurons were treated with 20 ng

Leptomycin B (Sigma-Aldrich) for 1hr, at 37uC, 5% CO2.

different cultures (*p,0.05). d) Representative confocal images of brain slices from 23 months old mice stained with TERT (green), p58 (red) and DAPI
(blue). Note the clear cytoplasmic distribution of TERT in the neurons of old mice brain and its concentration in the juxta-nuclear region, coinciding
with the enrichment in p58 positive structures (n = 2). Scale bar: 20 mm. e) TERT partitioning in polysome gradients from total brain of 23 month-old
mice. Note the abundance of TERT in fractions 6–7, corresponding to monosomes and the initiation translational complex (n = 3). f) Polysome
gradient of old mice brain extracts treated with 1 mM Puromycin. Under this treatment, TERT is displaced to the mRNP fractions. The western blots
below each gradient reveal the distribution of TERT and rpS6, used as marker for ribosome-containing fractions (n = 3).
doi:10.1371/journal.pone.0066602.g001
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Figure 2. TERT associates to TIA1 –positive granules. a) Western blot analysis of TERT immunoprecipitated proteins in extracts from
hippocampal neurons maintained in vitro for 10 DIV, under basal stress conditions (control) or stressed with arsenite. Note that the two SG markers
(TIA1 and P-elF2a) are precipitated whereas LSM-1, a component of PBs is not. RNase treatment does not affect TERT-TIA1 binding (n = 4). b) Western
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Scrambled and short hairpin RNA design
Short hairpin (sh) p15INK4B and control construct cloned into

lentivirus particles were from Sigma-Aldrich.

The shTERT and scrambled TERT plasmids were generated

as reported by Rubinson et al.[14].

The following pairs of oligonucleotides were used:

shTERT
sense: -59-PiT-GGTGCCTCCTGCAGCGAAA-TTCAA-

GAGA-TTTCGCTGCAGGAGGCACC-TTTTTTC-39-

antisense: -39-A-CCACGGAGGACGTCGCTTT-

AAGTTCTCT- AAAGCGACGTCCTCCGTGG-AAAAAAG-

AGCTPi-59-

scrambled TERT
sense: -59-PiT-AAAGCGACGTCCTCCGT GG-TTCAA-

GAGA-CCACGGAGGACGTCGC TTT-TTTTTTC-39-

antisense:- 39- A-TTTCGCTGCAGGAGGCACC-

AAGTTCTCT- GGTGCCTCCTGCAGCGAAA-AAAAAAG-

AGCTPi-59-

The oligonucleotides for TERT were designed to match the

mouse and rat TERT mRNA sequence. Restriction sites XbaI and

XhoI were flanking the shTERT and scrambled sequences for the

insertion into pLentiLox 3.7 vector (see Cloning section).

Cloning
The oligonucleotides encoding for scrambled and shTERT

were annealed and digested with XbaI and XhoI in order to create

the insertion sites for the linear pLentiLox 3.7 vector backbone

(Dharmacon, PerBio Science), which contained the U6 promoter

upstream of the shTERT and scrambled sequence, an expression

cassette composed by the cytomegalovirus promoter (CMV), green

fluorescente protein (GFP) and Woodchuck hepatitis virus post-

transcriptional regulatory element (WPRE) to monitor transduc-

tion efficiency. Ligation was carried out at 16uC overnight and

valuated by transformation of DH5a strain of E. Coli competent

cells and digestion with the same restriction enzymes used for

oligos insertion. The insert was analyzed in 1.5% agarose gel.

Lentiviral vector generation
293T cells were cultured in Dulbecco’s modified Eagle’s

medium (DMEM) supplemented with 2 mM L-Glutamine (Gln),

100 U/ml penicillin, 100 mg/ml streptomycin and 10% heat-

inactivated fetal bovine serum (FBS, Invitrogen). Cells were grown

in cell factories during viral infection in a special medium 10%

Nu-Serum IV (Becton Dickinson). For viral vector production, 90–

95% confluent 293T cells were transfected using FuGene 6

reagent (Roche) and viral particles were collected from filtered

medium by centrifugation during 2 hrs at 25,000 rpm after

transfection. Viral particles were resuspended in 50 ml of 16PBS,

quickly frozen in liquid nitrogen and stored at 280uC.

The second shTERT was from Santa Cruz (product number:

L000954).

TERT over-expression and knock-down
TERT over-expression method: dissociated hippocampal neu-

rons were transfected by neucleofection just before plating using

Amaxa Rat Neuron Nucleofector Kit (Lonza) according to the

manufacturer’s instructions.

TERT knockdown method: 7 DIV hippocampal neurons were

incubated for 7 hrs with a lentivial particle expressing the

scrambled or sh TERT sequence (dilution 1:50): the effects of

the knock-down were tested 3 days later, at 10 DIV.

Statistical analysis
Comparisons between groups were performed with the Student

T-test and differences were considered significant when p,0.05.

Ethics Statement
All animal experiments were approved by the Ethics Committee

of the K.U.Leuven, Biosafety and Biotechnology.

Results

Previous work showed that cytoplasmic TERT plays a role in

survival in different cell types, including neurons in a cytotoxicity

paradigm[9][11]. Therefore, we performed gain and loss-of-

function experiments in cultured hippocampal neurons. Figure

S2 shows that TERT knock-down in fully differentiated neurons

increased apoptosis. On the contrary, over-expression exerted an

anti-apoptotic role (Figure S3). This last effect was prevented by

pre-treating cells with the nuclear export inhibitor Leptomycin B

(S3b), implying that the pro-survival effect requires TERT that

previously accumulated in the nucleus.

Antibody specificity was verified by western blot analysis: Figure

S4 (upper panel) shows the concentration-dependent increase of a

band at the expected molecular weight. Moreover, knock-down

with two different shRNA against TERT and over-expression

experiments (Figure S4, lower panel) prove, respectively, the loss

and the increase of the target protein.

To elucidate the mechanisms behind the pro-survival role of

TERT in differentiated neurons, we analyzed TERT cytoplasmic

localization using mouse brain sub-cellular fractionation, prepared

as in Gray and Whittaker[13]. Western blot analysis from adult

mouse and rat brains revealed high levels of the protein in the

microsomal and ribosomal fractions (Fig. 1a and 1b). In support of

the biochemical data, immunofluorescence microscopy in fully

differentiated hippocampal neurons in vitro revealed the co-

localization of TERT with the p58 protein, a canonical ERGIC

(endoplasmic reticulum-Golgi intermediate compartment) mark-

er[15] (Fig. 1c). Similar colocalization was observed in situ, in brain

sections from old mice (Fig. 1d).

The presence of TERT in RNA-rich organelles and its affinity

for G-quadruplex structures, which are also present in RNA[16],

motivated us to investigate whether cytoplasmic TERT is in fact

associated with RNA/ribosomes. To analyze this possibility,

cytoplasmic extracts from mouse brain were fractionated on a

20–50% sucrose gradient (Napoli et al.[17]), and the co-

blot analysis of TERT immunoprecipitated proteins in extracts from old mice. As in the in vitro experiments, TIA1 and P-elF2a are precipitated whereas
LSM-1 is not (n = 3). c) Western blot analysis of TIA1 immunoprecipitated proteins in extracts from hippocampal neurons maintained in vitro for 10
DIV, under basal stress conditions (control) or stressed with arsenite. Again, RNase treatment does not affect TERT-TIA1 binding (n = 4). d) Western
blot analysis of TIA1 immunoprecipitated proteins in extracts from old mice. Note that TIA1 and P-elF2a are precipitated whereas LSM-1 is not (n = 3).
e) The known TIA1 target ß-actin mRNA is amplified in RNA purified from TERT immunoprecipitate, whereas another known TIA1 target, Caspase-7, is
not. The first lane corresponds to the markers (n = 2). f) Confocal microscopy images of neurons double labeled TERT (green)-TIA1 (red) (upper row)
and TERT (green)-PABP (red) (lower row). Numerous foci of colocalization exist (quantified in the bar graph: mean 6 the s.d. from three different
experiments). Scale bar: 10 mm. g) Confocal microscopy images of neurons infected with scrambled or shTERT, stained for TERT (red) and
counterstained for TIA1 (blue). The reduction in TIA1 labeling is not significant (mean 6 the s.d. from three different experiments). Scale bar: 10 mm.
doi:10.1371/journal.pone.0066602.g002
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Figure 3. TERT granules contain the mRNA encoding the pro-survival cyclin inhibitor p15INK4B. a) TERT RNA-immunoprecipitation from
cells under control or arsenite-induced stress: immunoprecipitated RNA was used for RT-PCR with specific primers for cell cycle regulators. Note that
the only positive amplification product corresponds to the p15INK4B messenger, in the control but not stressed neurons (n = 2). b) Upper panel.
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p15INK4B in situ hybridization, negative control (anti-sense) and p15INK4B specific probe. Only the specific probe gives a signal, in the nucleus (DAPI
positive) and in the cytoplasm. Lower panel. p15INK4B in situ hybridization (red) together with TERT immunofluorescence microscopy (green);
nuclear labeling with DAPI (blue). Colocalization is evident in the perinuclear region (arrows in overlay image, ‘‘merge’’) (n = 3). c) p15INK4B mRNA
levels in 10 DIV hippocampal neurons in culture, under control or arsenite treatment. Arsenite does not result in degradation of the messenger (n = 3).
d) Representative A254 gradient profile of control (Ctr) and arsenite stressed neurons (Ars); translational efficiency of p15INK4B mRNA was
normalized to Histone 3 and b-actin (beta-actin) mRNA, as measured by RT-qPCR assay, using the following algorithm: 2-[DCt(P)- DCt(mRNPs)]. Stress
induces p15INK4B translocation to the polysomes, reflecting higher translation. Standard errors are shown (n = 3). e) Western blot analysis of
p15INK4B from 10 DIV hippocampal neurons in culture, in control and in neurons treated with arsenite. Tubulin is used as loading control. Note that
arsenite increases the levels of p15INK4B. Bar graph on the right is the quantification of this experiment (means 6 the s.d. of three different cultures;
*p,0.05).
doi:10.1371/journal.pone.0066602.g003

Figure 4. TERT exerts its anti-apoptotic role through regulation of p15INK4B messenger, a) Western blot analysis of TERT and p15INK4B
levels in 10 DIV hippocampal neurons infected with scrambled or shTERT; Tubulin is used as loading control. Note that p15INK4B levels are reduced
by TERT downregulation (n = 2). b) Western blot analysis of p15INK4B levels in control 10 DIV hippocampal neurons and infected with p15INK4B
shRNA. The reduction in protein content is more than 50% (bar graph on the right, n = 2). c) Tunel assay of 10 DIV hippocampal neurons under
control conditions (control) and after infection with an empty vector (vector) or with the shRNA for p15INK4B (shp15INK4B). The bar graph illustrates
the significant cell death under this last condition (mean 6 the s.d. of three different cultures; * p,0.05).
doi:10.1371/journal.pone.0066602.g004
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sedimentation of TERT with polysomes/messenger-ribonucleo-

particles (mRNPs) was determined by Western blot-

ting[17][18][19]. As shown in Fig. 1e, the largest pool of TERT

co-sediments mostly with ribosome/monosomes and the 80S

initiation complex, partially with RNA bound to two and tree

ribosomes and only a small amount of the protein was detected in

mRNPs and polysome fractions. To ascertain whether TERT was

indeed binding ribosomes, polypepetide elongation was interrupt-

ed with puromycin. Fig. 1f shows that this treatment induces a shift

of TERT towards the lighter fractions of the gradient (fraction 10),

strengthening the notion of a TERT/ribosome association.

When subjected to environmental stress, cells respond by

suspending overall protein synthesis, resulting in the disassembly of

polysomes and the stalling of initiation complexes, which become

recruited to cytoplasmic foci known as stress granules (SGs)[20].

Because cytoplasmic TERT favors neuronal survival (see S2 and

S3a) and co-sediments mostly with monosomes and the initiation

translational complex, we tested whether TERT is part of SGs.

We immunoprecipitated TERT from extracts of hippocampal

neurons in vitro and determined its possible association with the

RNA binding protein TIA1 (T-cell-restricted intracellular antigen-

1), a well-known marker of SGs[21]. TIA1 and TERT co-

precipitated in the cytosolic fraction from mature hippocampal

neurons in culture (Fig. 2a and 2c). A similar result was observed

when the immunoprecipitation was performed in brain cytoplas-

mic extracts from old mice (Fig. 2b and 2d), together suggesting

that TIA1 and TERT are in a complex.

Because arsenite increases the number of SGs[22], we treated

fully differentiated hippocampal neurons in culture with 0.5 mM

arsenite for 60 min. Western blot analysis shows that arsenite

treatment does not produce any significant increase in TERT-

TIA1 complexes (Fig. 2a and 2c), suggesting that at this stage of

neuronal differentiation, the number of complexes is at the upper

limit. Moreover, RNase treatment does not affect the binding of

TERT to TIA1, demonstrating that the association is RNA-

independent. In further support that TERT is part of SGs, co-

immunoprecipitation experiments revealed the presence of P-

eIF2a, another specific SGs marker[23] (Fig. 2a–2d). On the

contrary, LSM-1, a processing body (PB) marker[24], was not

found in TERT and TIA1 immunoprecipates (Fig. 2a–2d). As a

final confirmation, we performed TERT RNA immunoprecipita-

tion (RIP), followed by RT-PCR with primers for known target

genes of TIA1[25]. Fig. 2e shows that the ß-actin mRNA is present

in the TERT precipitate, while Caspase-7 mRNA, is not. This

result suggests that TERT associates with particular pools of TIA1

granules. The biochemical association of TERT with SG was also

confirmed by immunofluorescence microscopy in fully differenti-

ated hippocampal neurons in culture. Fig. 2f shows co-localization

TERT-TIA1 and TERT-PABP, another SGs constituent[23]. To

test whether TERT is required for SGs formation, we reduced the

TERT levels using shRNA, which, however, did not significantly

affect the number of TIA1-positive structures (Fig. 2g). These

results indicate that TERT associates with different types of TIA1

granules but may not be required for their formation.

After the last division, neurons acquire biochemical, physiolog-

ical and morphological properties that make them remain arrested

in the G0 phase for the rest of their lives. Nonetheless, many cell

cycle control proteins become up-regulated in the aging brain[26].

It is thought that the reactivation of the cell cycle is a consequence

of stress accumulation and that it can lead to apoptotic

signaling[27]. Thus, we tested whether TERT associates with

mRNAs encoding cell cycle components and discovered that the

TERT granules contain mRNA for p15INK4B (Fig. 3a). This

observation is in agreement with the computational prediction of

G-quadruplex structures in this RNA. The association of TERT

with p15INK4B in RNA granules was confirmed in a double in

situ hybridization-immunofluorescence staining experiment (as in

Zalfa et al.,[28]) (Fig. 3b). Note however, that arsenite treatment

resulted in the loss of the messenger from the TERT complex,

suggesting that stress induces the release of the messenger, either

for translation or for degradation. To distinguish between these

two possibilities, we performed RT-PCR using total RNA purified

from hippocampal neurons, both control and treated with arsenite.

The p15INK4B mRNA was still amplified (Fig. 3c), thus excluding

degradation and supporting higher translation. In fact, q-PCR

from polysome gradients of control and arsenite treated neurons

revealed a 40% increase in the translational efficiency of

p15INK4B messenger (Fig. 3d). Western blot analysis of the same

cell extracts showed the corresponding increase in p15INK4B

protein levels (Fig. 3e).

To test whether TERT could exert its pro-survival role (see S2

and S3) through the regulation of this inhibitor, we first knocked

down TERT and analyzed the levels of p15INK4B. Consistent

with this possibility, TERT down-regulation led to a significant

decrease in this protein’s levels (Fig. 4a). Next, we directly

addressed the pro-survival role by knocking down p15INK4B with

a shRNA lentiviral vector (Fig. 4b). This experiment confirmed

that low levels of p15INK4B increases the levels of apoptosis in

cultured hippocampal neurons (Fig. 4c).

Discussion

We have here demonstrated that neuronal aging is accompa-

nied by the increased translocation of TERT from the nucleus to

the cytoplasm. In hippocampal neurons in culture (see S1), TERT

was exclusively nuclear in the early developmental stages (3 DIV)

and abundant in the cytosol with time in vitro, especially 2 weeks

after synaptogenesis, when metabolic demands are higher. We also

observed cytoplasmic TERT in fully differentiated neurons in situ,

indicating that TERT nucleus-to-cytoplasm change with age is a

normal event in the biology of these cells. The increased levels of

TERT in the cytosol of aged neurons may truly relate to a pro-

survival need at this stage of life, as its knockdown resulted in

higher apoptosis (see S1–S3). While it remains to demonstrate that

this is also the case in vivo, our results strengthen the recent work by

Eitan et al.[29][30]. These authors found that the over-expression

of TERT plays a protective role against oxidative stress in the

brain and in motor neurons, delaying the onset and the

progression of amyotrophic lateral sclerosis (ALS).

Second, our work shows that TERT is part of RNA granules in

fully differentiated neurons. These RNA granules may well be a

type of SGs. In fact, TERT co-precipitates and co-localizes with

several components of SGs, including the ß-actin mRNA, P-elF2a,

TIA1 and PABP. Moreover, the observation that TIA1 pulls down

P-elF2a only in arsenite treated cells and TERT in both, stressed

and non-stressed neurons, suggests the existence of two pools of

TIA1-TERT complexes, with different composition. In support of

this possibility, we could find only one of the two TIA1 mRNA

targets in our TERT-IP experiment.

Mechanistically, TERT may be part of a type of RNA granules

in which mRNAs are sequestered in order to prevent their

degradation. This assumption comes from the observation that

TERT downregulation results in the reduction of the amount of

p15INK4B protein under basal levels of stress. Upon acute stress,

TERT dissociates from this mRNA allowing its efficient transla-

tion, as demonstrated by qPCR in polysome gradient from stressed

neurons. Under the stress condition, release from SGs does not

lead to degradation of the p15INK4B mRNA possibly because of
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its transfer to the translation complex. Alternatively, degradation

does not occur as part of the cells’ stress response (i.e. selective

inhibition of RNA degradation). Regardless, our results may help

to understand how the aging brain can resist the pressure of

stressful stimuli that are imposed in an already physiologically

stressed background. In this sense, our findings could explain the

precocious aging observed in telomerase mutant mice[31].

However, precocious aging in TERT mutant mice may be due

to more than the telomere elongation-independent mechanism.

Recent work demonstrated that the aging phenotype in these mice

occurs by the failure in proper telomere elongation[32]. There-

fore, it is important that future work investigates whether a failure

in the mechanism described herein is involved in the appearance

of brain pathologies in elderly individuals.

Supporting Information

Figure S1 Cytoplasmic TERT increases with age in
hippocampal neurons, in vitro and in situ. a) Western blot

analysis of TERT levels in the cytoplasmic and nuclear fraction of

3, 14 and 23 DIV hippocampal neurons. Primary cultures were

prepared from Wistar rat fetuses at embryonic day 18–19 as

described by Kaech and Banker[12]. Western Blotting: the soluble

and the nuclear fractions from hippocampal neurons, were

separated and loaded on poly-acrylamide gel. Note that TERT

levels increase in the cytoplasm and decrease in the nucleus with

time in vitro. Tubulin is used as loading control. Cdc2 and Histone

3 (Hist3) are used, respectively, as cytoplasmic and nuclear

markers. Bar graph on the bottom represents the mean 6 s.d. of

three different cultures (*p,0.05). b) Western blot analysis of

pJNK levels in the cytoplasm of 3, 14 and 23 DIV neurons. Note

the parallelism between the increased cytoplasmic levels of TERT

with the pJNK stress response. Total levels of JNK do not change

with age in culture (n = 2). c) Representative confocal images of

neurons stained for TERT (green) and counterstained with DAPI

(blue) reveal the gradual accumulation of TERT in the cytoplasm

with time in vitro. Bar: 10 mm. Bar graph on the bottom reflects the

mean 6 the s.d. of three different cultures. d) Representative

images of brain slices from embryonic (E-17) adult (23 Months)

mice stained with TERT (green), DAPI (blue) and Ctip2 (E-17) or

NeuN (adult, red). Boxed area is enlarged in the right column of

each panel: TERT is abundant in the cytosol of adult neurons

(note exclusion from the nucleus of NeuN positive cells) and in the

nucleus of embryonic neurons. Scale bar: 0.5 mm. (n = 3).

(TIF)

Figure S2 TERT plays a pro-survival role in cultured
hippocampal neurons. a) Western blot analysis of total TERT

from 10 DIV neurons, uninfected (control) or infected with

scrambled shRNA or with a TERT shRNA (2) different from the

one used for the experiments described in Fig. 2. This shRNA

TERT lentivirus also led to significant reduction. b) Caspase 3

cleavage assay in neurons infected with 2 different shRNA TERT

lentiviral particles. Note that reduced TERT levels are accompa-

nied by increased caspase 3 cleavage product. Bar graph in the

bottom of the panel highlights the difference (n = 3). c) Tunel assay

of the experiment in a and b. Bars are the means 6 the s.d. of

three different cultures. *p,0.05.

(TIF)

Figure S3 TERT plays a pro-survival role in a nucleus-
to-cytoplasm transport process. a) Western blot analysis of

total TERT from control 10 DIV neurons or transfected with

EGFP (vector) or the TERT cDNA together with the EGFP vector

(cDNA). Tunel assay (right bar graph is the mean 6 the s.d.,

corresponding to three different cultures, *p,0.05) reveals the

anti-apoptotic effect of ectopic TERT. b) TERT expression in the

cytosolic fraction of TERT overexpressing neurons (cDNA),

TERT over-expressing neurons pre-treated with Leptomycin B

(cDNA+LeptB) and EGFP vector with (vector+LeptB) or without

(vector) pre-treatment with Leptomycin B. Leptomycin B reduces

the pro-survival effect of TERT over-expressing neurons.

Leptomycin B alone does not increase neuronal death significant-

ly. Bar graph is the mean 6 s.d. corresponding to three different

cultures. *p,0.05. c) TERT levels in the cytosolic fraction of

control neurons, stressed with hydrogen peroxide (H2O2) and

stressed with Leptomycin B pre-treatment (H2O2+LeptB). Bar

graph on the right shows the apoptosis (Tunel positive cells) assay

of this experiment. Bar graph is the mean 6 s.d. corresponding to

three different cultures. *p,0.05. d) Cells were transfected with

D-tomato and photoactivatable-EGFP-TERT. Positive transfec-

tion is shown in red; photoactivated TERT is in green. In control

cells (Ctr) photoactivation reveals TERT in the nucleus. In stressed

cells (H2O2), the photoactive protein is found in the cytoplasm.

Bar: 5mm. Photoactivatable TERT GFP was made using the

TERT cDNA (Imagenes) (n = 3).

(TIF)

Figure S4 TERT antibody specificity assays. The upper

figure shows the concentration-dependent response of the TERT

antibody in total extract from HEK cells. The lower panel shows

the reduced signal of the antibody in neurons infected with two

different shRNA (1 and 2) TERT lentiviral particles (left and

middle panels). The right panel shows the increased in signal

intensity to this antibody in neurons transfected with TERT

cDNA.

(TIF)
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