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A breast cancer prognostic classifier<p>A consensus prognostic classifier for estrogen receptor positive breast tumors has been developed and shown to be valid in nearly 900 samples across different microarray platforms.</p>

Abstract

Background: A consensus prognostic gene expression classifier is still elusive in heterogeneous
diseases such as breast cancer.

Results: Here we perform a combined analysis of three major breast cancer microarray data sets
to hone in on a universally valid prognostic molecular classifier in estrogen receptor (ER) positive
tumors. Using a recently developed robust measure of prognostic separation, we further validate
the prognostic classifier in three external independent cohorts, confirming the validity of our
molecular classifier in a total of 877 ER positive samples. Furthermore, we find that molecular
classifiers may not outperform classical prognostic indices but that they can be used in hybrid
molecular-pathological classification schemes to improve prognostic separation.

Conclusion: The prognostic molecular classifier presented here is the first to be valid in over 877
ER positive breast cancer samples and across three different microarray platforms. Larger multi-
institutional studies will be needed to fully determine the added prognostic value of molecular
classifiers when combined with standard prognostic factors.

Background
The identification of a prognostic gene expression signature
in breast cancer that is valid across multiple independent data
sets and different microarray platforms is a challenging prob-
lem [1]. Recently, there have been reports of molecular prog-

nostic and predictive signatures that were also valid in
external independent cohorts [2-7]. One of these studies
derived the prognostic signature from genes correlating with
histological grade [4], while in [5] it was derived directly from
correlations with clinical outcome data and was validated in
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estrogen receptor positive lymph node negative (ER+LN-)
breast cancer. Another study validated a predictive score,
based on 21 genes, for ER+LN-tamoxifen treated breast can-
cer [2]. These results are encouraging, yet, as explained
recently in [8,9], much larger cohort sizes may be needed
before a consensus prognostic signature emerges. While the
intrinsic subtype classification does appear to constitute a set
of consensus signatures [7], it is also clear that these classifi-
ers are not optimized for prognosis. Moreover, although dif-
ferent prognostic signatures have recently been shown to give
similar classifications in one breast cancer cohort [6], this
result was not shown to hold in other cohorts. In fact, a prob-
lem remains in that the two main prognostic gene signatures
derived so far [10,11] do not validate in the other's data set,
even when cohort differences are taken into account [9,12].
Furthermore, the 21 genes that make up the predictive score
[2] were derived from a relatively small number of genes
(approximately 250) using criteria such as assay-probe per-
formance. Hence, it is likely that other gene combinations
could result in improved classifiers. These problems have
raised questions about the clinical utility of molecular signa-
tures as currently developed [13].

There are many factors that may contribute to the observed
lack of consistency between derived signatures. In addition to
cohort size, another factor is the use of dichotomized outcome
variables, a procedure that is justified clinically but which
may introduce significant bias [14]. A related problem con-
cerns the way molecular prognostic classifiers have been eval-
uated, which is often done by dichotomizing the associated
molecular prognostic index (MPI). Such dichotomizations are
often not justified since they implicitly assume a bi-modal
distribution for the MPI, while the evidence points at prog-
nostic indices that are often best described in terms of uni-
modal distributions [4,10,11]. Another difficulty concerns the
evaluation of a prognostic index in external independent
studies, which requires a careful recalibration procedure, but
which is often either ignored or not addressed rigorously [15].
A strategy that may allow for uni-modal prognostic index dis-
tributions and that allows a more objective and reliable eval-
uation of a prognostic classifier across independent cohorts
is, therefore, desirable [16].

Another matter of recent controversy is whether a molecular
prognostic signature can outperform classical prognostic fac-
tors, such as lymph node status, tumor size, grade or combi-
nations thereof such as the Nottingham Prognostic Index
(NPI) [17]. It was shown that molecular prognostic signatures
are the strongest predictors in multivariate Cox-regression
models that include standard prognostic factors [4,5,18,19].
On the other hand, more objective tests that compare a
molecular prognostic signature with classical prognostic fac-
tors in completely independent cohorts profiled on different
platforms is still lacking. Furthermore, it appears that prog-
nostic models that combine classical prognostic factors in

multivariate models may perform as well, or even better than,
molecular prognostic signatures [20].

One way to effectively increase the cohort size is to use a com-
bined ('meta-analysis') approach. Meta-analyses of micro-
array data sets have already enabled identification of robust
metagene signatures associated with neoplastic transforma-
tion and progression and particular gene functions across a
wide range of different tumor types [21,22]. A meta-analysis
of breast cancer was also recently attempted [23], where four
independent breast cancer cohorts were fused together using
an ingenious Bayesian method [24], and from which a
metasignature was derived that correlated with relapse in
each of the four studies. This study was exploratory in nature,
however, and did not evaluate the metasignature in inde-
pendent data sets. Furthermore, the metasignature was
derived from a mix of ER+ and ER-tumors and was, there-
fore, confounded by ER status. In fact, this signature does not
validate in the more recent breast cancer cohorts (Teschen-
dorff AE, unpublished).

In this work we present a combined analysis of ER+ breast
cancer that uses a recently proposed framework [16] for
objectively evaluating prognostic separation of a molecular
classifier across independent data sets and platforms. Impor-
tantly, this evaluation method does not dichotomize the prog-
nostic index, allowing for prognostic index distributions that
may be uni-modal. Using this novel approach, the purpose of
our work is two-fold. First, to hone in on a consensus set of
prognostic genes by using a meta-analysis to derive a prog-
nostic molecular classifier in ER+ breast cancer and show
that it validates in completely independent external cohorts
and different platforms. Second, to evaluate its prognostic
separation relative to histopathological prognostic factors
and to explore the prognostic added value of molecular clas-
sifiers when combined with classical prognostic factors. We
use six of the largest breast cancer cohorts available
(described in [4,11,12,18,25,26]; in [4] we used the independ-
ent cohort of 101 samples from the John Radcliffe Hospital,
Oxford, UK), representing a total of 877 ER+ patients profiled
across three different microarray platforms.

Results
The six microarray data sets used are summarized in Table 1
by platform type, number of ER+ samples and outcome
events. Following the recommendations set out in [1], we did
not use all data sets to train a molecular classifier but left
some out to provide us with completely independent test sets.
Our overall strategy is summarized in Figure 1. We decided to
use as training cohorts the two largest available cohorts
(NKI2 and EMC) [11,18] in addition to our own data set
(NCH) [12], amounting to 527 ER+ samples (with 146 poor
outcome events) profiled over 5,007 common genes. This
choice was motivated by our previous work [12], where a
prognostic signature, derived from the NCH cohort, was
Genome Biology 2006, 7:R101
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found to be prognostic in the NKI2 cohort and marginally
prognostic in the ECM cohort, suggesting that, by combining
the three cohorts (NKI2, ECM and NCH) in a meta-analysis,
an improved classifier could be potentially derived. As exter-
nal test sets we used the three cohorts JRH-1 [25], JRH-2 [4]
and UPP [26], giving a total of 350 ER+ test samples (with 86
poor outcome events). Time to overall survival was used as
outcome endpoint, except for the two cohorts EMC and JRH-
2, where this clinical information was unavailable and time to
distant metastasis (TTDM) was used instead.

A meta-analysis derived molecular prognostic index 
(MPI)
The derivation of the molecular classifier is described in detail

in Materials and methods (see also Figure 1). Briefly, each of

the three training cohorts was divided into 10 different train-

ing-test set partitions [27], ensuring the same number of

training samples for each training cohort. Because of the

small cohort size of NCH (n = 93), all samples from this

cohort were used; thus, 93 training samples were also used

from the NKI2 and EMC cohorts. We found that, by choosing

a smaller training set for NCH, the performance of the classi-

fier in the NCH test set would be too variable and would

unduly influence the derived prognostic classifier. While

using the whole NCH cohort as a training set introduces a

slight bias towards selecting features that perform well in the

NCH cohort, this is offset by optimizing the classifier to the

test sets in NKI2 and EMC. The remaining samples in NKI2

(n = 133) and EMC (n = 115) were used as additional inde-

pendent test sets. The common genes were z-score normal-

ized and ranked, for each training-test set partition p =

1,...,10, according to their average univariate Cox-scores over

the three training data sets. A continuous molecular prognos-

tic index (MPIp) for each of the test samples (i) in the training

cohorts (s) and for a given number of top-ranked genes in the

classifier (n) was then computed by the dot product of the

average Cox-regression coefficient vector ( gp, (g = 1,..., n))

(as estimated from the training-set samples) with the vector

of normalized gene expression values (xgis, (g = 1,..., n)), that

is:

This is explained in more detail in Materials and methods.

Prognostic separation of the classifiers was then evaluated

Table 1

Breast cancer data sets used

Study Cohort name Platform ER+ samples Events (RIP/DM)

van de Vijver [18] NKI2 oligos Agilent 226 45

Wang [11] EMC oligos Affymetrix 208 80

Naderi [12] NCH oligos Agilent 93 21

Sotiriou [25] JRH-1 spotted cDNA 65 20

Miller [26] UPP oligos Affymetrix 213 49

Sotiriou [4] JRH-2 oligos Affymetrix 72 17

Study, cohort name, microarray platform, number of ER+ patients and death (or surrogate distant metastasis) events among ER+ cases. The cohorts 
are described in [4,11,12,18,25,26].

β̂

(a) For each of 10 random partitions of training cohorts into training and test sets we rank the genes according to their average Cox-scores over the Ntrain training cohorts (Ntrain = 3)Figure 1
(a) For each of 10 random partitions of training cohorts into training and 
test sets we rank the genes according to their average Cox-scores over 
the Ntrain training cohorts (Ntrain = 3). (b) 1, Definition of MPI and 
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using a novel robust measure, the D-index, as recently pro-

posed [16]. The D-index, which depends only on the relative

risk ordering of the test samples as determined by their

continuous MPI values, can be interpreted as a robust gener-

alized hazard ratio [16]. A weighted average D-index (the

weights were chosen proportional to the number of test-sam-

ples in each cohort) over the two test sets in NKI2 and EMC

was then computed and its variation as a function of the

number of top-ranked genes in the classifier is shown in Addi-

tional data file 1 for two different training-test set partitions.

For each of the ten partitions, an optimal number of genes

(39, 99, 63, 53, 43, 84, 70, 27, 33, 18) could be readily identi-

fied, and the performance of the optimal classifiers in the two

test sets was highly significant (range of weighted average D-

index was 2.25 to 3.32 and all log-rank test p values < 0.05;

see also Table 2). The fact that the genes, ranked using the

training sets, formed classifiers that were prognostic in the

independent test sets and that this result was stable under

changes in the composition of the training-test sets used indi-

cated to us that a universally valid prognostic classifier could

be potentially derived [27].

A consensus molecular prognostic classifier
To arrive at a final list of prognostic genes, independent of any
choice of training-test set realization, we computed the global
average Cox-scores over the ten training-test set realizations
and three training cohorts. The resulting global averaged
Cox-scores were then used to give a final ranking of the genes.
A 'consensus' optimal classifier was then built by sequentially
adding genes from the top of this list to a classifier set and
computing the D-index of this classifier for each of the three
training cohorts. An overall D-index score, DO, was then eval-
uated as the weighted average of the D-indices for each train-
ing cohort (DS), that is:

where the weights are in direct proportion to the number of
samples in each cohort. The overall D-index value, as a func-
tion of the number of top-ranked genes, is shown in Addi-
tional data file 2. This identified an 'optimal' classifier of 52
genes (Table 2; Figure 2a-c; Additional data file 3) with an
overall D-index value of 3.71 (95% confidence interval (CI)
2.16 to 6.58; p < 10-6). It is noteworthy that the classifier
based on the top 17 genes (Table 3) achieved similar prognos-
tic performance (Table 2; Additional data file 2), with an over-
all D-index value of 3.70.

Validation in three external cohorts
We next validated the 17-gene and 52-gene classifiers in the

three external independent cohorts JRH-1, UPP and JRH2.

The MPI associated with these classifiers induced in each of

these cohorts an ordering based on the relative risks of the

samples. As before, the association of the predicted risk

ordering with outcome was tested by computing the D-indi-

ces and the corresponding log-rank test p values yielded their

levels of significance. Remarkably, both classifiers were valid

in the three external independent cohorts JRH-1, UPP and

JRH-2 and performed equally well (Table 2), with statistically

significant D-index values (for the 52-gene classifier) of 3.44

(95%CI 1.67 to 7.00; p < 10-3), 2.80 (95%CI 1.73 to 4.54; p <

10-4) and 11.26 (95%CI 3.66 to 34.57; p < 10-5), respectively.

The distribution of MPI values in these cohorts as well as

heatmaps of gene expression of our optimal classifier con-

firmed the robustness of the classifier across different cohorts

and platforms (Figure 2d-f). To further test the robustness of

this result, we also evaluated the 10 optimal classifiers ( , p

Table 2

The D-index of prognostic factors across cohorts

Training Test

Factor NKI2 ECM NCH JRH-1 UPP JRH-2*

Grade 3.80 (<10-5) NA 3.57 (0.001) 3.84 (0.003) 2.55 (0.0003) 2.15 (0.17)

Node status 1.01 (0.97) all LN- 2.23 (0.05) 2.64 (0.04) 4.03 (<10-6) 2.36 (0.25)

Size 1.59 (0.06) NA 3.36 (0.003) 4.16 (<10-3) 3.18 (<10-5) 3.04 (0.008)

NPI 2.27 (<10-3) NA 4.07 (<10-3) 5.16 (<10-4) 3.82 (<10-7) 3.78 (0.03)

MPI† 3.32 (<10-3) 2.29 (0.002) NA 3.20 (0.002) 2.71 (<10-4) 7.96 (<10-4)

MPI‡ 3.64 (<10-7) 2.56 (<10-6) 6.45 (<10-5) 3.44 (<10-3) 2.80 (<10-4) 11.26 (<10-5)

MPI§ 3.64 (<10-6) 2.51 (<10-5) 6.51 (<10-5) 3.10 (<10-5) 2.84 (0.001) 10.10 (<10-4)

For the classical prognostic factors we give, where available, the D-index and log-rank test p values in the training cohorts NKI2, ECM and NCH, and 
test cohorts JRH-1, UPP and JRH-2. *For JRH-2 the number of samples with available grade and node status information were only 57 and 38, 
respectively. †For the MPI we give the median D-index and log-rank test p value over the ten molecular classifiers. The range for the D-index and p 
values over the 10 classifiers were: 2.27 to 4.35 (0.009 to 1.1 × 10-5) in NKI2; 1.78 to 2.75 (0.024 to 2 × 10-4) in ECM; 2.04 to 3.96 (0.039 to 0.0003) 
in JRH-1; 2.39 to 3.04 (1.7 × 10-4 to 6.7 × 10-6) in UPP; and 5.08 to 12.61 (8 × 10-4 to 8.4 × 10-6) in JRH-2. ‡The MPI based on the optimal 52-gene 
classifier. §The MPI based on the 17-gene classifier. NA, not available.

D w Do s ss Strain
= ∈∑

C p
∗
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The MPI in the training and test cohortsFigure 2
The MPI in the training and test cohorts. Heatmaps of relative gene expression (green = 'low', red = 'high') of the optimal 52-gene classifier and 
accompanying MPI distribution values across the three training cohorts (a) NKI2, (b) EMC and (c) NCH, and three test cohorts (d) JRH-1, (e) UPP and 
(f) JRH-2. The threshold shown for the MPI distributions was determined as explained in the text. Lower panels show the survival time distributions in the 
respective cohorts (black = 'death/poor outcome', grey = 'censored/good outcome').
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= 1,..., 10) in the three external cohorts JRH-1, UPP and JRH-

2. The median D-index and the median p value over the 10

 classifiers in each of these cohorts are shown in Table 2,

which also provides a comparison with the D-indices for the

standard prognostic factors in ER+ breast cancer. Over all 10

 classifiers, the D-index ranged from 2.04 to 3.96 in JRH-

1, from 2.39 to 3.04 in UPP, and from 5.08 to 12.61 in JRH-2,

with p values in all cases statistically significant (p < 0.05). It

is noteworthy that all 10 molecular classifiers  predicted

prognosis in the external sets as well as in the independent

test sets of the training cohorts (Table 2), a strong indication

that the molecular classifiers were not overfitted to the train-

ing data.

In order to relate the D-index scores to well-known perform-
ance measures, such as the hazard ratio and survival rates,
the MPI profiles need to be dichotomized. Because the D-
index framework does not use a cut-off, the dichotomization
cannot be done prospectively. Instead, cut-offs can be found
for each data set by applying an unsupervised clustering algo-
rithm to the MPI profiles. Specifically, here we applied the
partitioning around medoids algorithm (pam) [28] with two
centers to learn two prognostic groups in each of the cohorts.
Thus, the cut-offs obtained are cohort-dependent but are not
necessarily optimized for prognostic performance, as we ver-
ified explicitly (data not shown). The resulting Kaplan-Meier

survival curves and associated hazard ratios confirmed the
significantly different prognostic risks of the two groups (Fig-
ure 3). Thus, the MPI identified in each of the external
cohorts a low-risk subgroup with a survival rate at 10 years of
over 80%, and a high-risk subgroup with a corresponding 10
year survival rate of less than 50%, with the exception of Upp-
sala's cohort, where the high risk subgroup was less well
defined, with a 10 year survival rate of approximately 60%.

Molecular versus classical prognostic indices
Table 2 also shows that the molecular prognostic classifica-
tion did not outperform standard histopathological prognos-
tic factors. Notably, in two of the external studies it did not
outperform a modified NPI [17] (see Materials and methods),
which was overall the best prognostic indicator.

To test whether the molecular prognostic classifiers per-
formed independently of these other histopathological fac-
tors, we computed the D-indices in the multivariate Cox
setting. In four out of ten realizations the MPI was a signifi-
cant prognostic predictor (p < 0.05) in JRH-1, in nine out of
ten realizations it was significant in UPP, while in JRH-2 it
was significant in all realizations (Table 4). Similarly, the
optimal 52-gene classifier remained significant in multivari-
ate analysis in two of the external cohorts (UPP and JRH-2),
while it failed only marginally in JRH-1 (Table 4). Interest-
ingly, the MPI was the most consistent prognostic predictor
across studies.

Table 3

Top prognostic genes in ER+ breast cancer

UniGene symbol Coefficient sign Cytoband GO

RACGAP1 + 12q13.12 GTPase activator activity, electron transporter activity

STK6 + 20q13.2-q13.3 ATP binding, mitosis, phosphorylation, kinase activity

HUMMLC2B - 16p11.2 calcium ion binding, muscle myosin

MELK + 9p13.2 ATP binding, phosphorylation, tyrosine kinase activity

PPARA - 22q12-q13.1 Transcription factor, steroid hormone activity/lipid metabolism

DHCR7 + 11q13.2-q13.5 cholesterol binding and biosynthesis, electron transporter activity

MAD2L1 + 4q27 Cell-cycle, mitotic checkpoint, spindle

ZWINT + 10q21-q22 Nucleus

KIF20A + 5q31 ATP binding, microtubule associated complex

CDCA8 + 1p34.3 Cytokinesis

KIAA0101 + 15q22.31 PCNA associated factor

TIMELESS + 12q12-q13 Development, negative regulation of transcription

PTTG1 + 5q35.1 DNA metabolism, repair, replication and chromosome cycle

WSB2 + 12q24.23 Intracellular signaling cascade

ABCC5 + 3q27 ATP binding, ATPase activity, transmembrane movement

KIF23 + 15q23 ATP binding, microtubule complex/motor activity, mitosis

H2AFY + 5q31.3-q32 DNA binding, chromosome organization, nucleosome assembly

Top ranked 17 prognostic genes in ER+ breast cancer as determined by a meta-analysis of three major breast cancer data sets. We give the sign of 
their global average Cox-regression coefficient ('+' means upregulated in poor outcome tumors; '-' means downregulated in poor outcome tumors), 
cytoband position and selected abbreviated Gene Ontology.

C p
∗

C p
∗

C p
∗
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Hybrid models to evaluate prognostic added value of 
MPI
Given that the optimal molecular prognostic classifier derived
from over 527 ER+ samples did not outperform
histopathological prognostic factors, we next asked whether it
could improve prognostic separation in hybrid models in
which the standard pathological indices (SPIs) are aug-
mented by the MPI. With a continuous index, such as the NPI
or tumor size, a natural way to augment the SPI within the D-
index framework is to rank the external samples based on a
weighted average ranking over the predicted SPI and MPI
rankings (see Materials and methods). We found that, in
almost all equal-weight hybrid prognostic models, there was
an improvement in prognostic separation when the MPI was
added to the SPI (Table 5; Additional data files 4 and 5). How-
ever, it is noteworthy that, with the exception of JRH-2,
where only 36 samples with NPI information were available,
there was no marked improvement when the MPI was added

to the NPI, which is consistent with the stronger prognostic
performance of the NPI. For the variable-weight models there
were only two cases (JRH-1 node status and JRH-2 size) in
which a non-hybrid classifier performed best, and in both
cases it was the MPI (Additional data file 6). Thus, it appears
that, while the MPI added prognostic value to single patho-
logical factors, there was no significant improvement when
added to the NPI.

Gene Ontology
Enrichment of gene ontologies among the top 100 prognostic
genes was studied using the Gene Ontology (GO) Tree
Machine (GOTM) [29]. Not surprisingly, and in agreement
with previous studies [11,18], most of the genes (23/100, p <
10-9) were associated with mitotic cell-cycle functions. In
terms of molecular function, nucleid acid and ATP binding
was also significantly overrepresented (26/100, p < 10-3).
Furthermore, most genes were associated with intracellular

Kaplan-Meier survival curves in cohortsFigure 3
Kaplan-Meier survival curves in cohorts. Kaplan-Meier survival curves for the two prognostic groups derived from pam-clustering (k = 2) [28] on the 
molecular prognostic index distribution in the three training cohorts (a) NKI2, (b) EMC and (c) NCH, and three external cohorts (d) JRH-1, (e) UPP and 
(f) JRH-2. We also give the hazard ratio (HR), the associated 95%CI and the number of events (death or distant metastasis) and number of distinct data 
points in each prognostic group.
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Table 4

Multivariate D-index analysis

1 2 3 4 5 6 7 8 9 10 Opt.

JRH-1

MPI (A) 0.21 0.19 0.03 0.03 0.05 0.06 0.43 0.12 0.04 0.16 0.15

Grade 0.06 0.07 0.11 0.05 0.10 0.11 0.05 0.08 0.10 0.10 0.05

Node status 0.79 0.73 0.96 0.86 0.93 0.89 0.65 0.87 0.83 0.91 0.91

Size 0.07 0.01 0.02 0.05 0.03 0.05 0.04 0.02 0.02 0.11 0.11

MPI (B) 0.22 0.31 0.08 0.06 0.13 0.14 0.42 0.18 0.11 0.16 0.16

NPI <0.005 <0.005 <0.005 <0.005 <0.005 0.01 <0.005 <0.005 <0.005 0.01 0.01

UPP

MPI (A) 0.01 0.01 0.06 0.01 0.02 0.01 <0.005 0.01 0.01 0.01 0.01

Grade 0.72 0.84 0.85 0.90 0.98 0.99 0.73 0.83 0.85 0.88 0.83

Node status <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005

Size 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.02 0.02

MPI (B) 0.02 0.03 0.12 0.02 0.04 0.03 0.01 0.02 0.02 0.02 0.02

NPI <0.005 <0.005 <0.005 <0.005 <0.005 0.01 <0.005 <0.005 <0.005 <0.005 <0.005

JRH-2

MPI (A) 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.04 0.01 <0.005 0.01

Grade 0.19 0.10 0.24 0.24 0.07 0.15 0.23 0.13 0.21 0.43 0.10

Node status 0.44 0.16 0.76 0.45 0.24 0.35 0.67 0.50 0.25 0.37 0.24

Size 0.12 0.73 0.28 0.28 0.93 0.82 0.27 0.47 0.35 0.36 0.97

MPI (B) <0.005 <0.005 0.01 0.01 <0.005 0.01 <0.005 0.01 <0.005 <0.005 <0.005

NPI* 0.51 0.53 0.75 0.58 0.97 0.78 0.99 0.63 0.50 0.47 0.96

Given are the rounded p values (to two significant digits) of the D-indices for two multivariate models, model A is log(h(t)) ~ (Grade) + (NodeStatus) 
+ (TumorSize) + MPIp and model-B is log(h(t)) ~ NPI + MPIp, in the three external cohorts JRH-1, UPP and JRH-2. Columns label the 10 different 
derived molecular classifiers, depending on the training-test set partition p used, and the optimal 52-gene classifier. *For JRH-2 only 36 samples with 
NPI information were available. Opt., optimal.

Table 5

The prognostic added value of the MPI

Model JRH-1 UPP JRH-2†

Grade 3.85 2.55 2.15

Grade + MPI* 5.85 (2.49-13.72) 2.85 (1.79-4.51) 10.60 (2.79-40.20)

Grade + MPI** 4.62 (2.15-9.91) 2.90 (1.83-4.58) 8.14 (2.11-31.31)

Node Status 2.64 4.03 2.36

Node Status + MPI* 2.98 (1.48-6.01) 4.71 (2.83-7.86) 14.07 (2.08-94.84)

Node Status + MPI** 3.09 (1.53-6.23) 4.40 (2.74-7.06) 11.79 (1.86-74.44)

Size 4.16 3.18 3.04

Size + MPI* 5.40 (2.51-11.62) 3.41 (2.16-5.38) 5.21 (2.29-11.84)

Size + MPI** 4.88 (2.35-10.13) 3.65 (2.29-5.81) 4.51 (2.08-9.77)

NPI 5.16 3.82 3.78

NPI + MPI* 5.85 (2.54-13.47) 4.02 (2.52-6.41) 19.11 (2.62-139.3)

NPI + MPI** 4.93 (2.30-10.56) 4.04 (2.53-6.44) 25.23 (2.53-251.6)

For each standard prognostic index SPI (grade, node status, size and NPI) we compare their D-index with the D-index of the corresponding equal-
weight hybrid prognostic model, defined by a hybrid prognostic index HPI, where HPI ~ SPI + MPI* or HPI ~ SPI + MPI** (see Materials and methods). 
95% CI for the hybrid prognostic model D-index values are shown in brackets. MPI* denotes the index of the optimal 52-gene classifier. MPI** 
denotes the index of the 17-gene classifier. †For JRH-2 only 36 samples with NPI information were available.
Genome Biology 2006, 7:R101
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component (62/100, p < 10-4). Interestingly, other signifi-
cantly overrepresented biological processes included micro-
tubule cytoskeleton organization and biogenesis and DNA
metabolism. Similar results were obtained for the top 150 and
200 prognostic genes. Summary gene functions for the top 17
and 52 prognostic genes are shown in Table 3 and Additional
data file 3, respectively, while the detailed summaries can be
found in Additional data files 7, 8, 9.

Overlap with other prognostic gene lists
Finally, we considered the overlap of our 52 prognostic clas-
sifier with the four main molecular prognostic gene lists pre-
sented in [4,10-12] (Additional data file 10). Interestingly, the
strongest overlap was with the 97 gene list reported in [4],
where we found 20 genes in common, and which may explain
the better prognostic performance in this cohort, although a
mere sample size effect cannot be excluded. Among these 20
genes are well-known prognostic genes in breast cancer (for
example, BIRC5, BUB1B, CDC2, MAD2L1, MYBL2, STK6).
The overlap with the other three prognostic signatures was
weaker: a 2-gene overlap (ATAD2, CCNE2) with the 76-gene
signature of [11], an 8-gene overlap (CCNE2, BIRC5, STK6,
EZH2, BM039, PSMD7, PRAME, MAD2L1) with the 231
prognostic genes of [10], and a 12-gene overlap with the 70-
gene signature of [12].

Discussion
The D-index [15,16] has three key properties that make it par-
ticularly suited as a measure of prognostic separation. First, it
does not require the MPI to be recalibrated since it is invari-
ant under monotonic transformations that preserve the risk-
ordering of samples. Second, because it does not require the
MPI to be dichotomized, it allows for uni-modal MPI distri-
butions. Indeed, using various pattern recognition algorithms
[30,31], we verified that bi-modality is very often absent from
the MPI profiles. Third, because it doesn't use a prospectively
defined cut-off it avoids the pitfalls associated with using such
a cut-off when evaluating the prognostic performance of a
classifier in external cohorts of widely different characteris-
tics. Thus, the D-index provides a more reliable and objective
measure of prognostic separation for evaluating classifiers
across multiple independent data sets and platforms than, for
example, the hazard ratio or the area under the curve. While
dichotomization of a prognostic index into good and poor
prognostic classes is necessary for clinical decision making,
for the purposes of our work dichotomization of the MPI was
not necessary.

Using the D-index in a meta-analysis of three ER+ breast can-
cer microarray data sets, we derived an optimal molecular
classifier of 52 genes with an associated rule for computing a
MPI and successfully validated it in three completely
independent external cohorts. Moreover, we showed that a
slightly less optimal but much simpler classifier made up of

only 17 genes performed comparably to the 52-gene classifier
across all six studies.

The optimal 52-gene classifier showed a notable overlap of 20
genes with the grade-derived prognostic signature reported
in [4], which is perhaps not surprising given that the latter
signature was prognostic in up to 5 breast cancer cohorts.
Intriguingly though, the grade-derived signature was not val-
idated in a large available cohort [11], raising doubts as to its
wider applicability. Importantly, and in spite of the
significant overlap between our optimal classifier and the
grade-derived signature reported in [4], we found that our
optimal classifier performed independently of grade. In
addition, we verified that our optimal classifier performed
independently of the ER gene expression level (data not
shown) in ER+ tumors. The overlap of the 52-gene classifier
with either van't Veer's or Wang's prognostic signature was
smaller, yet these two signatures also fail to validate in each
other's data set. We believe that all these results strongly sup-
port the validity of the 52-gene and 17-gene prognostic signa-
tures and that we have successfully honed in on a core set of
prognostic genes for ER+ breast cancer, to be tested further in
prospective clinical studies.

The D-index also provided us with a framework in which to
objectively evaluate the molecular prognostic index against
classical prognostic factors in external cohorts. We found that
molecular classifiers may increase prognostic separability
when added to single prognostic factors, such as grade or
node status. However, in agreement with [20], we didn't find
the molecular prognostic index to either outperform or add
prognostic value to the NPI. In fact, our analyses showed that
the degree of improvement in prognostic separation over the
NPI was strongly dependent on the cohort considered, indi-
cating that larger cohorts of more uniform characteristics will
be needed to rigorously elucidate the future clinical role of
molecular prognostic classifiers in breast cancer.

Conclusion
The molecular classifier derived here is the first molecular
prognostic classification scheme that is valid across six major
breast cancer studies representing a total of 877 ER+ patients
profiled over three different platforms. In order to further test
this prognostic classifier and to fully evaluate the prognostic
value it adds over standard prognostic factors such as the
NPI, we propose a multi-institutional study that profiles the
consensus set of genes identified here over larger and more
homogeneous cohorts using either quantitative RT-PCR or
custom-made arrays.

Materials and methods
Internal data set
The cohort of 135 primary breast tumors was profiled using
Agilent Human 1A 60-mer (Agilent Technologies, Santa
Genome Biology 2006, 7:R101
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Clara, CA, USA) oligonucleotide microarrays containing
22,575 features (19,061 genes and 3,514 control spots) [12].
Details regarding RNA amplification, labeling, hybridization
and scanning are as described previously [32,33]. Feature
extraction, normalization of the raw data and data filtering
were performed using the Agilent G2567AA Feature Extrac-
tion software (Agilent Technologies) and Spotfire Decision-
Site 8.0 (Somerville, MA, USA). This resulted in a normalized
matrix of 8,278 genes (Additional data file 11). The clinical
data are also summarized in Additional data file 11.

External data sets and gene annotation
The external microarray breast cancer data sets considered in
this work are described in [4,11,18,25,26]. For these cohorts
we used the normalized data, which are available in the public
domain (see references). The retrieved data sets were further
normalized, if necessary, by transforming them onto a com-
mon log2-scale and shifting the median of each array to zero.
We also created an automated computational pipeline (Perl
scripts on a Linux platform) to cross-link the annotation pro-
vided for each dataset with UniGene. For some datasets, the
linkage relied on Ensembl [34] external database identifiers.
Thus, each probe was associated with a universal gene name.
This procedure generated a non-redundant set of gene identi-
fiers for the subsequent meta-analysis.

The D-index measure for prognostic separation
Here, we briefly review the D-index measure for prognostic

separation as proposed in [16]. A classifier C induces on a set

of n samples with gene expression vectors ( ) a

'risk ordering' based on the relative magnitude of the contin-

uous prognostic indices PIk = PI( ) (k = 1,..., n). Given out-

come data O = (T × E)n, where T ∈ [0, tmax] and E ∈ {0,1}

represent the time to event and event type random variables,

respectively, one may evaluate the prognostic separation pre-

dicted by C by a Cox-proportional hazards regression:

log(hi(t)) = log(h0(t)) + PIi ∀i = 1,..., n.  (2)

and estimating the log-rank test p value. A difficulty with this

approach is that, generally, the prognostic index needs recal-

ibrating in the independent data sets where prognostic sepa-

ration is to be evaluated. To overcome this difficulty a robust

measure of prognostic separation that does not need model

recalibration has been proposed. It is obtained by considering

only the relative risk ordering of the samples and then evalu-

ating this risk ordering against the actual outcome data. Spe-

cifically, let us assume that C induces the ordering (i1, i2,..., in),

so that . Assume further that the PIi are

normally distributed (this assumption is not crucial to the

argument as similar results hold for PI that are not normally

distributed [16]), so that they can be expressed in terms of the

standard gaussian (ordered) rankits (u1,..., un) as:

 = μ + σuj + εj  (3)

where εj denote the error terms, μ is the mean of the PI distri-
bution and σ denotes the standard deviation of the PI and is a
direct measure of prognostic separation. A robust measure of
prognostic separation can now be obtained by regressing the
outcome data against the scaled rankits:

that is,

log( (t)) = b(t) + σ*zj ∀j = 1,..., n.  (4)

and estimating the coefficient σ*. Note that the mean μ has

been absorbed into the baseline hazard function. As

explained in more detail in [16], the scaling of the rankits

ensures the interpretability of σ* as a generalized log-hazard

ratio. We adopt here a slightly different convention to [16]

and define the D-index, D, as D ≡ .

The D-index, in contrast to the hazard ratio (HR) [35] and the
Brier Score [36], combines interpretability, precision (confi-
dence intervals can be readily computed) and robustness
(because it only depends on the relative risk ordering of the
samples, it is invariant under monotonic recalibration trans-
formations). Ties in the PI are treated by averaging the corre-
sponding rankits as explained in [16]. In the extreme case of
a binary prognostic index PI ∈ {0,1}, it can be shown that D ≤
HR and D ≈ HR when the imbalance between 1s and 0s is
small.

Derivation of the molecular prognostic index
We first decided which data sets to use for training and deriv-

ing an optimal molecular prognostic classifier and which to

leave out for external independent validation tests. Denoting

Strain and Stest as the set of training studies and test studies,

respectively, we then divided each of the cohorts in Strain ran-

domly into 10 different training-test set partitions. The parti-

tioning was performed ensuring equal proportions of events

(death or distant metastasis) in training and test sets and to

ensure approximately equal numbers of training samples in

each training cohort. Next, genes were normalized to have

mean zero and unit standard deviation across the training

samples in each training cohort separately. For each training

cohort and training set we then performed univariate Cox-

regressions over the G genes common to all studies in Strain.

x x xn1 2, ,...,

xκ

PI PI PIi i in1 2
≤ ≤ ≤...

PIi j

z uj j= π
8

hi j

eσ
*
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Let sp and sp denote, for study s ∈ Strain and partition p ∈

{1,...,10}, the vectors of G estimated regression coefficients

and G Cox-scores, respectively. We then computed for each

partition p the average coefficient vector p and average Cox-

score vector  as:

and similarly for p. We next ranked for each partition p the

G genes according to their average Cox-scores across the

training studies. Let p = (r1p,..., rGp) where rgp specifies, for

partition p, the position in {1,..., G} of the gth ranked gene.

The following procedure was then carried out for each parti-

tion p to obtain an optimal molecular classifier :

First, let n denote the number of top ranked genes in the clas-
sifier set. Set n = 1.

Second, for every test sample i in each of the training cohorts
s we compute a molecular prognostic index:

where  denotes the normalized expression of gene rgp in

sample i of training study s ∈ Strain. The expression normali-

zation is done using the mean and standard deviation from

the training set.

Third, for each partition p and training study s we compute

the D-index on the test samples as explained in the previous

subsection. This yields a value .

Fourth, compute the average D-index over the training
studies:

where ws denotes the weights for each training study to take
account of the varying numbers of samples in the test sets of
the training studies.

Fifth, increment n by 1 and repeat steps two to five until n ≤
nmax.

Sixth, let  = {n : max( ) and n ≥ 10} denote the optimal

number of top-ranked genes. Thus, for each partition p we

have an optimal classifier  defined by a set of  genes

and associated average regression coefficients

{ } and the rule in step-2 for computing a con-

tinuous MPI for independent samples.

Two notes with this procedure are in order: nmax can be esti-
mated by evaluating the statistical significance of the average
ranking position of the common genes across the training
studies - for our purposes, setting nmax = 100 led to suitable
optimal classifiers; and we constrained n* to be larger than 10
in order to ensure a significant number of overlapping genes
for the independent validation tests.

Validation in independent data sets
The above procedure yields for each choice of training-test set
partition in the training studies a molecular classifier and an
associated rule for computing a continuous molecular prog-
nostic index for independent test samples. For an independ-
ent test sample i in test study s ∈ Stest we compute its
molecular prognostic index as:

where  has been normalized as before. Recalibration of

the MPI values is necessary if a prognostic meaning is to be

attached to these values. This is difficult because of inter-

cohort variability. The D-index measure of prognostic separa-

tion, however, overcomes this difficulty since it only depends

on the relative risk ordering of the external samples. Thus, for

each test study s and partition p we can evaluate the prognos-

tic separation of the molecular classifier  by computing

the D-index Dsp and the associated log-rank test p values.

Hybrid or augmented prognostic models
To evaluate whether the molecular prognostic index

improved prognostic separation over histopathological clas-

sifiers we considered hybrid augmented models within the D-

index framework. Specifically, we assume that we have a rule

to compute a MPI (as given in the last section) for a sample i

in a new cohort, which we denote by MPIi. Suppose further we

have a histopathological prognostic index value for each sam-

ple i in this new cohort, which we denote by SPIi. Both indices

induce a relative risk ordering of the samples. Let  and

 denote the rank position of sample i as predicted by the

prognostic indices MPI and SPI, respectively. It is then clear

that the weighted average rank position of sample i over the

two indices, that is:
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with wM + wP = 1 represents on overall relative risk of sample
i as predicted by both indices. Finally, the D-index of this
hybrid prognostic index, HPI, can be evaluated using the
same procedure as before.

The Nottingham Prognostic Index
Because the precise number of positive axillary nodes was not
known in two of the external studies (UPP and JRH-2), we
used here a slightly different definition for the NPI:

NPI = 0.2 × (Tumor_Size [cm]) + Grade + 1.5 ×
(Node_Status) + 1

where Node Status can be positive (1) or negative (0) and
Grade can be 1, 2 or 3. While our modified NPI gave slightly
smaller D-index values than the NPI in those cohorts where
axillary node information was available, the difference
between the two values was minimal, thus validating our
definition.

Software used
All computations were carried out using the R-software envi-
ronment version 2.2.1 [37]. We made use of the R-packages
survival, mclust and vabayelMix. R-scripts that apply the
algorithms as implemented here are available on request.

Additional data files
The following additional data are available with the online
version of this paper. Additional data file 1 is a figure showing
the weighted average D-index over test sets in the training
cohorts. Additional data file 2 is a figure showing the D-index
variation as a function of top-ranked genes in the overall
molecular classifier. Additional data file 3 lists the 52-gene
optimal classifier. Additional data files 4, 5 and 6 are figures
showing the D-index of hybrid equal-and-variable weight
prognostic models in independent cohorts. Additional data
files 7, 8 and 9 contain the GO analysis results for the top 200
prognostic genes, as produced by the GOTM [29]. Additional
data file 10 shows the overlap of our 52-gene classifier with
the prognostic signatures in [4,10-12]. Additional data file 11
contains the clinical and gene expression data of the NCH
cohort.
Additional data file 1Weighted average D-index over test sets in the training cohortsWeighted average D-index over the test sets in the training cohorts as a function of the number of top-ranked genes in the molecular classifier. The corresponding log-rank test p values are shown for the two training cohorts with test sets, NKI2 (blue) and EMC (green), separately. Results are shown for two independent choices of training/test set partitions (realizations) within the training cohorts.Click here for fileAdditional data file 2The D-index variation as a function of top-ranked genes in the overall molecular classifierThe weighted average D-index over the three training cohorts NKI2, EMC and NCH is shown as a function of the incremental number of top-ranked genes in the overall molecular classifier. Weights were chosen proportional to the number of samples in each cohort. The ranking of the genes was determined by the global average Cox-score over the ten training-test set partitions and three training cohorts.Click here for fileAdditional data file 3The 52-gene optimal classifierThe 52-gene optimal classifier.Click here for fileAdditional data file 4Hybrid equal-weight prognostic models in independent cohortsThe D-index (and associated 68% CI) of prognostic separation for the hybrid prognostic index (HPI ~ SPI + MPI*; red) in the three external cohorts (A1) JRH-1, (B1) UPP and (C1) JRH-2. In all cases, the risk-ordering of samples by the HPI is determined by the average ranking induced by SPI and MPI*. Also shown is the D-index of the standard prognostic index (BLACK) in each of the three external cohorts. The corresponding log-rank test p values (in log10-space) of the SPI and HPI classifiers are shown for the cohorts (A2) JRH-1, (B2) UPP and (C2) JRH-2. The 0.05 confi-dence threshold line is indicated (green).Click here for fileAdditional data file 5Multiple hybrid equal-weight prognostic models in independent cohortsThe mean D-index and associated standard errors of prognostic separation for the 10 hybrid prognostic (HPIp; red) indices in the three external cohorts (A1) JRH-1, (B1) UPP and (C1) JRH-2. In all cases, the risk-ordering of samples by the HPIp is determined by the average ranking induced by SPI and MPIp. Also shown is the D-index of the pathological/classical prognostic index (black) in each of the three external cohorts. The corresponding log-rank test p val-ues (in log10-space) of the SPI and HPIp classifiers are shown for the cohorts (A2) JRH-1, (B2) UPP and (C2) JRH-2.Click here for fileAdditional data file 6Multiple hybrid variable-weight prognostic models in external cohortsThe mean D-index and associated standard errors over the ten hybrid prognostic classifiers (HPIp) in the three external independ-ent cohorts. The D-index of the HPIp is parameterized by the weight wM given to MPIp. Thus, for wM = 0 we have a pure histopathologi-cal classifier, while for wM = 1 the prognostic index HPIp = MPIp. It turns out that, because of the relatively small number of samples (36) with available node status and NPI information in JRH-2, there were weight values for which the D-index became too large for graphical representation.Click here for fileAdditional data file 7Gene ontology analysis results for the top 200 prognostic genesGene ontology analysis results for the top 200 prognostic genes.Click here for fileAdditional data file 8Gene ontology analysis results for the top 200 prognostic genesGene ontology analysis results for the top 200 prognostic genes.Click here for fileAdditional data file 9Gene ontology analysis results for the top 200 prognostic genesGene ontology analysis results for the top 200 prognostic genes.Click here for fileAdditional data file 10Overlap of the 52-gene classifier with prognostic signaturesOverlap of our 52-gene classifier with the prognostic signatures in [4,10-12].Click here for fileAdditional data file 11Clinical and gene expression data of the NCH cohortClinical and gene expression data of the NCH cohort.Click here for file
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