Opinion

Apoptosis induced by *Pseudomonas aeruginosa*: a lonely killer?

Alexis Broquet^{1*} and Karim Asehnoune^{1,2}

¹Faculté de Medicine, Laboratoire UPRES EA 3826, Université de Nantes, Nantes, France. ²Pôle Anesthésie Réanimations, Service d'Anesthésie Réanimation Chirurgicale, Hôtel Dieu, CHU Nantes, Nantes, France.

Apoptosis is a fundamental biological process allowing tissue homeostasis through the regulation of cell populations by eliminating unnecessary elements. During infection, pathogens have evolved to take advantage of this process for their own and are able to induce the apoptosis of cells, i.e. immune cells by the host itself.

Pseudomonas aeruginosa is one of the most studied opportunistic bacteria due to its significant involvement worldwide in pneumonia, corneal infections and wound burns. Several research groups have pointed out the ability of these bacteria to interfere and/or evade host immune system by inducing apoptosis of the targeted cells. In May 2014, looking up '*Pseudomonas aeruginosa*' and 'apoptosis' keywords in PubMed search engine retrieve more than 300 hits. *Pseudomonas aeruginosa* seems to induce apoptosis through direct interaction with the host cells (the most studied system being the type-III secretion system: T3SS) or through secreting factors such as pyocyanin.

T3SS, the most well-studied virulence apparatus of *P. aeruginosa* is composed of a needle complex through which exoenzymes are injected into the host cells (Galle *et al.*, 2012). Recently, Beyaert's laboratory described an exotoxin-independent function of the T3SS in the killing of macrophages in an acute lung infection model (Galle *et al.*, 2012). Although, T3SS is a major virulence system, it is not fully required for the bacteria to display virulence as T3SS negative strains are shown to exihibit signficant virulence (example of Elsen's paper). In short, a wide variety of *P. aeruginosa* virulence factors are involved in inducing apoptosis by several distinct mechanisms, from the activation of the mitochondrial pathway,

Received 11 June, 2014; accepted 13 June, 2014. *For correspondence. E-mail alexis.broquet@univ-nantes.fr; Tel. +33 (0)2 40 41 28 38. *Microbial Biotechnology* (2015) **8**(1), 49–51 doi:10.1111/1751-7915.12144 **Funding Information** No funding information provided. the generation of reactive oxygen species to the activation of the caspase pathways (Table 1).

The ability of *P. aeruginosa* to induce apoptosis in various in vitro model of infection (macrophages, neutrophils, epithelial cells . . .) or in vivo models such as lungs, cornea and burn wounds infections is not mediated by a single bacterial cell but rather by a multicellular population of *P. aeruginosa*. Members of such population interact with each other through a number of chemical signals known globally on for guorum sensing (QS). Quoting Rutherford and Bassler (2012), 'Quorum sensing is a bacterial cell-cell communication process that involves the production, detection, and response to extracellular signaling molecules called autoinducers'. QS molecules were shown to regulate virulence factors such as toxins, exotoxin A, pyocyanin, ... and so in fine apoptosis (Rutherford and Bassler, 2012). The best described QS signalling systems in *P. aeruginosa* are the N-acyl homoserine lactones systems Las and Rhl. The Las system produces and responds to N-oxododecanoyl homoserine lactone and the Rhl system to N-butanoyl homoserine lactone respectively. Las system is known to control the production of various virulence factors involved in host cell damages such as exotoxin A (Jones et al., 1993). On the other hand, Rhl system was described to repress the expression of genes responsible for the assembly and function of the T3SS (Bleves et al., 2005).

Last but not least, QS molecule such as 3oxododecanoyl-L-homoserine lactone (3-oxo-C12-HSL) itself has been shown to induce apoptosis. Several studies have demonstrated that incubation of different cell lines with 3-oxo-C12-HSL molecule resulted in the induction of apoptosis involving calcium signalling, the mitochondrial pathway and caspase activations (Table 2). Interestingly, N-butanoyl-L-homoserine lactone (known as C4-HSL, the second major QS molecule in *P. aeruginosa*) harbouring a shorter fatty acid chain has not been shown to induce apoptosis compared with 3-oxo-C12-HSL (Tateda *et al.*, 2003; Holban *et al.*, 2014).

Knowing that *P. aeruginosa* is able to induce apoptosis through its QS systems molecule, studies focusing on apoptosis induction should be considered with the context of QS signalling. Particularly, QS considerations should be taken into account when comparing studies using

^{© 2014} The Authors. *Microbial Biotechnology* published by John Wiley & Sons Ltd and Society for Applied Microbiology.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

50 A. Broquet and K. Asehnoune

 Table 1. Virulence factors inducing apoptosis in targeted host cells (non-exhaustive list).

Virulence factors	Model used	Apoptosis pathway	Reference
Type-III secretion system (T3SS)			
Injector/needle complex	Macrophages/neutrophils	Caspase 3	Galle et al., 2012
Exoenzymes (ExoS, T, U, Y)	Macrophages	Caspase 3	Galle et al., 2008
	Epithelial cells/fibroblasts	Mitochondrial pathway, caspase 3	Shafikhani et al., 2008
Secreted virulence factors	·		
Pyocyanin	Neutrophils	Reactive oxygen intermediate, cAMP	Usher <i>et al</i> ., 2002
Exotoxin A	MEFs	Bak pathway	Du <i>et al.</i> , 2010
Protease	Macrophages	Caspase 3	Zhang et al., 2003
ExIA	HUVECs endothelial cells	Unknown	Elsen et al., 2014

cAMP, cyclic adenosine monophosphate; HUVECs, human umbilical veins; MEFs, mouse embryonic fibroblasts.

Table 2. Apoptosis pathways activated by 3-oxo-C12-HSL (non-exhaustive lis	Table 2.	Apoptosis pathways	activated by	/ 3-oxo-C12-HSL	(non-exhaustive list
--	----------	--------------------	--------------	-----------------	----------------------

Quorum-sensing molecule	Abbreviation used in the study	Model used	Apoptosis pathway involved	Reference
N-3-(oxododecanoyl)-I- homoserine lactone	3-oxo-C12-HSL OdDHL OdDHL C12	Macrophages/neutrophils Breast cancer cell lines Jurkat cell line Airway epithelial cells	Caspase 3/8 JAK/STAT pathway Mitochondrial pathway Cytochrome <i>c</i> , caspases 3/7, 8 and 9	Tateda <i>et al.</i> , 2003 Li <i>et al.</i> , 2004 Jacobi <i>et al.</i> , 2009 Schwarzer <i>et al.</i> , 2012

different multiplicity of infection or bacteria preparation protocols, processes that influence QS molecules concentration and/or bacteria population numbers.

Conflict of interest

None declared.

References

- Bleves, S., Soscia, C., Nogueira-Orlandi, P., Lazdunski, A., and Filloux, A. (2005) Quorum sensing negatively controls type III secretion regulon expression in *Pseudomonas* aeruginosa PAO1. J Bacteriol **187**: 3898–3902.
- Du, X., Youle, R.J., FitzGerald, D.J., and Pastan, I. (2010) *Pseudomonas* exotoxin A-mediated apoptosis is Bak dependent and preceded by the degradation of McI-1. *Mol Cell Biol* **30**: 3444–3452.
- Elsen, S., Huber, P., Bouillot, S., Couté, Y., Fournier, P., Dubois, Y., *et al.* (2014) A type III secretion negative clinical strain of *Pseudomonas aeruginosa* employs a two-partner secreted exolysin to induce hemorrhagic pneumonia. *Cell Host Microbe* **15**: 164–176.
- Galle, M., Schotte, P., Haegman, M., Wullaert, A., Yang, H.J., Jin, S., and Beyaert, R. (2008) The *Pseudomonas aeruginosa* type III secretion system plays a dual role in the regulation of caspase-1 mediated IL-1beta maturation. *J Cell Mol Med* **12** (5A): 1767–1776.
- Galle, M., Carpentier, I., and Beyaert, R. (2012) Structure and function of the Type III secretion system of *Pseudomonas* aeruginosa. Curr Protein Pept Sci **13**: 831–842.
- Galle, M., Jin, S., Bogaert, P., Haegman, M., Vandenabeele, P., and Beyaert, R. (2012) The *Pseudomonas aeruginosa* type III secretion system has an exotoxin S/T/Y independ-

ent pathogenic role during acute lung infection. *PLoS ONE* **7:** e41547.

- Holban, A.M., Bleotu, C., Chifiriuc, M.C., Bezirtzoglou, E., and Lazar, V. (2014) Role of *Pseudomonas aeruginosa* quorum sensing (QS) molecules on the viability and cytokine profile of human mesenchymal stem cells. *Virulence* 5: 303–310.
- Jacobi, C.A., Schiffner, F., Henkel, M., Waibel, M., Stork, B., Daubrawa, M., *et al.* (2009) Effects of bacterial N-acyl homoserine lactones on human Jurkat T lymphocytes-OdDHL induces apoptosis via the mitochondrial pathway. *Int J Med Microbiol* **299:** 509–519.
- Jones, S., Yu, B., Bainton, N.J., Birdsall, M., Bycroft, B.W., Chhabra, S.R., *et al.* (1993) The lux autoinducer regulates the production of exoenzyme virulence determinants in *Erwinia carotovora* and *Pseudomonas aeruginosa. EMBO J* **12:** 2477–2482.
- Li, L., Hooi, D., Chhabra, S.R., Pritchard, D., and Shaw, P.E. (2004) Bacterial N-acylhomoserine lactone-induced apoptosis in breast carcinoma cells correlated with down-modulation of STAT3. *Oncogene* **23**: 4894– 4902.
- Rutherford, S.T., and Bassler, B.L. (2012) Bacterial quorum sensing: its role in virulence and possibilities for its control. *Cold Spring Harb Perspect Med* **2**: a012427.
- Schwarzer, C., Fu, Z., Patanwala, M., Hum, L., Lopez-Guzman, M., Illek, B., et al. (2012) Pseudomonas aeruginosa biofilm-associated homoserine lactone C12 rapidly activates apoptosis in airway epithelia. Cell Microbiol 14: 698–709.
- Shafikhani, S.H., Morales, C., and Engel, J. (2008) The *Pseudomonas aeruginosa* type III secreted toxin ExoT is necessary and sufficient to induce apoptosis in epithelial cells. *Cell Microbiol* **10**: 994–1007.
- Tateda, K., Ishii, Y., Horikawa, M., Matsumoto, T., Miyairi, S., Pechere, J.C., *et al.* (2003) The *Pseudomonas aeruginosa*

^{© 2014} The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology, Microbial Biotechnology, 8, 49–51

autoinducer N-3-oxododecanoyl homoserine lactone accelerates apoptosis in macrophages and neutrophils. *Infect Immun* **71:** 5785–5793.

Usher, L.R., Lawson, R.A., Geary, I., Taylor, C.J., Bingle, C.D., Taylor, G.W., and Whyte, M.K. (2002) Induction of neutrophil apoptosis by the *Pseudomonas aeruginosa* exotoxin pyocyanin: a potential mechanism of persistent infection. *J Immunol* **168:** 1861–1868.

Zhang, J., Takayama, H., Matsuba, T., Jiang, R., and Tanaka, Y. (2003) Induction of apoptosis in macrophage cell line, J774, by the cell-free supernatant from *Pseudomonas aeruginosa*. *Microbiol Immunol* **47**: 199–206.