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Abstract

So far, genetic diversity among strains within Mycobacterium massiliense has rarely been studied. To investigate the genetic
diversity among M. massiliense, we conducted phylogenetic analysis based on hsp65 (603-bp) and rpoB (711-bp) sequences
from 65 M. massiliense Korean isolates. We found that hsp65 sequence analysis could clearly differentiate them into two
distinct genotypes, Type I and Type II, which were isolated from 35 (53.8%) and 30 patients (46.2%), respectively. The rpoB
sequence analysis revealed a total of four genotypes (R-I to R-IV) within M. massiliense strains, three of which (R-I, R-II and R-
III) correlated with hsp65 Type I, and other (R-IV), which correlated with Type II. Interestingly, genotyping by the hsp65
method agreed well with colony morphology. Despite some exceptions, Type I and II correlated with smooth and rough
colonies, respectively. Also, both types were completely different from one another in terms of MALDI-TOF mass
spectrometry profiles of whole lipid. In addition, we developed PCR-restriction analysis (PRA) based on the Hinf I digestion
of 644-bp hsp65 PCR amplicons, which enables the two genotypes within M. massiliense to be easily and reliably separated.
In conclusion, two distinct hsp65 genotypes exist within M. massiliense strains, which differ from one another in terms of
both morphology and lipid profile. Furthermore, our data indicates that Type II is a novel M. massiliense genotype being
herein presented for the first time. The disparity in clinical traits between these two hsp65 genotypes needs to be exploited
in the future study.
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Introduction

Rapidly growing mycobacteria (RGM) are ubiquitous organ-

isms increasingly emerging as important human pathogens.

Recently, there have been more frequent reports of RGM

infections in immunocompetent people as well as in people with

predisposing factors or those who are immunosuppressed [1,2]. In

particular, among RGMs, Mycobacterium abscessus is commonly

associated with wound infection and abscess formation and is the

RGM that most frequently causes chronic lung disease. M. ab-

scessus is also notable for its resistance to treatment and the poor

clinical outcome of infection with the organism [2]. In South

Korea, in contrast to countries such as the United States and

Japan [3–5], infection of M. abscessus is the most prevalent RGM

infection, and second only to the M. avium complex for

nontuberculous mycobacterium (NTM) [6,7].

Recent application of multilocus sequencing has broadened our

knowledge about the diversity between the M. abscessus complex.

Two new species of mycobacteria closely related to M. abscessus,

M. massiliense and M. bolletii, have been described [8,9]. A recent

molecular epidemiologic study using 144 RGM isolates from

Korean patients showed that two M. abscessus related species,

M. abscessus and M. massiliense, were responsible for the most of the

infections [M. abscessus (65/144 isolates, 51.2%) and M. massiliense

(59/144 patients, 46.5%)]. However, M. bolletii has rarely been

isolated from Korean patients (2/144 patients, 1.6%) [10]. It

should be noted that the disparity between M. abscessus and M.

massiliense infections in terms of clinical significance was reported

by a recent paper using Korean patients infected with either

M. abscesus or M. massiliense, thereby putting the stress on the

separation between the two related species via molecular - based

methods in the clinical aspects [11].

As alternatives to 16 S rRNA gene sequencing, several other

gene targets have been effectively used for the NTM differenti-

ation, demonstrating the limited value in the separation between

some closely related NTM strains [12–16]. Among these gene

targets, partial sequencing that targeted the rpoB or hsp65 has
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increasingly been used to differentiate between M. abscessus, M.

massiliense, and M. bolletii [8,10,11,17,18].

Due to the lack of clinical or epidemiological information

regarding M. massiliense, studies about genetic or phenotypic traits

of M. massiliense have rarely, if ever, been introduced, as compared

to M. abscessus. Thus, the present study aims to elucidate the

genetic diversity between M. massiliense clinical isolates by two

different chronometer molecules - hsp65 and rpoB - genes and to

identify the relationships between the determined genotype and

phenetic traits, particularly in terms of colony morphology.

Results

Identification by hsp65 Sequencing Analysis
First, 109 M. abscessus complex strains from Asan medical center

(AMC), which had been identified by rpoB PRA, were further

analyzed using the hsp65 sequencing method, showing the

prevalence of 44 M. abscessus (40.4%) and 65 M. massiliense strains

(59.6%) (Table 1). However, no M. bolletii strains were found in our

cohort (0%). Phylogenetic analysis based on the partial hsp65

sequence (603 bp) showed that there were two phylogenetic

groups (Type I and II) within the 65 M. massiliense strains,

composed of three sequevars (Figure 1 and 2A). Type I isolated

from 35 patients (53.8%) included a single sequevar having the

same 603-bp hsp65 sequences as M. massiliense CIP 108297T. But

Type II, also isolated from 30 patients (46.2%), included two

different sequevars, Type II-1 and Type II-2, which showed 2-bp

(T444A and C714A) and 1-bp different sequences (T444A) from

M. massiliense CIP 108297T, respectively (Table 2, Figure 1). Type

I, Type II-1, and Type II-2 were isolated from 35 (53.8%), 25

(38.5%) and 5 patients (7.7%), respectively (Figure 2A).

rpoB Sequence Analysis of M. massiliense Strains
The partial rpoB sequences (711-bp) from the 65 M. massiliense

strains were compared with each other to check the genetic

heterogeneity between them. The rpoB based sequence analysis

revealed the presence of four groups within the 65 M. massiliense

strains, suggesting more genetic diversity within M. massiliense

strains in the 711-bp rpoB sequence than in the 603-bp hsp65

sequence. All of the isolates showed different rpoB sequences than

the M. massiliense CIP 108297T with sequence divergence ranging

from 2-bp (R-I, R-II, and R-IV) to 14-bp (R-III). These groups

were clearly separated by phylogenetic analysis based on rpoB gene

sequences of the 65 M. massiliense strains (Figure 2B). Despite some

minor exceptions, the genotype R-I, R-II, R-III and R-IV of four

rpoB genotypes were related to the hsp65 Type I and Type II,

respectively. The R-I were found most frequently in M. massiliense

Type I (68.6%, 24/35 strains). The R-IV, which had an rpoB

sequence that was 2-bp different rpoB sequence (T2760C and

G2907A) from M. massiliense CIP 108297T were most frequently

found in M. massiliense Type II (93.3%, 28/30 strains), but not in

Type I (Table 3).

Relationships between hsp65 Genotypes and Colony
Morphology

Sub-cultured colonies of the 65 M. massiliense strains identified

by hsp65 sequence analysis and M. massiliense CIP 108297T were

analyzed on 7H10 agar plates. Notably, substantial differences in

colony morphology were found between two hsp65 genotypes,

Type I and Type II (Figure 3). Interestingly, all the 30 of the

isolates belonging to Type II (Type II-1 and Type II-2) showed

rough colony without any exception. However, the Type I isolates

showed both rough and smooth colony morphologies. In Type I,

as shown in M. massiliense CIP 108297T, smooth morphology was

more common than rough morphology [smooth vs. rough; 23/35

isolates (65.7%) vs. 12/35 isolates (34.3%)] (Table 2). In addition

to the different colony morphologies in the agar plates, Type I of

smooth morphotype and Type II of rough morphotype also

differed in terms of the growth characteristics of 7H9 broth

cultures. While Type I strain and M. massiliense CIP 108297T with

smooth morphotype showed a dispersed growth pattern, the Type

II isolate showed a typical aggregative pellicle growth that is

confined to the surface of the medium, as shown in the M.

tuberculosis clinical isolates (Figure 3). But, the Type I strain with

rough morphotype was quite similar to Type II in terms of the

growth pattern of the broth culture (data not shown).

Differentiation between Two Genotypes of M. massiliense
Strains by Hinf I PRA

To enable the simple separation of M. massiliense Type II strains

from other related RGMs, we developed a novel Hinf I PRA

algorithm. The results and the algorithm obtained by applying the

Hinf I PRA method to the 65 M. massiliense-related strains and five

reference strains are summarized in Table 2 and Figure 4A,

respectively. As predicted, the M. massiliense Type II strains were

clearly distinguished from other related RGMs, including M.

massiliense Type I strains, producing distinct PRA patterns (280,

278, and 86-bp), although it was not possible to separate between

the upper two bands, 280 and 278-bp (Figure 4B). When the

results of both the Hinf I PRA and hsp65 sequencing methods were

compared, the sensitivity and specificity of our Hinf I PRA method

for separating between the two genotypes of M. massiliense were

100% and 100%, respectively (Table 2). The informations about

rpoB and hsp65 genotypes, Hinf I PRA patterns and colony

morphology of each isolate were shown in Table S1.

Biochemical Tests and Drug Susceptibility Tests
The phenotypic characteristics of three reference strains, four

M. massiliense Type I strains, and four M. massiliense Type II strains

were analyzed and compared. With the exception of the colony

morphology, no characteristic traits were not found to differentiate

between Type I and Type II groups (Table S2). The results of our

drug susceptibility test likewise showed no significant differences

between Type I and Type II groups (Table S3). In addition, no

point mutations were found at the adenine at position 2058

(A2058) or 2059 (A2059) in the peptidyltransferase region of the

23 S rRNA gene in any of the 65 M. massiliense strains (data not

shown).

Comparison of HPLC and MALDI-TOF Mass Spectrometry
Profiles between Two Genotypes of M. massiliense

The profiles of HPLC and MALDI-TOF mass spectrometry of

M. massiliense CIP 108297T, four M. massiliense Type I strains, and

four M. massiliense Type II strains were analyzed and compared.

Generally, the HPLC profiles of all the M. massiliense strains were

virtually identical. However, both genotypes showed different

profiles at the peak of about 1.91 retention time to be separated

with each other. All four of the Type II strains showed a higher

level of intensity at this peak than four Type I and M. massiliense

CIP 108297T (Figure S1). The most substantial differences

between the MALDI-TOF mass spectrometry profiles were

found between the two genotypes. Usually, the MALDI-TOF

mass spectrometry profiles have two distinct clusters of peaks

ranging from m/z 1171 to m/z 1316 and from m/z 1360 to m/z

1464. The first cluster and the second cluster represent

diglycosylated glycopeptidolipid (GPL) and triglycosylated GPL,

respectively [19]. All four of the Type I strains and M. massiliense

Novel Genotype of M. massiliense
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Figure 1. Sequence polymorphisms between the three hsp65 sequevars of M. massiliense. Type I strains have the same sequence as the M.
massiliense type strain; however, Type II-1 and Type II-2 strains differed from the M. massiliense type strain by 2-bp (T444A and C714A) and 1-bp
(T444A), respectively. The nucleotide numbers correspond to those from the complete sequence of the heat shock protein 65 kDa (hsp65) gene of M.
abscessuss ATCC 19977 (GenBank no. CU458896).
doi:10.1371/journal.pone.0038420.g001

Figure 2. Phylogenetic trees based on the hsp65 gene (603 bp) and rpoB gene (711 bp) sequences. Phylogenetic trees based on the (A)
hsp65 gene (603 bp) and (B) rpoB gene (711 bp) sequences from M. massiliense clinical isolates, M. massiliense CIP 108297T, M. bolletii CIP 108541T, M.
chelonae ATCC 19237, and M. abscessus ATCC 19977. These trees were constructed using the neighbor-joining method. The bootstrap values were
calculated from 1,000 replications. Bootstrap values of ,50% are not shown. The bars indicate numbers of substitutions per nucleotide position.
doi:10.1371/journal.pone.0038420.g002

Novel Genotype of M. massiliense
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CIP 108297T showed the typical MALDI-TOF mass spectrom-

etry profiles of two clusters, but all four of the Type II strains

showed unusual profiles, with a significantly low intensity of the

putative diglycosylated GPLs and diverse peaks of high intensity

from m/z 1598 to m/z 2477, suggesting a disparity in the GPL

nature between the two genotypes (Figure 5).

Discussion

Following the recent taxonomic separation of three very closely

related RGMs - M. abscessus, M. massiliense and M. bolletii - reports

regarding human infections of M. massiliense have been increasing

[20–23]. Thus, it has become more important to study the

diversity between their interspecies or intraspecies [10,24]. A

recent report based on multilocus sequencing showed that M.

massiliense is composed of strains with more diverse genetic

heterogeneity than its closely related species, M. abscessus [24].

To investigate the intraspecies genetic diversity within M.

massiliense, we studied 65 Korean strains by applying a gene-based

sequencing approach consisting of two independent chronometers

(hsp65 and rpoB gene).

Rather than 16 S rRNA gene-based analysis, which has been

shown to have limited effectiveness in discriminating between

mycobacterial strains, a 603-bp hsp65 sequencing analysis has been

proven to be useful for identifying mycobacteria [25–27],

particularly for the separating between the three related species

of M. abscessus; M. abscessus, M. massiliense, and M. bolletii [11,28].

Our hsp65-based sequence analysis showed that M. massiliense is

more prevalent than M. abscessus (59.6% vs. 40.4%), supporting the

previous report that, in South Korea, M. massiliense isolated with a

relative higher frequency than in other areas [10]. So, this

epidemiologic feature raised the possibility of the presence of a

distinct M. massiliense strain in South Korea. Indeed, for the first

time, we report the identification of a novel hsp65 genotype (Type

II) that was found with a high frequency in our Korean M.

massiliense isolates (46.2%, 30/65 patients). Since none of the hsp65

sequences in the NCBI databases perfectly match those of Type II,

it seems that Type II may very well be a unique M. massiliense strain

in Korea.

To investigate the phenotypic difference between two hsp65

genotypes, a number of phenetic traits were compared between

both genotypes, including colony morphology. Although most

traits could not provide any definitive criteria for differentiation, a

strong correlation was discovered between the colony morphology

of the two hsp65 genotypes. Specifically, while the majority of the

hsp65 Type I genotype (65.7%, 23/35 strains) showed a smooth

morphotype, all the 30 strains with hsp65 Type II showed a rough

colony morphology. So, it is tempting to speculate that the rough

morphotype of Type II, like M. tuberculosis, may be an innate trait

that evolved from the smooth strain, rather than a trait acquired

via induced mutations during the in vivo infection.

NTMs have long been recognized as having both rough and

smooth colony phenotypes [29]. Several reports have found a

correlation between colony morphology and virulence, with rough

variants generally being more virulent than smooth variants

[30,31]. Particularly, in the M. abscessus strains, smooth morpho-

type has occasionally spontaneously reverted to rough morphotype

after several passages on agar plates or via in vivo passage into mice

due to the reduced expression of glycopeptidolipid (GPL) [30].

Although the exact mechanism still remains a mystery, the

phenomena may be attributed to the loss of GPL resulting in

excessive secretion of TNF-á from the macrophage [32]. Our

MALDI-TOF MS analysis showed that the Type I strains with

smooth morphotype and Type II strains had completely different

lipid profiles. In particular, the peaks corresponding to putative

diglycosylated GPL were reduced in the Type II strains as

compared to Type I. Given that mycobacterial cell wall lipid is one

of the most important factors determining virulence, leading to the

modulation of the host immune response, it is likely that two hsp65

genotypes of M. massiliense would show different pathogenesis.

However, the above hypothesis needs to be proven through

detailed analysis of clinical data and in vivo and in vitro virulence

studies in the future. In addition, we could not find any phenotypic

or chemotaxonomic differences between the 11 strains showing

hsp65 Type I genotype with rough phenotype and the 30 Type II

strains. The question of whether the two genotypes with rough

phenotype (Type I and II) acquire the rough phenotype in

different ways should be addressed in a future study.

A previous report showed that sequence analysis based on the

711-bp rpoB gene was better than hsp65 sequence based analysis in

terms of discriminating between closely related mycobacterial

strains, particularly, strains within M. abscessus or M. massiliense

[12]. Our rpoB sequence analysis was also able to separate all 65 of

the M. massiliense strains into four more diverse genotypes (R-I to

R-IV) than hsp65 sequence analysis. However, while the previous

report [10] had discordant results between hsp65 and rpoB-based

sequence analysis in species determination in some M. massiliense

strains, all 65 of the isolates identified as M. massiliense by the hsp65

method were also identified as M. massiliense by rpoB methods

(Table 3, Figure 2B). Phylogenetic analysis based on the rpoB

sequences showed that most hsp65 Type II strains also formed a

monophyletic clade in a rpoB tree (Figure 2B), suggesting that hsp65

Type II may be composed of genetically identical strains.

However, hsp65 Type I strains were divided into the three

different clades in a rpoB tree, suggesting that hsp65 Type I may be

composed of more diverse genetic groups. These results provide a

Table 1. Separation of 109 M. abscessus related Korean
strains used in this study into species or genotype level by
sequence analysis based on the partial hsp65 gene sequence
(603 bp).

Species and group No. (%) of strains

M. abscessus 44 (40.4)

M. massiliense 65 (59.6)

Type I 35 (32.1)

Type II 30 (27.5)

Total 109 (100.0)

doi:10.1371/journal.pone.0038420.t001

Table 2. The frequency of the two hsp65 genotypes (Type I
and Type II) determined by hsp65 sequence analysis and Hinf I
PRA methods, and the two colony morphotypes (rough and
smooth) among 65 M. massiliense clinical strains.

Hinf I PRA Colony morphotype

hsp65
genotypea No. (%)b 366, 278 280, 86, 278 Rough Smooth

Type I 35 (30.1) 35 (100.0) 0 (0.0) 12 (34.3) 23 (65.7)

Type II 30 (27.4) 0 (0.0) 30 (100.0) 30 (100.0) 0 (0.0)

aThe hsp65 genotypes were determined by hsp65 sequence analysis (603-bp).
bThe percentage was calculated among M. massiliense strains.
doi:10.1371/journal.pone.0038420.t002

Novel Genotype of M. massiliense
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likely explanation for the presence of phenotype divergence (the

coexistence of both morphotypes) in type I over type II strains.

Although PRA is a previous century technique, replaced by

sequencing analysis producing more accurate results, the PRA

method has still been used for routine screening purposes in

clinical settings for differentiating the mycobacterial strains, due to

the its ease and rapidity [33–35]. So, we developed a novel PRA

method using Hinf I enzyme targeting a 644-bp hsp65 genes for

selective identification of M. massiliense Type II. A blind test for

evaluating this PRA method proved that it can successfully identify

all Type II strains from Type I, suggesting its feasibility for the

diagnostic or epidemiologic purposes.

Our hsp65 and rpoB based methods failed to differentiate rough

and smooth strains within hsp65 Type I. To overcome this

limitation, methods with more discriminatory power such as

variable-number tandem repeat (VNTR) [36–38] or whole

genome sequencing [39–41] should be applied into hsp65 Type I

strains for the future study.

In summary, through hsp65 sequencing analysis of 65 Korean

M. massiliense strains, we found two hsp65 genotypes, Type I from

35 patients (53.8%) and Type II from 30 patients (46.2%), which

were related to smooth and the rough colony phenotypes,

respectively. Furthermore, the two hsp65 genotypes were also

completely different in terms of their lipid profiles by MALDI-

Table 3. The frequency of the four rpoB genotypes (R-I to R-IV) determined by rpoB sequence analysis (711-bp) among 65 M.
massiliense clinical strains, polymorphisms of rpoB genotypes and relationships between rpoB and hsp65 genotypes.

No. (%)

rpoB genotypea hsp65 Type I hsp65 Type II P - value

R-I (T2484G and G2934A) 24 (68.6) 2 (6.7) 0.010

R-II (C2569T and T2851C) 7 (20.0) 0 (0.0) 0.000

R-III (C2475T, T2484C, T2835G, C2848G,
A2849C, G2850C, C2853T, C2859T, A2861C,
G2862A, G2868C, C2869A, A2870C,
G2871C, G2874T, T2877G, C2880G,
C2886T, C2988T, and C3022G)

4 (11.4) 0 (0.0) 0.056

R-IV (T2760C and G2907A) 0 (0.0) 28 (93.3) 0.000

Total 35 (100.0) 30 (100.0)

aPolymorphisms which are different from the type strain of M. massiliense. The nucleotide numbers correspond to those from complete sequence of RNA polymerase
beta subunit (rpoB) gene of M. abscessus ATCC 19977 (GenBank no. CU458896).
doi:10.1371/journal.pone.0038420.t003

Figure 3. Colony morphology and the growth patterns in 7H9 broth medium. Colony morphology (left panel) and the growth patterns in
7H9 broth medium (right panel) of (A) M. massiliense CIP 108297T, (B) M. massiliense Type I strain, and (C) M. massiliense Type II strain.
doi:10.1371/journal.pone.0038420.g003

Novel Genotype of M. massiliense
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TOF MS. A total of four genotypes (R-I to R-IV) were also found

by rpoB sequencing analysis, three of which (R-I, R-II, and R-III)

were related to hsp65 Type I and the other (R-IV) which was

related to hsp65 Type II. Our data indicates that the Type II hsp65

genotype, which also shows the R-IV rpoB genotype, is a novel M.

massiliense group introduced for the first time in this study. In

addition we developed a novel PRA method for selectively

separating hsp65 Type II from other RGMs. Our data suggests

that M. massiliense strains may be composed of genetically distinct

diverse groups, of which pathogenic potentials need to be

evaluated for future study.

Materials and Methods

Bacterial Strains
A total of 109 strains from sputa samples of different patients

were provided by Tae Sun Shim, Asan Medical Center, South

Korea were collected from January 2004 to June 2011. All the

experiments were performed just on the extracted DNA the

isolated strains, not directly sputa DNA. Furthermore, all the

samples were collected in an anonymized manner, and any

information about the personal details of the patients and any

details about their clinical history were not supplied. In this case,

the study could be under the waiver of informed consent. With the

documentation for waiver of informed consent, this work was

approved by the institutional review board of Seoul National

University Hospital (C-1202-057-398) and Asan Medical Center

(2012-0170). These samples were proved to be M. abscessus

complex strains by rpoB PRA method [34]. For the further

separation at the species level, these isolates were used for re-

identification by direct sequencing protocol targeting the partial

hsp65 gene [14]. The type strains of M. abscessus (ATCC 19977), M.

massiliense (CIP 108297), and M. bolletii (CIP 108541) were used for

comparison.

Colony Morphology and Broth Culture
To observe the colony morphology, the isolates cultivated on

Ogawa media were sub-cultured on 7H10 agar medium

supplemented by OADC at 37uC for 3 to 5 days [42]. To

examine growth patterns on the broth culture, the clinical isolates

and M. massiliense type strain were inoculated into 7H9 broth

supplemented with ADC at approximately 16104 CFU/ml and

cultured at 37uC for 5 to 7 days [30,42].

Biochemical Tests and Drug Susceptibility Tests
To determine their taxonomic relationships, M. massiliense CIP

108297T, four M. massiliense Type I strains (50375, 51843, 52352,

and 52444), and four M. massililense Type II strains (50594, 51048,

52188, and 52265) were tested for biochemical and drug

susceptibility profiles. These strains were cultured into Middleb-

rook 7H9 broth supplemented by ADC at 37uC. Colony

morphology, pigment production in the dark condition, photo-

induction, and the ability to grow at various temperatures (25, 37,

Figure 4. Identification of M. massiliense Type I and Type II strains by hsp65 PRA method. (A) Hinf I PRA algorithm for differentiating of M.
massiliense Type I and Type II strains. (B) Agarose gel electrophoresis after Hinf I PRA. Lanes: M, 100-bp ladder; 1, M. abscessus (uncut); 2, M. abscessus
(Hinf I cut); 3, M. bolletii (Hinf I cut); 4, M. chelonae (Hinf I cut); 5, M. fortuitum (Hinf I cut); 6, M. massiliense (Hinf I cut); 7, 50375 (Type I, uncut); 8, 50375
(Type I, Hinf I cut); 9, 51302 (Type I, Hinf I cut); 10, 51843 (Type I, Hinf I cut); 11, 52352 (Type I, Hinf I cut); 12, 51048 (Type II, uncut); 13, 51048 (Type II,
Hinf I cut); 14, 52008 (Type II, Hinf I cut); 15, 50594 (Type II, Hinf I cut); 16, 52012 (Type II, Hinf I cut).
doi:10.1371/journal.pone.0038420.g004

Novel Genotype of M. massiliense
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and 45uC) were analyzed during six-week incubation on Mid-

dlebrook 7H10 agar plates. Acid-alcohol fastness was determined

by Ziehl-Neelsen and auramine O staining. Other tests measured:

niacin accumulation, nitrate reductase, arylsulfatase on days 3 and

14, heat-stable catalase (pH 7, 68uC), tellurite reductase, Tween

80 hydrolysis, urease and pyrazinamidase (PZA) [43]. Additional

biochemical tests, such as to detect the activity of alkaline

phosphatase, esterase (C4), esterase lipase (C8), lipase (C14),

leucine arylamidase, valine arylamidase, and crystine arylamidase

were conducted with the API ZYM kit (bioMerieux) as recom-

mended by the manufacturer.

Inhibition tests including tolerance to thiophene-2-carboxylic

acid hydrazide (TCH), p-nitrobenzoate (PNB), 5% sodium

chloride, ethambutol (EMB) and picric acid were carried out,

and the ability to grow on MacConkey agar without crystal violet

was examined. Also, antimicrobial susceptibility was determined

by the agar proportion method on 7H10 medium [43].

High-performance Liquid Chromatography (HPLC)
Analysis

HPLC was used to analyze mycolic acids from M. massiliense CIP

108297T, the four aforementioned M. massiliense Type I strains,

and the four aforementioned M. massililense Type II strains as

previously described [44]. The Microbial Identification system

(MIDI Inc.) and the HPLC mycobacterium library (available

online at http://www.MycobacToscana.it) were used to identify

mycolic acid patterns.

Matrix-Assisted Laser Desorption Ionization-Time of
Flight (MALDI-TOF) Mass Spectrometry Analysis

To analysis MALDI-TOF mass spectrometry, lipids were

extracted with CHCl3/CH3OH (1:1 v/v, adding 0.5 ml of 2,5-

dihydroxybenzoic acid) from 30 ml 7H9 broth cultures of M.

massiliense CIP 108297T, the four M. massiliense Type I strains, and

the four M. massililense Type II strains. MALDI-TOF mass

spectrometry was performed on the extracted samples with a

Voyager DE-STR MALDI-TOF instrument (Perseptive Biosys-

Figure 5. MALDI-TOF mass spectrometry analysis. MALDI-TOF mass spectrometry analysis of extracted lipids from (A) M. massiliense CIP
108297T, (B) 50375 (Type I), (C) 51843 (Type I), (D) 50594 (Type II), and (E) 51048 (Type II). DG, diglycosylated GPLs; TG, triglycosylated GPLs.
doi:10.1371/journal.pone.0038420.g005
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tems) equipped with a pulse nitrogen laser emitting at 337 nm as

previously described [45].

DNA Extraction and PCR
Total DNAs were extracted from cultured colonies using the

bead beater-phenol extraction method [14], and then used as

templates for PCR. To study genetic variations of the M. massiliense

related strains, two independent target genes - hsp65 and rpoB -

were amplified. To amplify partial gene (644 bp), the hsp65 PCRs

were applied to a total of 109 clinical isolates. A set of primers

HspF3 (forward; 59-ATC GCC AAG GAG ATC GAG CT-39)

and HspR4 (reverse; 59-AAG GTG CCG CGG ATC TTG TT-

39) was used [14]. To amplify partial gene (1092 bp), the rpoB

PCRs (with a slight modification of previous methods) [12], were

applied to 65 clinical isolates, which had already been identified

into M. massiliense strains by the hsp65 sequencing protocol. Primer

sets of MycoF2 (forward; 59-ATC GCC GAC GGT CCC TGC-

39) and MycoR2 (reverse; 59-GAA CCG CTG GCC ACC GAA

CT-39) were used for PCR. The template DNA (50 ng) and

20 pmol of each primer were added to a PCR mixture tube

(AccuPower PCR PreMix; Bioneer, Daejeon, South Korea)

containing one unit of Taq DNA polymerase, 250 mM of

deoxynucleotide triphosphate, 10 mM Tris-HCl (pH 8.3),

10 mM KCl, 1.5 mM MgCl2, and gel loading dye. The final

volume was adjusted to 20 ml with distilled water, and the reaction

mixture was then amplified as previously described [14,46] using a

model 9700 Thermocycler (Perkin-Elmer Cetus).

Hinf I PCR Restriction Fragment Length Polymorphism
Analysis (PRA) Targeting 644 bp hsp65 gene

A PRA algorithm using the Hinf I enzyme to differentiate M.

massiliense Type II from M. massiliense Type I, as well as other M.

massiliense related species (M. abscessus, M. bolletii, M. chelonae, and

M. fortuitum) was designed by using MapDraw (version 3.14;

DNASTAR, Madison, Wis.). To verify the authenticity of the

PRA algorithm for Type II separation, it was applied to six Type

strains (M. abscessus ATCC 19977T, M. bolletii CIP 108541T, M.

chelonae, M. fortuitum, M. massiliense CIP 108297T) and 65 M.

massiliense clinical isolates. All of the samples were blind tested.

Briefly, ten microliters of 644-bp hsp65 PCR products, 2 U of Hinf

I restriction enzyme, and a restriction buffer were transferred into

a microcentrifuge tube, and distilled water was added to a final

volume of 20 ml. Digestion was performed for 2 h at 37uC in a

water bath. After digestion, the mixtures were electrophoresed in

2% agarose gel with 100 bp ladder DNA marker.

Nucleotide Sequencing
PCR products were purified using Qiaex II gel extraction kits

(Qiagen, Hilden, Germany) and then sequenced directly using

forward and reverse primers with an Applied Biosystems

automated sequencer (model 377) and BigDye Terminator cycle

sequencing kits (Perkin-Elmer Applied Biosystems, Warrington,

United Kingdom). Both strands were sequenced as a crosscheck.

Sequence Analysis
Determined partial rpoB (711-bp), and hsp65 (603-bp) sequences

were aligned using the ClustalW algorithm in MEGA4 [47]. A

phylogenetic tree based on the rpoB and hsp65 gene sequences was

constructed by the neighbor-joining [48] and maximum-parsimo-

ny [49] methods within the MEGA 4 program [47]. The

constructed neighbor-joining tree was evaluated by bootstrap

value calculated from 1,000 replicates [13]. Separately, the 23 S

rRNA gene sequences of 65 M. massiliense clinical isolates were

analyzed to observe any point mutation at the adenine at position

2058 (A2058) or at A2059 in the peptidyltransferase region of the

23 S rRNA gene [50].

Nucleotide Sequence Accession Numbers
Determined rpoB and hsp65 sequences that were different from

reference strains were deposited in GenBank under accession no.

JQ081974 to JQ082103.

Statistical Analyses
Results were expressed as percentages. The differences between

categorical variables were analyzed using the Chi-square test. For

continuous variables the Student’s t-test was used when the data

showed a normal distribution, or the Mann-Whitney U test was

used when the data was not normally distributed. A p-value of

,0.05 (two-tailed) was considered to be statistically significant.

Supporting Information

Figure S1 Mycolic acid profiles of M. massiliense strains.

Comparison of mycolic acid profiles of (A) M. massiliense CIP

108297T, (B) 50375 (Type I), (C) 51843 (Type I), (D) 52444 (Type

I), (E) 50594 (Type II), (F) 51048 (Type II), and (G) 52188 (Type

II) obtained from HPLC analysis. The relative retention time is

indicated for each peak. LMW, Low-molecular-weight standard;

HMW, High-molecular-weight standard. The asterisks represent a

unique peak in Type II HPLC profiles compared with M.

massiliense CIP 108297T and Type I strains.

(TIF)

Table S1 The rpoB and hsp65 genotypes, Hinf I PRA patterns

and colony morphology of 65 M. massiliense clinical isolates.

(XLSX)

Table S2 Details of cultural and biochemical characteristics.

Cultural and biochemical characteristics of M. abscessus ATCC

19977T, M. bolletii CIP 108541T, M. massiliense CIP 108297T, Type

I strains (50375, 51843, 52352, and 52444) and Type II strains

(50594, 51048, 52188, and 52265). Details of biochemical and

cultural results are shown in text. ++, good growth, +, positive/

growth; 2, negative/no growth; 6, variable. 1, M. abscessus ATCC

19977T; 2, M. bolletii CIP 108541T, 3, M. massiliense CIP 108297T;

4, 50375 (Type I); 5, 51843 (Type I); 6, 52352 (Type 1); 7, 52444

(Type I); 8, 50594 (Type II); 9, 51048 (Type II); 10, 52188 (Type

II); 11, 52265 (Type II).

(DOCX)

Table S3 Details of the antibiotic susceptibility profiles.

Comparison of the antibiotic susceptibility test results among M.

abscessus ATCC 19977T, M. bolletii CIP 108541T, M. massiliense CIP

108297T, Type I strains (50375, 51843, 52352, and 52444) and

Type II strains (50594, 51048, 52188, and 52265). { Ami,

Amikacin; Cef, Cefoxitin; Cip, Ciprofloxacin; Cla, Clarithromy-

cin; Dox, Doxycycline; Imi, Imipenem; Mox, Moxifloxacin; Rif,

Rifampin; Sul, Sulfamethoxazole; Tob, Tobramycin; Emb,

Ethambutol.

(DOCX)
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