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Abstract

Motivation: Advancements in sequencing technologies have highlighted the role of alternative

splicing (AS) in increasing transcriptome complexity. This role of AS, combined with the relation of

aberrant splicing to malignant states, motivated two streams of research, experimental and com-

putational. The first involves a myriad of techniques such as RNA-Seq and CLIP-Seq to identify

splicing regulators and their putative targets. The second involves probabilistic models, also

known as splicing codes, which infer regulatory mechanisms and predict splicing outcome directly

from genomic sequence. To date, these models have utilized only expression data. In this work, we

address two related challenges: Can we improve on previous models for AS outcome prediction

and can we integrate additional sources of data to improve predictions for AS regulatory factors.

Results: We perform a detailed comparison of two previous modeling approaches, Bayesian and

Deep Neural networks, dissecting the confounding effects of datasets and target functions. We

then develop a new target function for AS prediction in exon skipping events and show it signifi-

cantly improves model accuracy. Next, we develop a modeling framework that leverages transfer

learning to incorporate CLIP-Seq, knockdown and over expression experiments, which are inher-

ently noisy and suffer from missing values. Using several datasets involving key splice factors in

mouse brain, muscle and heart we demonstrate both the prediction improvements and biological

insights offered by our new models. Overall, the framework we propose offers a scalable integra-

tive solution to improve splicing code modeling as vast amounts of relevant genomic data become

available.

Availability and implementation: Code and data available at: majiq.biociphers.org/jha_et_al_2017/

Contact: yosephb@upenn.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A key contributor to transcriptome complexity is alternative splicing

(AS): the joining together of different exonic segments of a pre-

mRNA to yield different gene isoforms. The most common type of

AS event in human and mouse is exon skipping where a fraction of

the mRNA produced include an exon while others skip it.

Thousands of such variations were found to be highly conserved and

common between tissues. Overall, more than 90% of human multi-

exon genes are alternatively spliced (Pan et al., 2008; Wang et al.,

2008) and splicing defects have been associated with numerous dis-

eases. This has motivated detailed studies of AS variations across tis-

sues, development stages and malignant states (Scotti and Swanson,

2016). These studies monitor mRNA expression at exonic resolution

using RNA-Seq in a variety of experimental conditions, including

knockdown (KD), knockout (KO) or over-expression (OE) of condi-

tion specific splicing factors (SF). Other experiments monitor

binding affinity of splice factors using several similar protocols

involving UV cross-linking of the factor to the RNA, followed by

immunoprecipitation and sequencing of the bound RNA fragments

(CLIP-Seq).

In parallel, the fact that splicing outcome is highly condition spe-

cific and regulated by many factors led to an effort to computation-

ally derive predictive ‘splicing codes’: models that use putative

regulatory features (e.g. sequence motifs, secondary structure) to

predict splicing outcome in a condition specific manner (e.g. brain

tissue; Barash et al., 2010a; Barash et al., 2010b). Concentrating on

cassette exons, the most common form of AS in mammals, these

models aimed to predict percent splicing inclusion (PSI, W) of the al-

ternative exon, or changes of its inclusion (dPSI, DW). Such models

have been used successfully to identify novel regulators of key genes

in disease associated genes, and predict the effect of genetic vari-

ations on splicing outcome (Gazzara et al., 2014; Xiong et al., 2015;
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Sotillo et al., 2015). However, given the sharp growth in sequencing

data, two main questions are: Can we leverage the new CLIP-Seq

and splice factors KD/OE experiments and more generally, can we

improve on current splicing code models?

Previous work has shown that Bayesian Neural Networks com-

pare favorably to a plethora of other modeling approaches including

K-Nearest Neighbors, Support Vector Machine, Naive Bayes and

Deep Neural Networks with dropouts (Xiong et al., 2011;

Srivastava et al., 2014). Specifically, (Srivastava et al., 2014)

described dropout as performing an approximation to the BNN

Bayesian model averaging, and pointed to the latter as being advan-

tageous for smaller datasets. However, later work using a Deep

Neural Network with an autoencoder demonstrated improved per-

formance compared to a BNN model (Leung et al., 2014). Notably,

these different works used different datasets and mixed the effect of

modeling framework (BNN versus DNN) with changes of the target

function. Thus, in this work we reconstructed previous BNN and

DNN models on the original dataset from (Leung et al., 2014) to es-

tablish a baseline. Afterwards, we monitored the effect of a new tar-

get function, of increasing dataset size by exploiting improvements

in RNA-Seq quantification algorithms (Vaquero-Garcia et al.,

2016), and adding new types of experimental data.

The first contribution of this work is in developing a new target

function for splicing code models. Due to limitations of both avail-

able data and algorithms, previous works were unable to predict W
or DW directly. Instead, they formulated a three way prediction

task fps
t;ej0 � ps

t;e � 1;
P

s ps
t;e ¼ 1g for any exon e in each condi-

tion t. In the original formulation, s represented the chances for

increased inclusion, exclusion or no change for exon e in condition

t, compared to a hidden baseline of inclusion inferred from a set of

27 tissues (Barash et al., 2010a). This formulation allowed the

learned model to concentrate its predictive power on tissue regu-

lated exons, using a dedicated sparse factor analysis model to iden-

tify those exons from noisy micro-array data (Barash et al.,

2010b). Subsequently, the same target function formulation was

used, but instead of inferring splicing changes, s now represented

binning of W values into three levels: ‘Low’ (0 � W < 33%),

‘Medium’ (33% � W < 66%) and ‘High’ (66% � W � 100%).

While useful, these target functions are inherently unsatisfying as

an approximation to the underlying biological variability. Here,

we develop a new target function which models W directly, and

demonstrate its improved accuracy compared to previous

approaches. Serving as a baseline, Figure 1 depicts the improve-

ment in percent variance explained in W by the new model com-

pared to previous BNN and DNN on the original dataset used by

(Leung et al., 2014).

The second contribution of this work is developing a frame-

work to integrate additional types of experimental data into the

splicing code models. Specifically, CLIP-Seq based measurements

of in vivo splice factors binding are turned into an additional set of

input features while knockdown and over-expression experiments

are added with binary vectors coding the tissue and splice factor

(if any) measured. A graphical representation of the old and the

new model architectures is given in Figure 2. We demonstrate the

effect of the new integrative modeling approach using a set of

CLIP-Seq, knockdown and overexpression experiments for mem-

bers of the RBFOX, CELF and MBNL family of splicing factors

in mouse heart, muscle and brain. Finally, we showcase some of

the possible biological usage cases for these splicing code models

for accurate in silico prediction of splice factor KO effect, and for

identifying novel regulatory interplay between different splice

factors.

2 Materials and methods

2.1 Datasets
Two RNA-Seq datasets were processed for this work. One, denoted

Five Tissue Data, is the RNA-Seq data from five mouse tissues

(brain, heart, kidney, liver and testis) produced by (Brawand et al.,

2011). This dataset was used in the (Leung et al., 2014) paper and

thus to ensure that we can accurately reconstruct their models, we

use it to compare the old and new models. We generated genomic

features and PSI quantification for �12 000 cassette exons used in

(Barash et al., 2013) for this dataset for the five tissues using MAJIQ

(Vaquero-Garcia et al., 2016) and AVISPA (Barash et al., 2013).

The second dataset, denoted MGP Data, was prepared by (Keane

et al., 2011) and it contains RNA-Seq data from six tissues (heart,

hippocampus, liver, lung, spleen and thymus) with average read

coverage of 60 million reads. To this data we added 15 CLIP-Seq ex-

periments (see Supplementary Table S10). Together, these datasets

highlight some of the challenges involved in utilizing such diverse

experiments. First, CLIP-Seq experiments give noisy measurement

of where a splice factor binds. The measurements are noisy since

binding signal (reads aligning to a certain area) may be false posi-

tives, may not indicate active regulation and may suffer from false

negatives due to low coverage, indirect binding, antibody sensitivity,

etc. Moreover, these experiments are typically executed by different

labs, in different conditions and at varying levels of coverage. Thus,

it is crucial that any learning framework that we develop should be

able to handle missing and noisy measurements.

In our learning setting, the CLIP-Seq data is turned to input fea-

tures indicating possible binding in a region proximal to the alterna-

tive exon (e.g. upstream intron). Since CLIP-Seq measurements are

inherently noisy and suffer from different coverage levels we abstract

them as binary indicators of binding in the various regions of interest

around our alternative cassette exons. The target in our problem for-

mulation is the relative exon inclusion level in a given experiment, ex-

pressed as percent spliced in (PSI, W 2 ½0; 1�). W serves to capture the

proportion of isoforms that include the alternative cassette exon ver-

sus those that skip it. But since these are not observed directly, the

short sequencing reads are used to estimate these values. Specifically,

we apply MAJIQ (Vaquero-Garcia et al., 2016) to derive posterior
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Fig. 1. Improvement in percent variance explained by the new target function

(green bars) compared to previous BNN (blue bars) and DNN (red bars)

models on the tissue data used by (Leung et al., 2014)
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distribution over W 2 ½0; 1� using the short sequencing reads.

Similarly, when comparing two conditions the short reads are used to

construct a posterior distribution over dPSI DW 2 ½�1; 1� for the in-

clusion of the alternative exon. In practice many alternative exons

tend to be either highly included or highly excluded in any given con-

dition, but around 20% of the measurements in our dataset have 0:1

< E½W� < 0:9 and the concentration of the posterior W or DW distri-

bution around that mean value depends on the total number of reads

hitting that region and how these are distributed across the transcrip-

tome (Vaquero-Garcia et al., 2016).

Except the additional CLIP based features described above, we

derived a feature set similar to previous works, to enable compari-

son. The 1357 non CLIP-Seq features are comprised of binary, inte-

ger and real valued features. These features have vastly different

distributions with some being highly sparse, and some features being

highly correlated (e.g. alternative representations of a splice factor

binding motif). Finally, in any given condition only a small subset of

those features are expected to represent relevant regulatory features.

Since many splicing changes occur in complex/non-binary splic-

ing events, limiting the splicing code model to the original prede-

fined 12 000 cassette events means that we may lose many

important splicing variations. To capture additional cassette or

cassette-like splicing variations we develop a pipeline that parses

gene splice graphs constructed by MAJIQ to find additional training

samples in the dataset. This process allowed us to find 2876 more

events changing in at least one tissue in the MGP data.

Next, we process seven splice factor knockdown, knockout and

over-expression RNA-Seq datasets for four key splicing factors

CELF1/2, MBNL1 and RBFOX2 (for details of the datasets, see

Supplementary Table S11). These datasets pose a challenge for any

integrative learning framework since they are low coverage, noisy

and are processed by different labs.

We divided our datasets into 5-folds. 3-folds were used for training,

one was used for validation and the last one was used for testing. We re-

peated the modeling tasks three times, permuting the dataset each time

to produce standard deviation estimates for performance evaluation.
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Fig. 2. Architecture of the Bayesian Neural Network, Deep Neural Network used by (Leung et al., 2014) referred as Leung’s Deep Neural Network, new Deep

Neural Network models for tissue data and for splice factor Knockdown/Overexpression data. Green represents new features added to the existing models
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2.2 Likelihood target function
Motivated by the high noise in microarrays and later applied to

RNA-Seq data, previous works translated the measurements of exon

inclusion levels into a posterior distribution over random variable

qe
c;s for each exon e and condition c with three possible assignments

fqe
c;sg where qe

c;s � 0 8e; c; s and
P

s qe
c;s ¼ 1. For PSI prediction, s

2 fL;M;Hg represent chances of 0 � W < 0:33; 0:33 � W
< 0:66 and 0:66 � W � 1, respectively. For changes in PSI,

s 2 finc; exc;ncg, represent chances of increased inclusion, exclusion

or no change. Consequently, an information theoretic code quality

measure ðQcÞ was used to score the predictions made by the splicing

code. Qc is expressed as the difference in the Kullback–Leibler (KL)

divergence between each target and predicted distribution:

Qc ¼
XE

e¼1

DKLðqe
cjj�qÞ �DKLðqe

cjjpe
cÞ

¼
XE

e¼1

X
s2finc;exc;ncg

qe
c;s log

pe
c;s

�qs

� �
;

(1)

where c is the splicing condition (e.g. CNS), E is the number of

exons and pe
c;s and qe

c;s are the predicted and target probabilities.

Alternatively, Qc can be interpreted as the log-likelihood of the pre-

dictions minus the log-likelihood of a naive predictor based on the

marginal distribution only.

Although useful, this target function suffers from several defi-

ciencies when applied to RNA-Seq data. First, the binning results in

a rudimentary estimation of W and DW. Second, the optimization

only aims to bring pe
c;s and qe

c;s closer, without any relation to order

or meaning. For example, if a cassette event has low inclusion

(qc;s¼L � 1) then predicting pc;s¼M � 1 or pc;s¼H � 1 are just as bad.

Moreover, in cases where an event suffers from insufficient or highly

variable read coverage we may have qc;s¼L � qc;s¼M � qc;s¼H. In

such cases, a model with prediction pc;s¼H � 1 based on sequence

features will be penalized, even though there was no substantial evi-

dence against it.

In order to overcome the above limitations, for every pair of con-

ditions c and c0, we define three target variables as:

TWe;c
¼ E½We;c�

TDWinc;c;c0 ¼ jmaxð�;E½DWc;c0 �Þj

TDWexc;c;c0 ¼ jminð�;E½DWc;c0 �Þj
(2)

where TWe;c
is the expected PSI value of the event e in condition c,

TDWinc;c;c0 captures the dPSI for events with increased inclusion be-

tween condition c and c0 and TDWexc;c;c0 captures the dPSI for events

with increased exclusion between condition c and c0. � is a uniform

random variable with values between 0.01 and 0.03, it is used to

provide very low dPSI values for non-changing events. E½Wc� and E½
DWc;c0 � were computed from the raw RNA-Seq data from condition

c and c0 using MAJIQ (Vaquero-Garcia et al., 2016). Given the

above target variable definitions, we define the new likelihood target

function as:

L ¼
X

c

XE

e

kc;ewc;e

X
t

Lt;c;e

Lt;c;e ¼ t logbt þ ð1� tÞ log ð1� btÞ
wc;e ¼

XE½We;c �þD

W¼E½We;c ��D

PðWÞ

(3)

where t 2 fTWe;c ;TDWinc;c;c0 ;TDWexc;c;c0 g and kc;e ¼ 1 if exon e is quantifi-

able in condition c. The weight wc;e is defined by the probability

mass in an area 6D around the expected Wc as defined by MAJIQ.

This definition carries several benefits. First, it allows us to combine

many different datasets, where the same event may or may not be

quantifiable. Second, even when an event is deemed quantifiable

(kc;e ¼ 1), the model can take into account the confidence of MAJIQ

in the W inferred from the RNA-Seq experiment based on the num-

ber of reads encountered for the event.

2.3 Models
2.3.1 Architecture

The BNN model was described in detail in (Xiong et al., 2011;

Leung et al., 2014). Briefly, the network consists of one hidden layer

with varying number of sigmoidal hidden units. Network weights

are random variables with a Gaussian distribution and a spike and

slab prior which encourages sparsity. Figure 2 shows the network

architecture of the BNN used in this work. Notably, (Leung et al.,

2014) only used the Low, Medium and High PSI variables for the

BNN, which may limit the model’s ability to learn splicing change

between tissues. For example, if we have an alternative cassette

exon e in conditions c and c0 s.t. We;c � 0:1 and We;c0 � 0:3 with

high confidence, the splicing change for exon e between condition c

and c0; DWe;c;c0 � �0:20, is considered significant in the field.

However, if we translate these PSI values to LMH variables, both

We;c and We;c0 will be in the Low category (0 � W < 0:33) and the

model will not be able to learn the splicing change. We therefore

supplemented the LMH variables with UDC variables for inclusion

level going up, down or not changing. This addition made the BNN

targets equivalent to those of the DNN architecture used in that

work, leading to improved performance for the BNN model (see

Supplementary Table S4).

The original DNN model shown in Figure 2 included an autoen-

coder layer with tanh activation and two hidden layers with ReLU

activation units. Additionally tissue type was input as two hot vec-

tors of length equal to the number of tissues in the dataset where

each bit represents a tissue and is active when the network is input

an event comparing that tissue with another. For example, if the tis-

sue order is [brain, heart, kidney, liver and testis] and the current

comparison is brain versus heart, then the two tissue type hot vec-

tors will be [10000] and [01000]. Dropout with probability 0.5 was

used in each layer except the autoencoder layer. The hyperpara-

meters are described in Supplementary Table S12. We experimented

with different types of network architectures with different number

of hidden layers and hidden units, different activation units and

batch normalization. Since none of those architectures performed

significantly better (data not shown) we decided to maintain the ori-

ginal DNN architecture for the purpose of this work.

The new DNN model architecture shown in Figure 2 includes the

following additions. First, the target function has been changed as

described in Section 2. We also added 874 CLIP features to the input

dataset. We maintained the three layer structure of the original DNN

models since we observed that adding additional layers did not im-

prove performance. Dropout with probability 0.5 was applied to the

second and third layers. We noticed that adding L1/L2-regularization

did not have any impact on the model performance and we decided to

exclude it from the final model. We allowed the learning rates of the

three target variables to vary to capture optimal model performance.

As shown in Figure 2, for splice factor modeling, we modified

the tissue type input to include the splice factor knockdown/knock-

out or overexpression data. We used two hot vectors with length

equal to the number of tissues to represent the tissues and two hot

vectors with length equal to the number of splice factors to represent
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the splice factors. Since the datasets for this model were lower cover-

age and more noisy than the previous models, this model was more

sensitive to different hyperparameter values during the tuning phase.

Three hidden layers were found to be optimal and L1-regularization

was performed on the autoencoder layer. Dropout of 0.5 was used

for the second and third hidden layers.

2.3.2 Learning

Following the procedure suggested by (Leung et al., 2014), we

trained the first layer of the model as an autoencoder for dimension-

ality reduction. This procedure proved beneficial for the new models

as well. Next, the set of weights from the first layer were fixed and

the tissue input was added. In the second stage, the two layered feed

forward neural network was trained using SGD with momentum,

and weights were fine tuned by backpropagation. Each sample input

to the network consists of 1357 genomic (and 874 CLIP) features

and has three target variables, TWe;c
, TDWinc;c;c0 and TDWexc;c;c0 . Training

batches are biased to prioritize changing events. Early stopping and

dropout layers prevent the network from overfitting.

Our target variables capture different aspects of splicing change,

one learns the baseline PSI for an event in a condition and the other

two learn the inclusion and exclusion dPSI of that event between condi-

tions. Therefore varying their learning rates improved overall model

performance. The autoencoder network was trained for 300–500

epochs and the feed-forward neural network was trained for 1000–

1500 epochs. Validation data was used for the hyperparameter tuning,

and once the set of hyper parameters were fixed, the final model was

trained with the training and the validation data. 15 models were

trained with the 5-folds and three permutations of the whole datasets.

The performance evaluation is on the concatenated predictions of the

test set from the 5-folds and error bars are computed using the three

permutations. Tensorflow was used to develop the deep model and

GPUs were used to accelerate the training process.

For the BNN model, each tissue pair was trained as an independent

model. Spike and slab prior was used to enforce sparsity and the

weights were assumed to have an Gaussian distribution. 950 samples

from the posterior distribution of weights were generated using 1000

MCMC training iterations with Gibbs sampling. Initial 50 samples

were discarded as burn-in. The final predictions are generated by aver-

aging over the predictions from the 950 sampled weights. 15 models

were trained per tissue comparison with 5-fold cross validation and

three data permutations. After fixing the model hyperparameters, the

validation data was included in the training of the final model.

3 Results

For assessing the prediction accuracy, two types of measures have

been used in this work. The predicted E½bWc;e� is compared to the

estimated E½Wc;e� from the RNA-Seq experiments to compute the

fraction of variance explained (R2). Area under the ROC curve

(AUC) was computed for the prediction of exons that were differ-

entially excluded/included (jDWe;c;c0 j � 0:15) or not changing

(jDWe;c;c0 j � 0:05).

We aim to measure the effect of each new element on the predic-

tion accuracy. As a baseline, Figure 1 shows the effect of new target

function on prediction accuracy when the models are trained on the

original dataset used by (Leung et al., 2014) and no other modeling

additions are made. We see significant improvement (5–22.5%) in

PSI estimation and in splicing target prediction (see Supplementary

Table S6) by the new model (DNN-PSI) when compared to the

DNN (DNN-LMH) and BNN (BNN-UDC) with the old target func-

tion. We note that the results for the previous models are not

directly extracted from (Leung et al., 2014), but rather reconstructed

to produce similar performance since both code and data were not

available in the original publication. Supplementary Figure S2 shows

a scatter-plot comparing the performance (AUC-ROC) reported in

(Leung et al., 2014) on x-axis and our reconstruction on y-axis. This

figure shows that despite different RNA-quantification procedures

and data selection criteria, our reconstruction has comparable per-

formance to the (Leung et al., 2014) model. In fact, our model per-

forms better on the Medium class (0:33 � W < 0:66) of PSI

quantification where generally a higher proportion of differential

splicing events are located. We added inclusion, exclusion and no

change output variables to the Bayesian Neural Network since it im-

proved splicing target prediction performance when compared to

the BNN without these labels [BNN-MLR, Leung et al. (2014); see

Supplementary Table S4]. DNN-LMH was designed according to

the architecture and hyperparameters described in Leung et al.

(2014). Also, since the DNN-LMH does not predict PSI directly, we

computed the E½W� as the weighted average of the {L, M, H} class

prediction probabilities, following (Xiong et al., 2015).

As noted earlier, previous works (Barash et al., 2013; Leung

et al., 2014; Xiong et al., 2015) were performed on a predefined set

of �12 000 alternative cassette exons. This approach of using only

predefined cassette exons can limit the performance of the learned

models, especially those involving deep neural networks which require

large datasets. Thus, we developed a process termed cassettization

(see Section 2.1) to detect and quantify additional cassette and cassette

like alternative exons from RNA-Seq data. Additionally, due to the

limited coverage of (Brawand et al., 2011), we performed subsequent

analysis on the MGP data described in Section 2.1. To assess the effect

of cassettization on performance, we used two identically configured

BNN models and trained one on the original 12 000 cassette exons

(BNN-UDC) while the second (BNN-CAS) got additional training

data with cassettized events not present in the original dataset.

Figure 3a shows that cassettization caused a substantial improvement

in PSI estimation and splicing target prediction (see Supplementary

Table S7) with all other factors being constant.

Our next goal was to measure the effect of CLIP-Seq data on

PSI estimation. Using the same setup described above, we trained

two BNNs identical in every aspect except that one was given the

CLIP data as input features (BNN-CAS-CLIP) and the other

(BNN-CAS) was not. Introducing the CLIP features added a mod-

est improvement to the PSI estimation as seen in Figure 3b. One

possible explanation for the modest improvement could be under-

fitting of BNN-CAS-CLIP since CLIP was introduced as new fea-

tures to the model but the model’s hidden layer size and other

hyperparameters were fixed.

In order to test the combined effect of the new target function,

CLIP data and cassettization on the model’s performance and to

compare BNN and DNN frameworks for the task of PSI estimation,

we trained a BNN model with the old target function, cassettization

and CLIP (BNN-CAS-CLIP) and a DNN model with the new target

function, cassettization and CLIP (DNN-PSI-CAS-CLIP). Figure 3c

and Table 1 summarize the results for the two models for both PSI

estimation and splicing target prediction. Figure 3c shows large per-

formance improvement by the new model for PSI estimation when

compared to the BNN. This improvement carries over to the task of

splicing target prediction for every tissue pair seen in Table 1.

Next, we turned to the new integrative framework that incorpor-

ates knockdown/knockout and over-expression experiments (see

Section 2.3.1 and 2.1). Figure 4a shows that the new integrative

deep model generalizes well for to this new type of KD/KO/OE data,

offering large performance improvement for PSI estimation. One
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exception is the model performance on RBFOX2 KD in C2C12

cells. This may be due to the different experimental condition

(C2C12 cells) or the number of samples, which require specific ad-

justments of the model’s training parameters.

3.1 Regulatory modeling with new splicing codes
In order to demonstrate the usefulness of the new splicing codes for

splicing regulatory analysis we tested how well the model predicts the

effect of splice factor knockdowns on unseen test cases with or
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Tissue Tissue Tissue

Heart Hipp Liver Lung Spleen Thymus Heart Hipp Liver Lung Spleen Thymus Heart Hipp Liver Lung Spleen Thymus

Variance explained in PSI 
BNN-UDC vs. BNN CAS

Variance explained in PSI
BNN-CAS vs. BNN-CAS-CLIP

Variance explained in PSI
BNN-CAS-CLIP vs. DNN-PSI-CAS-CLIP

Fig. 3. (a) Effect of different elements on PSI estimation (% variance explained) (a) Increasing original dataset size by using cassettization (see Section 2.1,

BNN-UDC (blue) versus BNN-CAS (brown). BNN-UDC: Bayesian Neural Network with Up, down, no change target variables and old target function; BNN-CAS:

BNN-UDC with cassettized data) (b) Adding CLIP data (BNN-CAS (brown) versus BNN-CAS-CLIP (purple). BNN-CAS-CLIP: BNN-CAS with CLIP data). (c) Overall

effect of new target function and Deep Neural Network on PSI estimation measured by comparing BNN-CAS-CLIP (purple, BNN with cassettization, CLIP data and

the old target function) and DNN-PSI-CAS-CLIP (green, DNN with cassettization, CLIP data and the new target function)

Table 1. Comparison of splicing target prediction of DNN-PSI-CAS-CLIP versus BNN-CAS-CLIP in terms of AUC of Inclusion versus not-

Inclusion, Exclusion versus not-Exclusion and Change versus not-Change

Tissue pair Model Inclusion Exclusion No change

Heart-Hipp BNN-CAS-CLIP 92.97 6 0.12 88.22 6 0.16 92.26 6 0.06

DNN-PSI-CAS-CLIP 95.70 6 0.06 94.09 6 0.34 94.72 6 0.06

Heart-Liver BNN-CAS-CLIP 78.09 6 0.49 89.38 6 0.24 85.13 6 0.15

DNN-PSI-CAS-CLIP 92.15 6 0.60 96.26 6 0.18 94.11 6 0.26

Heart-Lung BNN-CAS-CLIP 82.52 6 0.67 89.77 6 0.18 87.94 6 0.18

DNN-PSI-CAS-CLIP 92.15 6 0.80 95.42 6 0.30 93.60 6 0.26

Heart-Spleen BNN-CAS-CLIP 79.37 6 0.21 91.03 6 0.13 87.45 6 0.08

DNN-PSI-CAS-CLIP 93.18 6 0.22 96.98 6 0.47 95.22 6 0.33

Heart-Thymus BNN-CAS-CLIP 82.01 6 0.64 86.20 6 0.24 85.91 6 0.23

DNN-PSI-CAS-CLIP 92.76 6 0.36 95.83 6 0.15 94.06 6 0.32

Hipp-Liver BNN-CAS-CLIP 83.33 6 0.08 93.16 6 0.02 90.32 6 0.07

DNN-PSI-CAS-CLIP 94.36 6 0.41 97.33 6 0.24 95.60 6 0.07

Hipp-Lung BNN-CAS-CLIP 84.19 6 0.23 92.71 6 0.05 90.61 6 0.04

DNN-PSI-CAS-CLIP 93.32 6 0.33 95.92 6 0.11 94.47 6 0.16

Hipp-Spleen BNN-CAS-CLIP 83.84 6 0.34 93.36 6 0.06 90.75 6 0.10

DNN-PSI-CAS-CLIP 93.77 6 0.09 96.86 6 0.13 95.51 6 0.10

Hipp-Thymus BNN-CAS-CLIP 83.10 6 0.36 88.63 6 0.15 87.83 6 0.18

DNN-PSI-CAS-CLIP 91.77 6 0.27 95.64 6 0.10 94.46 6 0.05

Liver-Lung BNN-CAS-CLIP 84.60 6 0.36 81.73 6 0.37 83.07 6 0.42

DNN-PSI-CAS-CLIP 98.14 6 0.54 94.23 6 0.15 95.71 6 0.28

Liver-Spleen BNN-CAS-CLIP 85.41 6 0.40 87.66 6 0.15 87.59 6 0.21

DNN-PSI-CAS-CLIP 97.01 6 0.61 94.46 6 0.29 96.04 6 0.63

Liver-Thymus BNN-CAS-CLIP 84.25 6 1.10 74.23 6 0.03 77.03 6 0.14

DNN-PSI-CAS-CLIP 96.80 6 0.76 93.27 6 0.38 93.44 6 0.20

Lung-Spleen BNN-CAS-CLIP 79.82 6 0.32 80.71 6 0.49 80.71 6 0.09

DNN-PSI-CAS-CLIP 96.83 6 0.75 96.03 6 1.13 96.91 6 0.39

Lung-Thymus BNN-CAS-CLIP 79.97 6 0.41 78.41 6 0.44 79.57 6 0.30

DNN-PSI-CAS-CLIP 94.98 6 1.05 96.51 6 0.47 95.91 6 0.16

Spleen-Thymus BNN-CAS-CLIP 70.55 6 1.31 70.73 6 1.14 70.99 6 0.76

DNN-PSI-CAS-CLIP 97.91 6 0.47 91.86 6 1.23 92.21 6 0.85

Note: Each table entry represents AUC 6 standard deviation, where AUC is computed by concatenating predictions from all the 5 test sets and the standard

deviations are calculated by permuting the dataset three times. Numbers in bold indicate statistically significant performance improvement for the DNN-PSI-

CAS-CLIP model over the BNN-CAS-CLIP model.
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without the available KD data. It is important to note that since the

new models predict dPSI directly, we were able to evaluate dPSI be-

tween conditions such as WT versus KD. In contrast, there is no direct

way to extract dPSI from previous splicing code target functions. We

attempted to extract dPSI from the old DNN model by computing the

E½W� as the weighted average of the {L, M, H} class prediction proba-

bilities for the two conditions and subtracting them but this dPSI esti-

mate had extremely poor correlation with the true dPSI (data not

shown). Figure 4b (left) shows the correlation between the experimen-

tal (RNA-Seq) overexpression dPSI and the new model’s predictions

in CELF1 heart OE experiment. Good correlation (R¼0.41) indicates

that the model learns the effects of overexpression of the splice factor

well. Figure 4b (right) shows the correlation plot when the model per-

forms in silico knockdown of CELF by zeroing out the features

related to CELF versus the experimental CELF1 overexpression dPSI.

Negative correlation (R ¼ �0:35) even without KD or overexpression

data demonstrates how the splicing codes can now accurately predict

changes in dPSI with in silico knockdowns (for similar plots with cor-

relations ranging from 0.13 to 0.6 for the other KO/KD/OE datasets,

see Supplementary Fig. S1).

Finally, we wished to see if we could gain mechanistic insight

into the regulation of physiologically relevant targets in these

systems. Specifically, exons correctly predicted to have reduced

inclusion upon CELF1 over-expression but are not affected by

CELF-related features (Fig. 5a, left) are of particular interest in

terms of alternative mechanisms of regulation. Two such cases in

key genes are shown in Figure 5, for the myofibrillar protein Nrap

(Pedrotti et al., 2015) in muscle (top) and for the beta microexon in

the key myogenic transcription factor Mef2d (Singh et al., 2014) in

heart (bottom). Quantification using RNA-Seq data from these con-

texts confirmed the accuracy of the model in predicting CELF1 regu-

lation in both cases (Fig. 5a, compare bars 1 and 4 from the left).

However, in silico removal of CELF-related features did not lead to

significant changes in exon inclusion in either case (Fig. 5a, compare

bars 1 and 2 from the left), suggesting indirect regulation could be

causing repression upon CELF1 over-expression. In line with this,

no CELF1 CLIP peaks were found upstream of these regulated

exons (Fig. 5b) where CELF proteins have been found to repress

exon inclusion (Ajith et al., 2016). Strikingly, in silico removal of

features related to the RBFOX family recapitulated the predicted

splicing change upon CELF1 overexpression (Fig. 5a, compare bars

1 and 3 from the left). Analysis of RBFOX2 knockdown data from

myotubes (Singh et al., 2014) (Fig. 5a, bar 5 from the left) or

RBFOX1 muscle-specific knockout mice (Pedrotti et al., 2015) sup-

ports that the RBFOX family typically enhances inclusion of these

exons. Additionally, a number of RBFOX binding motifs (GCAUG)

and CLIP peaks are located just downstream of these exons

(Fig. 5b), where these proteins enhance inclusion (Singh et al.,

2014). These observations motivated additional study in human T

cells where we found CELF2 is a potent repressor of RBFOX2

(Gazzara et al., 2017), suggesting that a similar indirect mechanism

may be at play in murine muscle and heart where CELF overexpres-

sion represses RBFOX proteins to drive splicing changes in these

and other targets (Fig. 5c).

4 Discussion

In this study, we offered a new formulation for the task of learning

condition specific splicing codes from a compendium of RNA fea-

tures. We defined a new target function which enabled us to avoid

binning exon inclusion levels into discrete categories of low, me-

dium and high (LMH). Similarly, for predicting differential splic-

ing the new target function predicts dPSI directly rather than

categories of up, down or no change (UDC) in inclusion levels.

The new target function allowed us to gain significant accuracy

boost for predicting PSI, tissue specific variations of it, and splice

factors target prediction (dPSI). Moreover, the new target function

allowed us to incorporate samples with missing quantification val-

ues or with different degrees of quantification accuracy, leveraging

recent advances in RNA-Seq quantification (Vaquero-Garcia

et al., 2016).

We also showed how new sources of data for splice factors bind-

ing affinity (CLIP-Seq) and regulation (KD/OE experiments) can be

integrated for modeling splicing outcome. Such data by itself is

problematic for splicing model training given its noisy nature and

limited amount of splice factor targets. Here, however, we combine

it with many other relevant datasets, leveraging transfer learning to

improve overall model performance. Thus, the gain offered by this

work is not only measured by the significant improvement in predic-

tion accuracy, but also by the ability to combine many different
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Fig. 4. (a) Predicting the effect of splice factors. (a) Improvement in PSI prediction (% variance explained) for conditions involving splice factor KD/KO/OE, compar-

ing BNN-UDC model with old target function (purple) to the new model (green). (b) Correlation scatter plots between predicted (y-axis) and measured (x-axis)
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of CELF. (R: Pearson’s correlation coefficient, n ¼ 2134 in both scatter plots)
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sources of RNA regulatory data which is now massively produced

by many labs and large projects such as ENCODE.

A known issue with deep model applications for biomedical stud-

ies is their often cryptic nature. However, we were able to demon-

strate here how the integrative deep models we developed can be used

to gain biological insights for splicing regulation. This included high

accuracy of splice factor target prediction with or without available

KD/KO experiments, identifying putative novel regulatory inter-

dependence between splice factors, and the affected targets. We be-

lieve the usage of splicing codes demonstrated here represents only a

small portion of the potential of this new class of models. Future

work includes predicting non-cassette splicing variations, robust auto-

mated extraction of biological hypotheses from code models, and scal-

ing up to create regulatory codes for many conditions and datasets.
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