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Summary
Functional assessment of genomic variants provides a promising approach to systematically examine the potential pathogenicity of var-

iants independent of associated clinical data. However, making such conclusions requires validation with appropriate clinical findings.

To this end, here, we use variant calls from exome data and BRCA1-related cancer diagnoses from electronic health records to demon-

strate an association between published laboratory-based functional designations of BRCA1 variants and BRCA1-related cancer diagno-

ses in an unselected cohort of patient-participants. These findings validate and support further exploration of functional assay data to

better understand the pathogenicity of rare variants. This information may be valuable in the context of healthy population genomic

screening, where many rare, potentially pathogenic variants may not have sufficient associated clinical data to inform their interpreta-

tion directly.
Introduction

In genomic medicine, DNA-based genetic testing has to

date been used largely as a diagnostic tool for individual

patients or families to search for explanatory variants in

genes known or believed to be related to a phenotype

or disease of interest. This practice has led to the character-

ization of many pathogenic variants in well-studied

genes as well as to the discovery of novel gene-disease

associations.1–4

More recently, large-scale population-based sequencing

efforts have revealed that all individuals, regardless of dis-

ease status, harbor some degree of rare coding variation

genome-wide, including in genes known to be associated

with heritable disease.5–7 These rare variants may increase

the risk of disease8,9 and may provide valuable insights

into the assessment of risk if their pathogenicity can be

established.

One setting in which such rare variants could be used is

in healthy population genomic screening, which uses gene

panels, exome sequencing (ES), or genome sequencing to

identify potentially pathogenic variants in genes associ-

ated with disease across unselected cohorts without prior

reference to symptomatic or asymptomatic status.10–12

The goal of such efforts is to identify predicted pathogenic

variants before symptoms arise and as early in life as

possible, so that individuals and families can take steps

to reduce the likelihood of future disease. Hindering the

broad adoption of such an approach, however, are diffi-
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culties in assessing the pathogenicity of rare variants in

such healthy populations.

Healthy population-based screening and individual

indication-based diagnostic testing are inherently

different: healthy screening is done at scale and in the

absence of a phenotype, with the goal of identifying dis-

ease risk rather than determining the specific genetic cause

of a known condition.13–15 In a screening setting, potential

variant pathogenicity is typically assessed using any and all

available clinical and research data for a given variant, with

clinical data from diagnostic testing often providing the

strongest evidence of potential pathogenicity. However,

many pathogenic variants are truly rare and will only

ever be seen in one or a few individual cases or fam-

ilies,16–18 making it unlikely that informative clinical

data from diagnostic testing will be available in such in-

stances. Instead, assessing the pathogenicity of these vari-

ants will necessarily rely on predictions from computa-

tional, comparative, or functional analyses.19–21

Findlay et al.22 have used such a functional assay to

generate (via saturation genome editing [SGE]) and then

assess nearly all of the single-nucleotide variants (SNVs;

hereafter, variants) endogenously in 13 functionally crit-

ical exons of the BRCA1 gene (MIM: 113705) that harbor

all of the known pathogenic missense mutations docu-

mented in ClinVar for BRCA1-related cancers (MIM:

604370, 614320). This functional screen was performed

in a human haploid cell line in which the homology-

directed repair pathway, which includes BRCA1, had
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been deemed essential,23 making loss of function (LOF)

of BRCA1—the relevant mechanism of disease in hu-

mans24—testable by quantifying cell-growth patterns.22

Resulting functional scores across all variants tested by Fin-

dlay et al. were bimodally distributed, and each variant was

previously classified as ‘‘functional’’ (i.e., functionally

normal), ‘‘non-functional’’ (here, designated throughout

as ‘‘functionally abnormal; LOF,’’ as recommended by

Brnich et al.25), or ‘‘intermediate’’ (could not be classified

as functionally normal or abnormal; limited to a small

number of variants) based on the score distribution.22

Variant classification from the SGE functional assay

showed high concordance with pathogenicity designa-

tions for the subset of variants archived in the ClinVar

database.1

While, in general, this concordance validates SGE assay

classification applied in a phenotype-driven, diagnostic

setting, assessing the predicted impact of variants in an un-

selected cohort of individuals from the general population

has not yet been reported. Here, we assess the population-

level association between the functionally abnormal; LOF

variants identified by the SGE functional assay and

BRCA1-related cancer phenotypes in the DiscovEHR

cohort, an unselected group of patient-participants from

the Geisinger MyCode Community Health Initiative (My-

Code), for which both ES and extensive, longitudinal clin-

ical data are available for analysis.26–30
Subjects and methods

Cohort construction
Participants included in this study are from the Geisinger MyCode

Community Health Initiative, a population genomics, discovery

research project and biobank that began in 2007 and continues

to enroll participants from the Geisinger Health System indepen-

dent of disease status.26 For this article, data from 92,453 MyCode

participants with ES from the DiscovEHR collaboration with the

Regeneron Genetics Center (RGC) were available at the time of

initial analysis (fall 2019). SamplepreparationandESmethodology

are described in detail elsewhere.29 Genomic variant frequency in-

formation for this cohort can be accessed from the DiscovEHR

browser (see Web resources). The research outlined, including

MyCodeparticipation,was approvedby theGeisinger institutional

review board (IRB 2006-0258 and 2019-0739). Informed consent

was obtained from all of the patient-participants.
Bioinformatics
The BRCA1 gene region (BRCA1: chr17:43044294-43125482 on

hg38) was extracted from genomic variant call files (gVCFs), which

store exome-wide variant and reference sequencing information

for all sites, for each of the 92,453MyCode participants in the Dis-

covEHR cohort. Following the method developed by the ExAC

Consortium for variant calling and filtering of exomes at scale,31

the pool of BRCA1 gVCFs was split into
ffiffiffi

n
p

groups (304) and

each group of gVCF files was joint genotyped using GATK 3.5

haplotype caller.32,33 The output of this process is a VCF, contain-

ing both SNV and insertion and deletion (indel) calls, as well as

associated call-quality data, for each sample. Next, GATK 3.5
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variant quality score recalibration (VQSR) was used to filter SNVs

for quality. Briefly, VQSR is a machine learning algorithm that as-

signs a well-calibrated probability (VQSLOD) to each variant call

using high-quality sets of known variants (e.g., HapMap 3,

Omni 2.5M SNP chip array) as training and truth resources. A

target sensitivity of 99.6% was used to set the VQSLOD score

threshold, and all of the variants with scores at or above this

threshold were marked with a PASS flag for downstream

filtering.31

The VCFs were transferred to a relational database in which

genomic coordinates of each variant were converted to build37 us-

ing LiftOver,34 and predicted functional consequence, gnomAD

database frequency, and ClinVar information were added as anno-

tations using ANNOVAR.35 SGE functional scores from data pub-

lished by Findlay et al.22 were also added as annotations.

To create the analysis dataset, the annotated VCFs were filtered

at the site level using the PASS flag from the VQSR analysis and at

the sample level using depth (DP)> 10 and genotype quality (GQ)

> 20 and allele frequency (AF)> 0.3 as quality thresholds.31,36 This

combination of site- and sample-level quality filtering removed

208,651 of 1,568,771 SNV calls (186,855 from the DP/GQ filter,

and 21,796 from the AF filter).
Phenotyping
All of theMyCode participants in the DiscovEHR cohort were phe-

notyped from a centralized data warehouse, which holds struc-

tured data abstracted from the Geisinger EHR (electronic health re-

cord; Epic) and ancillary clinical data systems. We extracted data

from this warehouse to phenotype participants for gender, age,

and BRCA1 syndromic cancers (breast, ovarian, pancreatic, and

prostate) based on diagnosis codes and the Geisinger tumor regis-

try. BRCA1-associated peritoneal cancer was included with ovarian

cancer for subsequent analysis. Clinicians (A.B., J.M.S., and N.B.)

reviewed the criteria for selecting diagnosis codes, which was

based on the ‘‘term set’’ approach described by Williams et al.37

The same group of clinicians reviewed all of the individual diag-

nosis codes that were included in the phenotypes. We have

included the list of International Classification of Diseases, Tenth

Revision (ICD-10) diagnosis and tumor registry codes used for the

phenotype as a supplement to this article (Data S1). Phenotyping

did not include information from outside the Geisinger Health

System unless clinicians specifically entered it into the Geisinger

EHR. For participants with a relevant diagnosis code, age at diag-

nosis was determined. All of the relevant phenotypic records

were combined with relevant genomic data. The final sample

size from this analysis, combining clinical and sequencing data,

is 92,453 patient-participants and 1,359,057 BRCA1 SNVs; when

limited to those participants aged 18 years and older, the study

cohort consists of 91,659 patient-participants. This adult cohort

is referred to as the ‘‘DiscovEHR cohort’’ in the text.
Statistical analysis
To assess potential associations between clinical phenotypes and

genomic variant SGE functional screening scores,22 the combined

dataset of phenotypic and genomic data was exported to R for sta-

tistical analysis.38 Variants classified as intermediate in the SGE

screen (n ¼ 4 unique variants, observed 9 times in this cohort)

were not considered in this analysis due to small sample size and

lack of a clear pathogenicity prediction. To assess the association

between BRCA1-related cancer diagnosis and SGE functional score

assignment, a c2 test was performed comparing the proportion of
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Table 1. Characteristics of DiscovEHR cohort, overall and by SGE-classified BRCA1 variant status

Participants
Functionally
abnormal; LOF Functionally normal pa

All participants (n, %) 91,659 100.0 29 <0.01 3,513 3.8

Age at analysis, y (mean, SD) 62 17.8 55.6 17.6 62.2 17.5 0.04

Age at analysis, y (n, %)

<20 117 0.1 0 0.0 4 0.1 0.70

20–29 3,425 3.7 2 6.9 123 3.5

30–39 9,260 10.1 5 17.2 331 9.4

40–49 10,579 11.5 4 13.8 424 12.1

50–59 14,654 16.0 5 17.2 547 15.6

60–69 19,274 21.0 5 17.2 758 21.6

70–79 17,995 19.6 6 20.7 712 20.3

R80 16,355 17.8 2 6.9 614 17.5

Sex (n, %)

Female 55,637 60.7 19 65.5 2,087 59.4 0.60

Male 36,011 39.3 10 34.5 1,426 40.6

Unknown 11 0 0 0.0 0 0.0

Race (n, %)

White 89,466 97.6 29 100.0 3,351 95.4 0.90

Black or African American 1,519 1.7 0 0.0 130 3.7

Asian 274 0.3 0 0.0 18 0.5

Unknown 175 0.2 0 0.0 8 0.2

Native Hawaiian or other Pacific Islander 122 0.1 0 0.0 3 0.1

American Indian or Alaskan Native 103 0.1 0 0.0 3 0.1

Ethnicity (n, %)

Not Hispanic or Latino 88,427 96.5 26 89.7 3,410 97.1 0.05

Unknown 1,728 1.9 2 6.9 57 1.6

Hispanic or Latino 1,504 1.6 1 3.4 46 1.3

ap values compare predicted functionally abnormal; LOF to predicted functionally normal groups using a t test for continuous variables and a c2 test (with a Yates
continuity correction) for categorical variables.
BRCA1-related cancer diagnoses for DiscovEHR participants with

predicted deleterious BRCA1 variants to that of DiscovEHR partic-

ipants with predicted non-deleterious BRCA1 variants,22 as well as

those without an SGE-screened variant. This analysis was repeated

for breast and/or ovarian cancer, limited to female participants.

To evaluate the association between presence of deleterious

variants and cancer diagnosis in the context of diagnosis age, we

constructed Kaplan-Meier (KM) time-to-event curves (where

event ¼ BRCA1-related cancer diagnosis) for participants stratified

by the presence of predicted deleterious or non-deleterious BRCA1

variants, or no SGE-screened variant. Participants entered into

observation at the earliest of (1) their first clinical encounter in

the Geisinger Health System, (2) the date of onset of the earliest

problem list item in the Geisinger EHR, or (3) the earliest excision

date of a BRCA1-related tumor as recorded in the Geisinger EHR.

We constructed cumulative risk curves for any BRCA1-related can-

cer for all participants with predicted deleterious BRCA1 variants

and for all participants with predicted non-deleterious BRCA1
Hum
variants. We compared these cumulative risk curves to that of a

control group consisting of participants without predicted delete-

rious or non-deleterious variants using log rank tests. This analysis

was repeated for breast and/or ovarian cancer, limited to female

participants. To assess the possible misclassification of any poten-

tial non-deleterious variants, we created and compared variant-

specific time-to-event curves for all non-deleterious variants.
Variant rarity
For many conditions, pathogenic variants are typically rare at the

population level. To define rarity in this context, we calculated the

highest allowable frequency based on the known prevalence,

genetic heterogeneity, allelic heterogeneity, and penetrance of

BRCA1-related cancer.12–15 To qualify as ‘‘rare,’’ we calculated a

maximum allowable frequency (separate of founder mutations)

of 0.00023, or present up to 41 times in this cohort (n ¼ 2 3

�90,000 alleles), based on the reported prevalence of inherited
an Genetics and Genomics Advances 3, 100086, April 14, 2022 3



Figure 1. Frequencies of functionally ab-
normal;LOF and functionally normal
BRCA1 alleles in the DiscovEHR cohort
Along the x axis, the histogram displays var-
iants, grouped by SGE classification and
binned by number of occurrences in the
cohort. The height of the bar corresponds
to the percentage of variants, within each
classification, that belong to each frequency
bin. In accordance with pathogenicity ex-
pectations, variants over 40 occurrences are
captured in a single bin.
breast and ovarian cancers (1/330),16,18 estimated genetic hetero-

geneity (66%),16,19 allelic heterogeneity in European populations

(as the best match for the MyCode cohort) (0.13),20 and reported

penetrance for women by age 80 (48%).21
Results

Table 1 displays the characteristics of the adult DiscovEHR

cohort used for this analysis (n ¼ 91,659). Within this

cohort, we observed 2,711 unique variants across the

entire BRCA1 locus, 129 (4.8%) of which were screened

by Findlay et al. with the SGE functional assay.22 Of the

129 variants thus informative for the present study, 16

had been determined previously to be functionally

abnormal; LOF, and 109 had been determined to be

functionally normal (Data S2). The remaining 4 could

not be classified (‘‘intermediate’’ in Findlay et al.22) and

were not considered further in this study. As shown in Ta-

ble 1, 29 participants were found to carry 1 of the 16

BRCA1 variants predicted to be functionally abnormal;

LOF, while 3,534 were found to carry 1 of the 109 BRCA1

variants predicted to be functionally normal.

While only a subset of rare variants in the genome are

expected to be pathogenic, pathogenic variants should,

in the absence of positive selection, meet rarity expecta-

tions based on the underlying genetic architecture of the

associated disease and the known disease prevalence in

the reference population.39 Based on this, we expect

pathogenic BRCA1 variants to have allele frequencies

below �0.00023 (thus, an incidence of <41 copies

in this cohort) based on upper-bound estimates of

BRCA1-related cancer prevalence, genetic heterogeneity,

and allelic heterogeneity reported in the literature

for European ancestry (see ‘‘Variant rarity’’ above for

details).

As shown in Figure 1, high proportions of both predicted

functionally abnormal; LOF (11/16, 68.8%) and function-

ally normal (49/109, 45.0%) variants are singletons in our

cohort. No predicted functionally abnormal; LOF variants

are seen at counts above the calculated pathogenicity

threshold of 41 copies, although a small proportion of pre-
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dicted functionally normal variants are

seen above this threshold. Allele fre-

quencies for the predicted functionally
abnormal; LOF variants identified in the cohort are also

found below this threshold in gnomAD, a similarly sized,

ancestrally matched cohort.40

Table 2 shows the proportion of participants with

BRCA1-related cancer diagnoses for the cohort, stratified

by SGE classification22 as carriers of predicted functionally

abnormal; LOF or functionally normal variants and by sex.

(Participant characteristics of the DiscovEHR cohort

further stratified by cancer diagnosis can be found in Table

S1.) For patients harboring a variant predicted to be either

functionally abnormal; LOF or functionally normal by the

SGE assay,22 the frequency of cancer diagnosis was

compared for (1) all BRCA1-related cancer diagnoses

(pancreatic, prostate, breast, and ovarian),24,41 (2) breast

and/or ovarian cancer diagnoses, and (3) no cancer

diagnosis.

If variants predicted to be functionally abnormal; LOF

are in fact pathogenic, then we expect a higher proportion

of cancer diagnoses among participants with predicted

functionally abnormal; LOF variants compared to partici-

pants without such variants. As shown in Table 2, 20.7%

of participants carrying predicted functionally abnormal;

LOF variants had a BRCA1-related cancer diagnosis avail-

able in the Geisinger EHR, compared to 7.6% of partici-

pants carrying variants predicted to be functionally

normal (p ¼ 0.022). When limiting analysis to breast

and/or ovarian cancer diagnoses in females, 26.3% of pa-

tients with predicted functionally abnormal; LOF

variants had a diagnosis during follow-up compared to

6.4% of those with predicted functionally normal variants

(p¼ 0.00243) (Table 2). (Two of the 1,426males with a pre-

dicted functionally normal variant also had a breast cancer

diagnosis; statistical analysis was not performed due to the

small number of such cases.)

At the population level, BRCA1-related cancer risk

and resulting diagnoses increase with age.42,43 When

comparing cumulative risk calculated using time-to-event

analysis, participants with a predicted functionally

abnormal; LOF variant were found to have an increased cu-

mulative risk of diagnosis of any BRCA1-related cancer

when compared to participants without any SGE-classified



Table 2. Associations between SGE-classified variant status and BRCA1-related cancer diagnosis in the DiscovEHR cohort

All carriers

BRCA1-related cancera

None Any Breast and/or ovarian only

N % N % pb N % pb

All

Functionally abnormal; LOF variants 29 23 79.3 6 20.7 0.022 5 17.2 0.001

Functionally normal variants 3,513 3,247 92.4 266 7.6 135 3.8

Females

Functionally abnormal; LOF variants 19 14 73.7 5 26.3 0.008 5 26.3 0.002

Functionally normal variants 2,087 1,993 92.6 154 7.4 133 6.4

Males

Functionally abnormal; LOF variants 10 9 90.0 1 10.0 NA 0 0.0 NA

Functionally normal variants 1,426 1,314 92.1 112 7.9 2 0.1

aBRCA1-related cancer diagnoses include breast, prostate, ovarian, and pancreatic malignancies.
bp values compare the proportion of predicted functionally abnormal; LOF and predicted functionally normal variant carriers with any cancer diagnosis or a breast/
ovarian cancer diagnosis, respectively, to those with no BRCA1-related cancer diagnosis using a c2 test with a Yates continuity correction. Statistical analysis was
not performed for males due to the small number of participants.
variants (p ¼ 0.01) (Figure 2A). This association was even

stronger when limited to considering only breast and

ovarian cancer in female participants (p ¼ 0.001)

(Figure 2C). In contrast, there was no difference in the cu-

mulative risk of diagnosis for patients carrying variants

predicted to be functionally normal when compared to

those without any SGE-classified variants (p ¼ 0.4 and

p ¼ 0.6 for all BRCA1 cancers and breast and/or ovarian

cancers in females, respectively) (Figures 2B and 2D). Look-

ing at cumulative risk by decade for all relevant cancers or

specifically for breast and/or ovarian cancers in females,

the cumulative risk of cancer for those with predicted func-

tionally abnormal; LOF variants diverges from those

without any SGE-classified variants as early as the 30- to

39-year-old age group in our cohort (Figures 2A and 2C).

These findings suggest that, in the aggregate, BRCA1 var-

iants that are predicted to be functionally abnormal; LOF

are associated with increased risk of BRCA1-related cancer

diagnosis, irrespective of participant age. However, it is

not possible to assess the association between specific var-

iants individually and BRCA1-related cancer diagnosis due

to the range of different variants detected (Figure 1).

Several of the patients with variants designated as func-

tionally abnormal; LOF who developed cancer had clin-

ical features consistent with a pathogenic BRCA1 variant.

One patient had bilateral breast cancer (one of which was

of triple negative receptor status), one had an early-onset,

triple negative breast cancer, one had an early-onset pros-

tate cancer, and two had high-grade serous ovarian cancer.

Reviews of family cancer history among those with vari-

ants designated as functionally abnormal; LOF showed

that the majority had a family history of breast cancer

(16/29), and several had a family history of other

BRCA1-associated cancers. Given the small numbers,

however, we cannot determine whether a family history
Hum
of BRCA1-associated cancers was more common in these

individuals.

Because there is a substantial degree of relatedness

within the MyCode population,27 we assessed whether

the cancer cases detected in this study represented geneti-

cally independent events, as related individuals share ge-

netic variation that is known to contribute to phenotype

penetrance and expressivity. Among the 29 participants

carrying variants predicted to be functionally abnormal;

LOF (Table 1), 5 were found to be genetically related at

the first- or second-degree level. However, none of the six

cancer cases with predicted functionally abnormal; LOF

variants was found to be related, indicating that known

relatedness is not responsible for the association we

observe between SGE classification and cancer diagnosis.

Overall, variants at four different positions were detected

in the six unrelated cancer cases, further suggesting that

a single variant position is not driving this association.
Discussion

As proactive screening of healthy populations for genetic

risk of disease becomes more common, methods to deter-

mine variant pathogenicity at scale become essential, as

it is unlikely, given the relative rarity of most pathogenic

variants for many conditions, that there will be sufficient

clinical evidence for the majority of variants discovered

in large cohorts.20 Functional assays, such as the SGE assay

developed and used by Findlay et al.,22 are independent of

clinical data and represent a potentially valuable source of

information for variant interpretation at scale, provided

that the nature of the functional assay can be validated

where possible with the available clinical data.44 Here, we

report such a validation, demonstrating an association
an Genetics and Genomics Advances 3, 100086, April 14, 2022 5
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Figure 2. Time-to-event analysis
Age at BRCA1-related cancer diagnosis for participants with variants predicted to be functionally abnormal; LOF or functionally normal
by results of the SGE assay, compared to participants with non-SGE classified variants.
(A and B) All BRCA1-related cancers for all participants, for functionally abnormal; LOF (p ¼ 0.01) and functionally normal (p ¼ 0.4)
variants, respectively.
(C and D) Only breast and ovarian cancer diagnoses in female participants, for functionally abnormal; LOF (p ¼ 0.001) and functionally
normal (p ¼ 0.6) variants, respectively. The p values are from log rank tests for differences between the 2 time-to-event curves in each
panel.
between patients harboring BRCA1 variants predicted to be

either functionally normal or functionally abnormal; LOF

and BRCA1-related cancer diagnoses in a large, unselected

cohort of 91,659 patient-participants.

Providing support for increased cancer risk among par-

ticipants carrying predicted functionally abnormal; LOF

variants, we found an overabundance of BRCA1-related

cancer cases in such participants when compared to those

with variants predicted by the SGE assay to be functionally

normal (Table 2). In addition, the cumulative risk of
6 Human Genetics and Genomics Advances 3, 100086, April 14, 202
BRCA1-related cancer diagnosis was higher for participants

carrying predicted functionally abnormal; LOF variants

compared to participants without an SGE-classified variant

(Figure 2). We note that the associations reported here can

be accounted for entirely by breast or ovarian cancer in fe-

males. There are no significant associations involving

pancreatic or prostate cancer (data not shown).

Limited to breast or ovarian cancer for females, cumula-

tive risk of diagnosis by age 80 in our cohort for participants

carryingpredicted functionally abnormal; LOFvariantswas
2



72.0%, >4-fold greater than the risk for participants

without an SGE-classified variant (18.3%). These cumula-

tive risks are in line with recent estimates from an indepen-

dent prospective cohort of breast and ovarian cancer risk in

>2,000 BRCA1 pathogenic variant carriers.42

Clinically validated functional assessments of genes

with association to heritable disease provide a promising

opportunity to assess potential variant pathogenicity and

to communicate disease risk for individuals harboring

variants when little or no clinical evidence of disease is

available to predict pathogenicity. The SGE screen22 iden-

tified >400 functionally abnormal; LOF missense variants

in the BRCA1 gene, a class of variants in which computa-

tional and comparative predictions often fall short for

the inference and prediction of potential or likely pathoge-

nicity.45,46 Highlighting this potential, 7 of the 16 variants

classified as predicted functionally abnormal; LOF in our

cohort are difficult to interpret for disease risk without

this functional assessment because they are either absent

from ClinVar (1 variant) or carry a ClinVar assertion of

variant of unknown significance or conflicting pathoge-

nicity (6 variants). Furthermore, these 7 variants are

located in 6 different screened exons, emphasizing the

importance of the breadth of assay when performing

variant interpretation at scale.

The results of the present study provide initial clinical ev-

idence of thepotential for leveraging functional data for use

in variant interpretation. This conclusion notwith-

standing, this study has a number of limitations. While

the DiscovEHR cohort analyzed here is relatively large by

current standards (n¼ 91,659), only a small number of rele-

vant variants were detected across both functionally

abnormal; LOF and functionally normal classifications

(125 variants in 3,568 participants). Given the comprehen-

sive EHR data associatedwith the cohort, this was sufficient

to validate the approach in aggregate across the BRCA1

gene, but, as anticipated formany rare variants, it was insuf-

ficient to assess the validity of any single variant prediction,

which would ultimately be of much greater potential

value.44,47 Such a capability will be necessary in time to

optimally leverage functional data at the level of individual

patients.

This limitationwill be evenmore striking for populations

that are far more heterogeneous than the relatively homo-

geneous Geisinger cohort studied here.48–50 The average

age of functionally abnormal; LOF variant carriers is eight

years younger than those counterparts with functionally

normal variants and nearly seven years younger than the

average age of all participants in the DiscovEHR cohort.

This age imbalance suggests that there could be a survivor-

ship bias in theDiscovEHR cohort. Although a limitation in

this study, this potential bias highlights the potential for

improved clinical and personal utility of sequencing earlier

in the life course. Note also that age at analysis did not

include deceased patients, who were not available for the

DiscovEHR cohort. Full understanding of the impact of

rare variants on inherited disease, such as BRCA1-related
Hum
cancers explored here, will require extensive data sharing

and collaboration from laboratories and populations

around the globe to reach the full potential of population-

based screening for precision health.
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