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Abstract

Many multifactorial biologic effects, particularly in the context of complex human diseases, are still poorly understood. At
the same time, the systematic acquisition of multivariate data has become increasingly easy. The use of such data to analyze
and model complex phenotypes, however, remains a challenge. Here, a new analytic approach is described, termed
coreferentiality, together with an appropriate statistical test. Coreferentiality is the indirect relation of two variables of
functional interest in respect to whether they parallel each other in their respective relatedness to multivariate reference
data, which can be informative for a complex effect or phenotype. It is shown that the power of coreferentiality testing is
comparable to multiple regression analysis, sufficient even when reference data are informative only to a relatively small
extent of 2.5%, and clearly exceeding the power of simple bivariate correlation testing. Thus, coreferentiality testing uses
the increased power of multivariate analysis, however, in order to address a more straightforward interpretable bivariate
relatedness. Systematic application of this approach could substantially improve the analysis and modeling of complex
phenotypes, particularly in the context of human study where addressing functional hypotheses by direct experimentation
is often difficult.
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Introduction

Biological and biomedical research has undergone an unprec-

edented evolution of technologies in recent years, to a substantial

part due to techniques that yield highly multivariate phenotype

data such as microarray-based RNA expression analysis. Tech-

niques to acquire proteomic, serologic, cytometric and other data

show similar tendencies toward high-throughput methods and

therefore high-level multiparametricity. Currently used methods of

data analysis, however, are far from using the full information

depth of such data. This may be best exemplified by genome-wide

genetic association studies (GWAS), which are generally unable to

use the largest part of their theoretically available information due

to excessive multiple testing that leads to high false-positive (type 1)

error rates. Correction of resulting p-values for this multiple testing

unavoidably obscures results that do not reach extremely high

significance levels. The same problem principally appears in the

analysis of multiparametric phenotypic data, where individual

variables are in most cases also tested one by one, e.g., in mRNA

expression analysis with the aim to find the most over- or

underexpressed genes.

It is classic textbook knowledge that genuinely multivariate data

analysis has the principal capacity to avoid the error rate inflation

and loss of power caused by such multiple testing (see e.g. [1],

chapter 5.1). It does that by testing a hypothesis with only one

statistical test that is designed on the basis of a model that

integrates multiple variables taken from the same units of

observation. Classic multivariate approaches such as multivariate

regression, canonical correlation or principal component analysis,

however, do not offer practically straightforward solutions for

many problems. Therefore, specific tayloring of multivariate

statistical tests for particular types of hypotheses can be useful to

make multivariate approaches easier applicable as well as to

improve the interpretability of results. This paper proposes such a

novel statistical test for a specific hypothesis type.

The principal strategy of multivariate statistical testing is to

bring multiple variables into a predefined context that represents a

hypothesis of interest. A classic way to do this is to relate two

separate sets of multivariate data to each other in a multivariate

regression model. This allows to study whether and to what extent

one set of variables can be explained by the other. However, this

question does not always represent hypotheses of interest, which

are not necessarily well represented by a multivariate dependency

model. Particularly when incompletely characterized complex

systems are explored where measurable variables are mainly

defined by practical accessibility and direct causal effects are

largely unknown, it is usually inadequate and overambitious to

model explicit dependency structures. This is the case in many

biological and biomedical research contexts. In such contexts,

useful hypotheses can sometimes still be naturally formulated as
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relations between already characterized specific effects on a

complex phenotype as a whole that is characterized by multiple

other variables. The statistical problem to solve here is not the

explanation of these other variables and their dependency

structure, but rather to assess the relation between the specific

effect variables. A criterion to test this could be whether two test

variables parallel or resemble each other in their relatedness to an

independently obtained multivariate data set that represents a

context phenotype. Since it is neither necessary nor intended to

model causal effects, a most adequate test statistic should be

independent of any dependency modeling and therefore resemble

the strategy of classic bivariate correlation rather than regression

analysis. The author is not aware of any existing statistical criterion

or test of this type. Here, an appropriate criterion is proposed

together with a way to test it statistically: coreferentiality.

Avoiding any direct testing of variables obtained as part of a

large multiparametric data set, the coreferentiality approach

rather uses them as reference data to ask the question: will two

test variables separately obtained for the same sample parallel each

other in their respective relations to the reference data ? This

indirect relatedness of the two test variables indeed represents a

hypothesis of the same type as it underlies the testing of their

simple bivariate correlation. However, instead of the correlation

hypothesis ‘the higher (or alternatively, lower) one variable is, the

higher is also the other variable’, the coreferentiality hypothesis

states that ‘the more one variable correlates (in one or the other

sense) with a respective reference variable Yi, part of the reference

data set Y, the more also the other variable does that’. This is

equivalent to both variables parallelly referring, i.e., co-referring to

the reference data. Coreferentiality is expected if and only if at

least a subset of the reference data is related to a hypothesized

effect that also relates the test variables to each other. The

directedness of this effect is in principle irrelevant since correlation

is invariant to whether and how underlying causalities are

directed. If the reference data are phenotypic, coreferentiality will

reflect the functional relatedness of the test variables in respect to

this multivariate phenotype, naturally including possibly complex

bidirectional dependencies. Coreferentiality is absent (a) when the

test variables are not related, as well as (b) when an effect that

relates them exists but does not affect the reference data. The latter

implies that correlated variables are not necessarily coreferential.

Neither are coreferential variables necessarily correlated: it is

possible that they parallelly relate to the reference data without

showing a direct correlation. This is in fact expected in a condition

of particular interest that is not straightforward to test conven-

tionally: when the two test variables represent effects with

unrelated origin but related functionality toward a phenotype.

Taken together, coreferentiality appears as an interesting test

criterion, particularly to explore complex phenotypes character-

ized by multivariate data under functionally defined hypotheses

that can be formulated as a relation of two variables. The practical

requirement that has motivated this work occurred when the

author and others studied relations of cytokines, regulatory T-cells

and specific disease-associated antibodies in respect to multivariate

autoantibody profiles in patients with Systemic Lupus Erythema-

tosus and their unaffected relatives [2]. This study, to be published

in conjuction with this paper, may further exemplify how

coreferentiality can be practically used in a concrete research

context.

In the following, corefentiality will be mathematically defined, a

statistical test for it described and its power of detection and

specificity assessed for diverse conditions in terms of sample size,

number and informativity of the reference variables as well as the

direct correlation between the test variables.

Results

Coreferentiality is defined as the parallellity of correlations of

two variables X1 and X2 with a set of reference variables Y = {Y1,

Y2, …, Yk} drawn from the same sample, and X1 and X2 are

coreferential to the degree that corr X1,Yið Þ correlates with

corr X2,Yið Þ. Accordingly, X1 and X2 can be called truly

coreferential if the coefficient of coreferentiality between X1

and X2 in respect to Y, RC X1,X2DYð Þ~corr

corr X1,Y1ð Þ
corr X1,Y2ð Þ
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;, differs from its expected value RC0 occurring if

corr X1,Yið Þ and corr X2,Yið Þ are uncorrelated. Thus, coreferenti-

ality can be shown by rejecting the null hypothesis H0 that

RC X1,X2DYð Þ~RC0. RC0 is not necessarily equal to zero since (a)

correlations between X1 and X2 and (b) structures within the Y
data can influence it. Particularly for correlated X1 and X2, RC0

markedly differs from zero (see below). H0 can be tested by the

probability that an observed RC or more extreme value occurs in a

(null) distribution of RC0, i.e., RC values expected in the absence of

non-random correlations between X and Y variables while

corr X1,X2ð Þ and corr Yi,Yj

� �
are preserved. Such a null

distribution can be generated by random permutations of true

data, following the adaptation of the classic randomization theory

[3,4] for linear correlations [5]. In particular, a null distribution

with the properties to test H0 can be generated from RC values

calculated from random permutations of the true X1, X2 and Y
data where X1 and X2 are parallelly reshuffled against the Y data

left in place, a procedure that is invariant against both

corr X1,X2ð Þ and corr Yi,Yj

� �
. An empiric p-value can then be

determined by the proportion of permutations giving the observed

or a more extreme absolute value of RC, corresponding to a two-

tailed test that was shown to closely follow the results of standard

testing of Pearson’s R [5].

Accordingly, in order to test the significance of coreferentiality,

1000 permutations were here generated from a respective data set

by parallelly reshuffling X1 and X2 against the Y data, and a

corresponding empiric p was calculated by the proportion of

permutations that yielded an RC value with its absolute exceeding

the absolute RC of the true data. Using this test, power and

robustness of coreferentiality testing were assessed in simulated

coreferential data with defined properties. First, X1 and X2 were

simulated as two uncorrelated (R,0.01) sets of Gaussian

distributed random numbers N(0,10) with sizes N varying between

50 and 500. Then, reference data Y1, Y2, …, Yk consisting of

k = 130 variables were generated with sizes equal to X1 and X2 and

values assigned to them by linear combinations of X1, X2 and

Gaussian-distributed noise: Yi~2d i{ kz1ð Þ=2
kz1ð Þ=2

� �
X1zX2ð Þz

1{4d i{ kz1ð Þ=2j j
kz1ð Þ=2

� �� �
E, with E being random numbers (Gaussian

noise) distributed N(0,10) as X1 and X2. In this formula, Y data

were designed so that X1 and X2 contributed to them with equal

weights, these weights being defined by their average absolute

degree of determination d, corresponding to relative degrees of

determination varying among the Yi along a linear gradient from

22d to +2d.

First, the power to detect coreferentiality was addressed.

Particularly, 100 simulations were generated for each of the 25

combinations of five different sample sizes and five different values

of d. Sample sizes included N = 50, N = 100, N = 200, N = 300 and

N = 500; d values were 0, 0.01, 0.025, 0.05 and 0.1, corresponding

to average degrees of determination from 1–10% and d = 0 as a

negative control simulation where the reference data were
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unrelated to X1 and X2. For each individual data simulation, the

coefficient of coreferentiality was determined and tested by the

described permutation-based significance test. Fig. 1 shows the

resulting median coreferentiality as well as the power of detection

(in terms of the percentage of significant tests at the level p,0.05)

for each condition. It can be seen that coreferentiality coefficients

steadily rose with both sample size and d. An average

determination of the reference data of 2.5% by each test variable

was sufficient to detect the simulated coreferentiality in 500

samples with .95% power. For 5% and 10% average determi-

nations, the same power was already reached with 100 and 50

samples, respectively. However, 1% average determination was

not sufficient to detect coreferentiality in the simulated conditions,

with power values indistinguishable from d = 0.

The d = 0 condition, i.e., negative control simulations with no

coreferentiality, furthermore served to assess the specificity of the

test. The conventionally used 5% significance level, applied here as

well, predicts that an expected rate of false-positive tests of 5%.

The average percentage of tests reaching this significance level in

the applied test in the five conditions tested with d = 0 was 4.8%,

thus demonstrating satisfactory specificity and no detectable p-

value inflation.

It appeared of interest to compare the detected power of the

coreferentiality test with related statistical methods even if they

address different questions. Therefore, 100 data simulations were

generated under the same conditions as previously, to assess the

power of classic multiple regression relating the test variables X to

Y. Since multiple regression analysis with all 130 reference

variables was not always feasible due to collinearity, principal

components were derived from all Yi in each simulation and linear

multiple regression analysis performed between each X and either

10 or 50 principal components. The power of both calculations in

terms of the frequency of tests significant at the 5% level, for the

five d levels mentioned and N = 200, is depicted in Fig. 2 and

compared with the power of coreferentiality testing. It turned out

that both methods had comparable power, and that coreferenti-

ality was even slightly more powerful. Finally, to compare these

results with a classic two-variable test, 100 further simulations were

generated where X2 was directly partially dependent on X1 with a

degree of determination defined by d: X2 = dX1+(12d)E, and

simple bivariate linear regression analysis performed for each

simulation. As expected, this test was clearly less powerful (Fig. 2,

black line), requiring an about 4-fold higher d to reach the power

of the multivariate tests.

Apart from d and sample size, also the number of reference

variables k was expected to influence the power of coreferentiality

testing. Therefore, further sets of data simulations (100 per

condition as throughout this description) were generated with k

ranging from 40 to 260, combined with different d values and

either N = 100 or N = 200, and tested for coreferentiality. The

results, depicted in Fig. 3, show that the power indeed markedly

increased with k, over long ranges aproximately linearly. They

furthermore indicate that particularly in conditions with limited

power such as d = 0.025, substantially higher power can be

reached with identical d and N, solely by increasing k. However,

this is only the case when the reference variables remain equally

informative. In contrast, adding noninformative or biased

reference variables can substantially reduce the power: when

130 unrelated reference variables were added to 130 informative

ones, the power of detecting coreferentiality was clearly lower than

when only the 130 informative variables were used (54% versus

75% power with d = 0.025, N = 300). An even more serious loss of

power (24% power for d = 0.025, N = 300) was observed when X1

was itself included in the reference data as one of the Y variables,

Figure 1. Coreferentiality coefficients and power of coreferentiality detection with uncorrelated test variables X1 and X2. For each
possible combination of various sample sizes and reference data dependency degrees d (see insert in panel B), 100 data sets were simulated and
tested with the permutation test described. Median coreferentiality coefficients RC. B. Power of detection using the permutation test described
(percentage of test p,0.05).
doi:10.1371/journal.pone.0033990.g001
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generating a correlation outlier in the reference data. Including

both X1 and X2 as Y variables even abolished all power to detect

coreferentiality in this condition.

All coreferentiality tests until here were performed with

uncorrelated X1 and X2. How does the coreferentiality test

perform when they are correlated ? In simulations with X1 and

Figure 2. Comparison of the statistical power to detect coreferentiality, dependency in multiple regression, and classic correlation.
The power of each method was tested in 100 respectively simulated data sets, all with a sample size of 200 and different reference data dependency
degrees d. Multiple regression was tested for a given test variable X in dependency on the scores of either 10 or 50 PCA factors derived from the 130
reference variables. Bivariate correlation was tested for simulations with X2 depending on X1 with the degree d, and tested by simple linear regression.
doi:10.1371/journal.pone.0033990.g002

Figure 3. Power of coreferentiality detection in respect to the number of reference variables used. 100 respective data sets were
simulated for different sample sizes N, different reference data dependency degrees d (see insert) and either 40, 70, 100, 130 or 260 reference
variables, and tested for coreferentiality with the permutation test described. The occasional deviation from monotonous behavior in the curve
representing d = 0.025, N = 100 is due to stochasticity.
doi:10.1371/journal.pone.0033990.g003
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X2 correlated by defined correlation coefficients R up to 0.4,

shown in Fig. 4, RC values in fact defaulted not to 0 but to R.

However, the permutation test was robust against these correla-

tions as expected with d = 0, i.e., when the reference data were

unrelated to X1 and X2, showing no more significant tests than the

expected rate of false-positive ones (5.5%, 5.0%, 4.5% and 6.0%

significant tests for R = 0.1, 0.2, 0.3 and 0.4, respectively). With

d.0, the detection power was slightly increasing with R until a

plateau that depended on both d and N. However, another

question rose with X1 and X2 being correlated: coreferentiality can

occur not only when both X1 and X2 are related to Y, but also

when only X1 is related to Y but X2 sufficiently correlated with X1

(or vice versa). To find out the probability of such ‘bystander’

coreferentiality, further sets of data simulations were generated

and tested under the same conditions as above, but with only X1

and not X2 influencing Y. Results are shown in Fig. 5. It can be

seen that ‘bystander’ coreferentiality is principally much lower in

terms of RC than that observed when both X affect Y under equal

d and N. For d = 0.025, there was furthermore no obvious

deviation of the percentage of significant tests from the expected

frequency of false-positive tests, so that the effect of ‘bystander’

coreferentiality in this low-effect condition appeared marginal.

Only d values of 0.05 and higher lead to substantial deviations

from RC = R (Fig. 5A) and to relevant coreferentiality detection in

terms of significant tests (Fig. 5B), actually up to 100% under

d = 0.1 and R = 0.4.

Discussion

The coreferentiality approach described here, aiming to test

whether two test variables relate to each other in respect to

multivariate reference data, is basically new. The author is not

aware of publications describing any method that would follow a

Figure 4. Power of coreferentiality detection in respect to the
direct correlation R between the two test variables. 100
respective data sets were simulated for different sample sizes N,
different reference data dependency degrees d (see insert) and with
defined correlations between X1 and X2, ranging from 0 to 0.4. All
simulations were tested for coreferentiality with the permutation test
described, and for each included condition the power of detection at
the 5% significance level was determined.
doi:10.1371/journal.pone.0033990.g004

Figure 5. RC and power of coreferentiality detection with correlated test variables, and reference variables dependent on either one
or both. For indicated dependency degrees d, sample sizes N and correlations R between the test variables, 100 data sets were simulated
respectively and tested with the permutation test described (lines with closed symbols according to the insert in panel A). The same was then
repeated in the condition that reference data depended on only one test variable (lines with open symbols). A. Median coreferentiality coefficients RC.
B. Power of detection using the permutation test described (percentage of test p,0.05).
doi:10.1371/journal.pone.0033990.g005
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similar approach. It could be shown that coreferentiality is robustly

testable by an adapted permutation test, with a remarkable power

comparable to multiple regression analysis and conserved

specificity. Coreferentiality was not detected above the expected

type-1 error rate in any condition where the test variables were

unrelated either to each other or to the reference data. Addition of

noninformative data or correlation outliers reduced the power, but

did not inflate false-positive test results. Coreferentiality occurring

due to direct correlation between test variables when only one was

related to the reference data (‘bystander’ coreferentiality) was

largely restricted to situations with strong dependency of the

reference data, so that coreferentiality testing can indeed be said to

detect primarily the indirect relatedness of two variables in respect

to the reference data but not their direct relations. In this context it

may be noted that it is possible to test and distinguish ‘bystander’

coreferentiality in empirical data, by assessing the probability of

reaching/exceeding the test result of the true data with artificial

secondary test variables simulated to be correlated only with the

respective first test variable (applied in our accompanying

paper [2]).

It remains to discuss the general applicability and usefulness of

the coreferentiality approach. Currently, highly multivariate

phenotype data as e.g. microarray-based RNA expression profiles

are usually analyzed by two major approaches [6]. The first

approach is to test the single readout variables separately, followed

by an identification of the most informative ones. This approach is

not only hypothesis-free but also bears the intrinsic problem of

elevated type-1 error rates and according loss of power due to

corrections for multiple testing, as it was discussed above. The

second frequently used approach is to analyze the data by

multivariate classification methods, usually clustering algorithms.

This approach, also applied on top of the first one, is equally

hypothesis-free and only allows to interpret results when the

applied algorithm spontaneously leads to an interpretable

classification under a simple criterion that has a high impact on

the overall structure of the data. Since such classification criteria

must be categorical, they are usually case-control or similar simple

empiric discriminations, but do not represent functional hypoth-

eses. Another multivariate approach that was previously followed

by the author and others [7–17] is principal component analysis

(PCA). This classic method does not use discrete classification as

clustering does, but works strictly quantitatively and also allows an

interpretation of how included parameters are combined in the

‘‘factor loads’’. Representing a maximal proportion of the total

data variance in a lower-dimensional subspace, however, PCA is

genuinely hypothesis-free as well and designed to fit the phenotype

data as they are, but not to explore them according to functional

hypotheses.

Taken together, all these hypothesis-free approaches are neither

designed nor well-adapted to address functionally defined

hypotheses in presence of highly multivariate phenotype data.

Also new methods of multivariate phenotype analysis [18,19] aim

at extended screening rather than at addressing functionality.

Functionality, in turn, is most straightforward to translate into a

formally testable hypothesis by a regression model. Regression-

based multivariate methods, however, which include classic

multivariate linear regression analysis as well as alternative

approaches like partial least squares (PLS) regression [20], are

not frequently used to analyze multivariate phenotype data in

biomedicine. The likely reason is that all regression-based methods

are principally designed to test dependency, which in the

multivariate case extends to a modeled best-fitting dependency

structure between two sets of variables. With large empiric

phenotypic datasets resulting from high-throughput methods,

however, which are not obtained following specific prior

expectations or hypotheses but rather defined by their mere

practical accessibility, such multivariate dependency modeling is in

most cases obviously inadequate. More adequate and promising in

many instances would be an exploratory approach that does not

depend on modeling a dependency structure of phenotype data

but that is still capable of addressing functionally defined

hypotheses. Such an approach is coreferentiality: to test whether

hypothesis-defined variables share their relatedness to empiric

multivariate phenotype data.

It may be argued here that an analogous approach of testing the

relatedness among multiple independent X variables could

theoretically also be undertaken in the frame of a regression

model, and that its performance should be assessed both with and

without modeling a phenotype dependency structure. However,

this is not easily possible since multivariate regression analysis as it

exists provides no adequate and testable criterion for the

relatedness of two X variables in respect to a set of phenotypic

Y variables. The only criterion that addresses relations between X

variables in a linear regression model is collinearity, also called

multicollinearity [21]. Collinearity, however, is not defined as

relatedness, but rather as the capacity of X variables to replace

each other in the explanation of Y, and is practically used to detect

and avoid technical problems such as overfitting and matrix

singularity, but not for data analysis. Particularly, (multi)collinear-

ity is not formulated as a criterion for statistical testing. Therefore,

although it is superficially similar, it has a quite different character

than coreferentiality, and is in its existing definition clearly

inadequate to address the same question.

Another method that may be discussed as a possible alternative

is canonical correlation analysis. Supplementing a multivariate

linear regression model with an analysis for canonical variates,

canonical correlation provides an interpretation in terms of

multiple independently testable orthogonal levels of relatedness.

Accordingly, a multivariate regression model with two X variables,

analogous to the situation where coreferentiality is tested, can

contain either one or two significant canonical correlations. If it

contains only one that has an impact of both X1 and X2, this

points indeed to their coreferentiality. However, also canonical

correlation analysis does not provide a formal criterion to test this.

The significance of the canonical variates alone is not adequate: if

both X are coreferential, their effects on the phenotypes Y will be

represented in one canonical correlation, but this does not

explicitly prevent a second one from being significant, which

could represent a separate non-parallel side effect of one of the two

X variables.

PLS regression seeks to identify ‘‘latent’’ variables in analogy to

canonical variates by an alternative method [20], but is principally

dedicated to the same goal of explaining a set of dependent Y

variables as all regression-based methods. In summary, canonical

correlation or similar methods could possibly be extended to test

for an analog of coreferentiality. To the knowledge of the author,

however, there is no explicit test for the parallellity between X

variables that could be directly compared.

It can finally be stated that the non-regression-based corefer-

entiality approach proposed here appears better adapted than

regression-based methods to address functional hypotheses in

respect to empiric multivariate phenotype data in an exploratory

manner. It furthermore has the merit of methodic parsimony in

avoiding to unnecessarily model a dependency structure, but

rather addressing indirect relatedness without any model assump-

tion. Like classic bivariate direct correlation, this naturally includes

the possibility of bidirectional effects. Accordingly, the nature of

the tested effect itself is an undirected two-variable relation, which

Coreferentiality
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is likely more adequate to represent at least some useful hypotheses

than are unidirectional dependencies as they are modeled in

regression-based approaches. Particular hypotheses of this type in

the context of a complex immune phenotype, particularly the role

of a naturally bidirectional cytokine-receptor interaction, have

largely motivated the development of the coreferentiality method.

The corresponding research study is explicitly described in our

accompanying paper [2], which may further illustrate the practical

use and possible perspectives of the coreferentiality approach.

Using this criterion, we could not only confirm a functional

relatedness of effect pairs (e.g., specific autoantibodies and T-cell

regulation), but also plausibly model the effect of a specific

cytokine-receptor interaction in relation to broad-scale antibody

profiles that served as reference data. The same approach can

easily be applied to many other questions, including other types of

multiparametric data. Among them, particularly data derived

from mRNA expression arrays contain a potential information

depth that should be at least comparable to that of the antibody

profiles that we have used, and appear most promising to serve as

reference data to study similar functionally defined bivariate

hypotheses.

Another perspective of the described approach may be the

functional interpretation of genetic variation particularly in human

studies. In our accompanying publication [2], we were able to

model also genetic effects and to bring them into a plausible

functional context. This suggests that the wealth of available

information on genetic variation particularly in human popula-

tions can indeed be directly used to interpret and model

functionality. More systematically applied, this may open a new

perspective of physiologic modeling, particularly in contexts that

are not accessible to focused experimentation. It could also pave a

new way to systematic subphenotype analysis, which has become

more difficult in human genetic studies since traditional linkage

analysis was replaced by genome-wide association. Other than

genetic subphenotype analysis, however, the coreferentiality

approach does not study the genetics of predefined subphenotypes,

but constructs them following functional hypotheses using genetic

information, which may be a promising alternative to investigate

complex phenotypes.

Materials and Methods

Data simulation and analysis was performed on a Macintosh

computer with the software IgorPro (WaveMetrics), with partic-

ular procedures programmed for this purpose.
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