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Supplementary Fig. 1. Bacterial community and functional composition in association with environmental variables. a-b Principal coordinate

(PCo) analysis with environmental fitting (envfit) showing significant association of a amplicon-based and b metagenome-based bacterial

community composition with soil pH as well as other biotic and abiotic variables. Note a and b are the same as Fig. 1b and Fig. 1c with

additional results of envfit. c-e PCo analysis and envfit showing significant association of soil pH as well as other biotic and abiotic variables

with several groups of functional genes: c Kyoto Encyclopedia of Genes and Genomes Ontology (KO), d antibiotic resistance genes (ARG), and e

carbohydrate-active enzymes (CAZy). MAP: mean annual precipitation; MAT: mean annual temperature; TC: total carbon; TN: total nitrogen;

TP: total phosphorus; ACa: available calcium; AMg: available magnesium; AFe: available iron; AK: available potassium; C_N: carbon nitrogen



ratio; C_P: carbon phosphorus ratio; N_P: nitrogen phosphorus ratio. n = 36 samples. The numerical data is available in Supplementary Data 1.

Source data are provided as a Source Data file.



Supplementary Fig. 2. Genomic traits along a pH gradient. Bacterial average genome size and protein counts per genome are calculated by

annotating 16S rRNA gene sequence to Genome Taxonomy Database (GTDB). a Bacterial average genome size decreased as pH changed from

acidic to neutral. b Bacterial protein counts per genome significantly and positively correlate with average genome size. Linear regression

model with two-sided test was used for the statistical analysis, and adjusted R-squared was used. n = 36 samples. The grey area around the

smooth line indicates the 95% confidence interval. Source data are provided as a Source Data file.



Supplementary Fig. 3. Associations of relative abundance of top 10 bacterial genera with soil pH. The average genome size for each genus is

searched from GTDB, NCBI or published literature 49. Linear regression model with two-sided test was used for the statistical analysis, and

adjusted R-squared was used. n = 36 samples. The grey area around the smooth line indicates the 95% confidence interval. Source data are

provided as a Source Data file.



Supplementary Fig. 4. Re-analysis of Bahram et al 2018 showing associations of bacterial average genome size with soil pH. a Soil pH

negatively correlated with average genome size as detected by shotgun metagenome using MicrobeCensus pipeline. b Soil pH negatively

correlated with average genome size as detected by 16S rRNA amplicon referencing Genome Taxonomy Database (GTDB). Linear regression

model with two-sided test was used for the statistical analysis, and adjusted R-squared was used. n = 134 samples. The grey area around the

smooth line indicates the 95% confidence interval. Source data are provided as a Source Data file.



Supplementary Fig. 5. Relationships between bacterial average genome size and GC content (GC%). a-b Metagenome-based analysis a

showed that bacterial average genome size was negatively correlated with GC%, while the 16S rRNA-GTDB method b found that bacterial

average genome size was not significantly correlated with GC%. Linear regression model with two-sided test was used for the statistical

analysis, and adjusted R-squared was used. n = 36 samples. The grey area around the smooth line indicates the 95% confidence interval.

Source data are provided as a Source Data file.



Supplementary Fig. 6. Relationships between bacterial average genome size and GC content (GC%). a-b Re-analysis on the global data of

Bahram et al 2018 showed that ametagenome-based bacterial average genome size was negatively correlated with GC%, whereas b 16S rRNA-

GTDB based bacterial average genome size was significantly positively correlated with GC%. Linear regression model with two-sided test was

used for the statistical analysis, and adjusted R-squared was used. n = 134 samples. The grey area around the smooth line indicates the 95%

confidence interval. Source data are provided as a Source Data file.



Supplementary Fig. 7. Contrasting distribution patterns for Shannon diversities of bacterial taxonomy and function along pH gradient.

Diversities shown are measured by Shannon’s index (H’), and diversities measured by richness (S) are provided in Fig. 3. a Bacterial taxonomic

diversity (H’.16S) increased as soil pH changed from acid to neutral. Bacterial operational taxonomic units (OTUs) are detected by 16S rRNA

gene amplicon metabarcoding sequencing. b Bacterial functional diversity (H’.KO) decreased as pH changed from acid to neutral. Bacterial

functions are determined from the shotgun metagenome, as annotated by Kyoto Encyclopedia of Genes and Genomes (KEGG) Ontology (KO). c



Bacterial diversity of antibiotic resistance genes (H’.ARG) decreased as pH changed from acid to neutral. Bacterial antibiotic resistance genes

are detected based on shotgun metagenome annotated by the Resfam database. d Bacterial diversity of carbohydrate-active enzymes

(H’.Cazy) genes decreased as pH changed from acid to neutral. Bacterial carbohydrate-active enzymes genes are detected based on shotgun

metagenome annotated by database of CAZy. e Bacterial taxonomic diversity (H’.16S) negatively correlated with functional gene diversity

(H’.KO). f-h Bacterial average genome size (AGS) positively correlated with functional diversities as measured by g H’.ARG and h H’.Cazy, and

not f H’.KO. Linear regression model with two-sided test was used for the statistical analysis, and adjusted R-squared was used. n = 36 samples.

The grey area around the smooth line indicates the 95% confidence interval. Source data are provided as a Source Data file.



Supplementary Fig. 8. Bacterial taxonomic and functional compositions in association with biotic and abiotic variables. The heatmap in left-

bottom triangle showing the intercorrelations among microbial genomic traits, microbial diversity indices, plant, soil and geographical



variables as detected by Spearman’s correlation analysis, with a color gradient (red to blue) and box size denoting Spearman’s correlation

coefficients (rho). The significance of Spearman’s correlation is denoted by * P < 0.05, ** P < 0.01, *** P < 0.001. The curved lines in the top-

right triangle show the association of bacterial taxonomic (the right-top dot) and functional (the right-bottom dot) compositions with biotic

and abiotic variables, as detected by Mantel tests. The width of curved lines corresponds to the r statistic for Mantel test, and the color of

curved lines denotes the statistical significance. AGS: average genome size; ACN: average 16S rRNA gene copy number; Doubling time: minimal

doubling time; MAP: mean annual precipitation; MAT: mean annual temperature; TC: total carbon; TN: total nitrogen; TP: total phosphorus;

ACa: available calcium; AMg: available magnesium; AFe: available iron; AK: available potassium; C_N: carbon nitrogen ratio; C_P: carbon

phosphorus ratio; N_P: nitrogen phosphorus ratio. Linear regression model with two-sided test was used for the statistical analysis, and

adjusted R-squared was used. n = 36 samples. Source data are provided as a Source Data file.



Supplementary Fig. 9. Bacterial taxonomic diversity based on metagenomics data, as measured by a richness (S) and b Shannon’s index (H’),

did not change significantly as soil pH changed from acidic to neutral. The bacterial taxonomic diversity was detected from metagenome using

Kaiju annotation. Linear regression model with two-sided test was used for the statistical analysis, and adjusted R-squared was used. n = 36

samples. Source data are provided as a Source Data file.



Supplementary Fig. 10. Heatmap showing significant, positive (blue), and negative (red) Spearman’s correlations (rho) between environmental

factors (left) and indices of bacterial diversities (bottom), as measured by Shannon’s index (H’) and richness (S). Diversities of bacterial

community were both detected by 16S rRNA amplicon (16S) and shotgun metagenome (mgm) annotated by Kaiju method. Diversities of

bacterial functions were detected by shotgun metagenome annotated by Kyoto Encyclopedia of Genes and Genomes Ontology (KO), antibiotic

resistance genes (ARG), and carbohydrate-active enzymes (CAZy). The values of significant Spearman’s correlations (rho) are labeled on the

box. Non-significant correlations are colored white. n = 36 samples. Source data are provided as a Source Data file.



Supplementary Fig. 11. Bacterial average genome size negatively correlated with a richness (S.16S) and b Shannon diversity (H’.16S) of

bacterial community. Linear regression model with two-sided test was used for the statistical analysis, and adjusted R-squared was used. n =

36 samples. The grey area around the smooth line indicates the 95% confidence interval. Source data are provided as a Source Data file.



Supplementary Fig. 12. Heatmap showing significant, positive (blue), and negative (red) Spearman’s correlations (rho) between environmental

variables (left) and metagenome annotated by a Clusters of Orthologous Genes (COGs) and b Kyoto Encyclopedia of Genes and Genomes

Ontology (KO). Annotation information of the 11,065 KOs in the horizontal axis is provided in the source data. Non-significant correlations are

colored white. n = 36 samples. Source data are provided as a Source Data file.



Supplementary Fig. 13. Genes of glycan biosynthesis and metabolism and carbohydrate-active enzymes (CAZy) associated with biotic and

abiotic variables. a Heatmap showing positive (blue), and negative (red) Spearman’s correlations (rho) between environmental variables (left)

and relative abundance of genes of glycan biosynthesis and metabolism. b Heatmap showing positive (blue), and negative (red) Spearman’s

correlations (rho) between environmental variables (left) and relative abundance of genes of carbohydrate-active enzymes. Non-significant

correlations are colored white. n = 36 samples. Source data are provided as a Source Data file.





Supplementary Fig. 14. Genes of cell motility, signal transduction and cellular community associated with biotic and abiotic variables. a

Heatmap showing positive (blue), and negative (red) Spearman’s correlations (rho) between environmental variables (left) and relative

abundance of genes of cell motility. b Heatmap showing positive (blue), and negative (red) Spearman’s correlations (rho) between

environmental variables (left) and relative abundance of genes of signal transduction (tow component system). c Heatmap showing positive

(blue), and negative (red) Spearman’s correlations (rho) between environmental variables (left) and relative abundance of genes of cellular

community. n = 36 samples. Source data are provided as a Source Data file.





Supplementary Fig. 15. Genes of metabolism of terpenoids and polyketides, xenobiotics biodegradation and metabolism and antibiotic

resistance genes associated with biotic and abiotic variables. a Heatmap showing positive (blue), and negative (red) Spearman’s correlations

(rho) between environmental variables (left) and relative abundance of genes of metabolism of terpenoids and polyketides. b Heatmap

showing positive (blue), and negative (red) Spearman’s correlations (rho) between environmental variables (left) and relative abundance of

genes of xenobiotics biodegradation and metabolism. c Heatmap showing positive (blue), and negative (red) Spearman’s correlations (rho)

between environmental variables (left) and relative abundance of genes of antibiotic resistance. Non-significant correlations are colored white.

n = 36 samples. Source data are provided as a Source Data file.



Supplementary Fig. 16. Prevailing of positive associations between pH and genes of energy metabolism and membrane transport. a

Heatmap showing positive (blue), and negative (red) Spearman’s correlations (rho) between environmental variables (left) and relative



abundance of genes of energy metabolism. b Heatmap showing positive (blue), and negative (red) Spearman’s correlations (rho) between

environmental variables (left) and relative abundance of genes of membrane transport. n = 36 samples. Source data are provided as a Source

Data file.



Supplementary Fig. 17. Heatmap showing positive (blue), and negative (red) Spearman’s correlations (rho) between environmental variables

(left) and relative abundance of genes involved in translation function. Non-significant correlations are colored white. n = 36 samples. Source

data are provided as a Source Data file.



Supplementary Fig. 18. Genes involving biogeochemical cycle associated with environmental variables. a Six sulfur cycle genes positively

correlate with soil pH, as compared to that two sulfur cycle genes negatively correlate with soil pH. b Five Fe cycle genes positively correlate

with soil pH, and five iron transport genes negatively correlate with soil pH. Source data are provided as a Source Data file.



Supplementary Table 1 A list of publications on the relationship between pH and microbial diversity

Reference Sampling Scale pH range Curve Method Note

1 98 samples; Cross biome North and South America 3.5 -8.5 Peak in neutral 16S-tRFLP

2 88 sites (subset of 1) North and South America 3.5-8.5 Peak in neutral 16S-454seq

3 13 samples; Wetland Carolina coastal plain 3.5 - 8.5 Peak in neutral 16S-clone-Seq

4 7 samples Qiantang River 6.0-8.0 Increase 16S-454seq

5 20 samples Tibetan forest 4.5-6.1 Increase 18S-454seq Fungi

6 110 sites China forests ? No pH ~ diversity

7 17 sediments 15 Tibetan alkaline lake 7-10.5 Decrease 16S-454seq

8 16 samples? 200m scale 4-8 Increase 16S-454seq

9 36 samples Soils from a pH gradient with

lime addition in agricultural

region of southern Brazil

4-6 Increase 16S-Illumina Simpson

10 30 samples Altitude gradient (10 sites) 3.5-7 Increase 18S-Illumina Fungi

11 18 samples Tibetan alkaline soils 7.3-9.3 Increase 16S-Illumina

12 3.5-9.5 16S-Illumina Stochasticity

13 Stochasticity

14 no pH ~ diversity

15 6 chronosequences (high

productivity system)

Meta-analysis 3.5-9 Peak in neutral 16S-Illumina

16 Dilution Stochasticity

17 Global, 237 locations 16S-Illumina,

Shotgun?

Network, pH cluster

18 179 sites, six ecosystem types, Scotland - Increase 16S-454seq Stoichiometry, TC, N:P, C:N,



Scotland C:P

19 Global metanalysis 3.1-10.4

20 France, 2173 soils 3.7-9.2 No pH ~ diversity

21 16 samples across biome Desert, tundra, prairie, boreal,

temperate and tropical forests

4.12-9.95 Increase 16S-Shotgun

22 Guangdong, 18 samples Three subtropical forests with

two soil layers

3.6-4.5 Negative 16S- Illumina H’ negative pH

23 Zhejiang, China, 95 samples Bulk soil and rizhospheric soil

in forests with different age

3.9-6.5 Increase 16S- Illumina

24 16s pH with different phyla

25 China Meta-analysis, 47 forests and

105 samples

4.19-8.74 Increase 16S

26 China, 343 soil samples Five natural mountain forests

across eastern China

3.8-8.5 Increase, peak

at pH =7

16S-Illumina Assembly process

27 Ningbo, China, 30 samples pH gradient by adding CaCO3 4.62-7.46 Increase 16S-Illumina

28 Tibet, China, 72 samples Upper and deeper soil in

wetland

5-9 Negative 16S-Illumina

29 Australia, 16 samples Four 78-years old plantations

with different tree species

4.49-6.01 Increase 16S-Illumina

30 29 samples Agricultural soils 4.26-8.43 Increase 16S-Illumina pH with different phyla

31 40 samples Grassland soil with nitrogen

addition

4.0-7.5 Increase 16S-454seq

32 38 samples Soils from oil refineries 7.5-9.5 Increase 16S- Illumina

33 115 mineral soil samples Typical forests across north 4.0-7.5 Increase 16S- Illumina pH with different phyla



and south China

with the latitudes ranging

from 18.70◦N to 51.53◦N

34 15 samples Temperate wheat land with

fertilizations

4.64-6.36 Increase (ns) 16S- Illumina

35 7 samples Sediment of freshwater river 6.0-8.25 Increase 16S-454seq

36 26 samples Soils across the black soil zone

of northeast China

4.56-6.57 Increase 16S-454seq

37 14 samples soil samples from a defined

agricultural soil pH gradient in

Craibstone, Scotland

4.5-7.5 Increase 16S- Illumina

38 Water samples from river Increase 16S- Illumina Simpson

39 24 samples Temperate forest soils with

altitudinal gradient from 530

to 2200 m in Changbai

Mountain

3.8-6.5 Increase 16S-454seq pH with different phyla

40 1010 samples Soil samples across the UK 3-9 Increase 16S-TRFLP- BigDye

v3.1 chemistry

Simpson

41 Local 3.6-7 Increase 16S

42 Local 12 soil samples with

contrasting land cover

Negative correlation between

pH and Acidobacteria

43 Global scale 615 composite topsoil samples

from 151 locations from all

continents and 23 countries

3.49-9.54

pH=2.99 for

one sample

Increase 16S



44 Global scale 30 studies and 1,998 samples

from 21 countries

Negative correlation between

pH and Acidobacteria

45 Global scale 3986 samples mostly collected

from soil and fresh water

4-12

pH=2.0 for one

sample

Peak near

neutral pH

(around 7)

16S 16S rRNA gene copy number

46 Global scale Samples of top soils from

global drylands, Americans,

Australia, China, New South

Wales

4.00-9.60 Increase 16S

47 15 soil samples with

contrasting land use

3.8-7.75 Increase 16S

48 Global scale 237 sites globally distributed

across arid, continental and

temperate climates

4.00-9.00 Arid and

Temperate:

increase

Global: peak at

around pH=7

16S



Supplementary Table 2 Associations of certain microbial functions in this study*, in Ramoneda et al 2023 and in Malik et al 2018

This study (Wang et al) Ramoneda et al 2023 Malik et al 2018

Function (KEGG Level3 or gene) pH
association Function (pfam) pH

association Function pH
association

Carbon metabolism (+) Sugar metabolism (+) Carbon
metabolism (+)

Carbon fixation (+)

Glyoxylate and dicarboxylate metabolism (+)

Citrate cycle (+) Citrate transporter (+)

Methane metabolism (+)

ABC transporters (+)
Transmembrane cation transporters/
Transmembrane anion transporter/Na+/H+
antiporters

(+) ABC transporters (+)

Metabolism of other amino acids (+) Methionine metabolism (+) Biosynthesis of
amino acids (+)

Oxidative phosphorylation (+) Oxidative
phosphorylation (+)

Ribosome (+) Ribosome (+)

Flagellar assembly (-) Motility (-)

Metabolism of terpenoids polyketides (-)

Xenobiotics biodegradation metabolism (-) Phenol degradation (-)

Glycan biosynthesis metabolism (-)

Bacterial secretion system (-) Type IV secretion system (-)

Bacterial chemotaxis (-)

Two component system (-) Transmembrane proteins (-)

Porphyrin metabolism (-)

Biosynthesis of siderophore (-)

Lipopolysaccharide biosynthesis (-)



MTHFD; methylenetetrahydrofolate
dehydrogenase (+) Folate metabolism (+)

ATPase family AAA domain-containing protein
3A/B (+) ATPases/AAA_25 (+)

uvrA/B,excinuclease ABC subunit B (+) UV damage repair endonuclease (+)

ACH1; acetyl-CoA hydrolase [EC:3.1.2.1] (-) Acetyl-CoA hydrolase/transferase (-)

pufC; photosynthetic reaction center cytochrome c
subunit (-) Cytochrome C photosynthetic reaction center (-)

dexA; dextranase (-) Hydrolases of dextrans Sugar metabolism (-)

hipA/B (-) Kinase that inhibits tRNA synthase (antibiosis) (-)

hypF; hydrogenase maturation protein HypF (-) Hydrogenase maturation (-)

csxA; exo-1,4-beta-D-glucosaminidase
[EC:3.2.1.165] (-)

Glucosaminidase (-)
NAGLU; alpha-N-acetylglucosaminidase
[EC:3.2.1.50] (-)

kdpA/B/C (-) K+ transporter (-)

rhtB; homoserine/homoserine lactone efflux
protein (-) Acylated homoserine lactone metabolism (-)

scrY; sucrose porin (-) Carbohydrate porin (-)
TC.FEV.OM3, tbpA, hemR, lbpA, hpuB, bhuR, hugA,
hmbR; hemoglobin/transferrin/lactoferrin
receptor protein

(-) Transferrin dimerization domain (-)

plc; phospholipase C [EC:3.1.4.3] (-) Phospholipase C (-)

K14645; serine protease [EC:3.4.21.-] (+) Serine protease (-)

ccdA; cytochrome c-type biogenesis protein (-)
Motif part of C type cytochrome (-)

napC; cytochrome c-type protein NapC (+)



ccmF; cytochrome c-type biogenesis protein CcmF (+)

nrfE; cytochrome c-type biogenesis protein NrfE (+)

perR; Fur family transcriptional regulator, peroxide
stress response regulator (-)

Stress response (-)furA; Fur family transcriptional regulator, stress-
responsive regulator (-)

universal stress protein A/G/F/E (+)

lnuA_C_D_E, lin; lincosamide
nucleotidyltransferase A/C/D/E (+)

Nucleotidyltransferase (-)
pnp, PNPT1; polyribonucleotide
nucleotidyltransferase [EC:2.7.7.8] (+)

Purine
metabolism (+)

RNA degradation (-)

Photolyase (+)

Endonuclease/Exonuclease/phosphatase family (+)

Lyase of methionine metabolism (+)

Methyltransferases (+)

Kinase that does AMPylation to proteins (+)

Ca-dependent nuclease (+)

Heme binding proteins (+)

Gluc to Fruc 6-phosphate (+)

Kinase that does AMPylation to proteins (+)

Ca-dependent nuclease (+)

Heme binding proteins (+)

Ig like domains (-)

Phosphatases in polysaccharide synthesis (-)



Cytidylate kinase (-)

Dehydrokinase (-)

Helix-turn-helix domain (-)

Lipid hydratase (-)

Quinolones (-)

Thyamin pirophsophate binding domain (-)

Fe receptors (-)

Lipid hydratase (-)
*Note a list of all KOs significantly associated with soil pH of our dataset as detected by threshold indicator analysis (TITAN) is provided in Supplementary Data 2.
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