
SAGE-Hindawi Access to Research
International Journal of Alzheimer’s Disease
Volume 2011, Article ID 925073, 8 pages
doi:10.4061/2011/925073

Research Article

Spectroscopic Characterization of Intermolecular Interaction of
Amyloid β Promoted on GM1 Micelles

Maho Yagi-Utsumi,1, 2 Koichi Matsuo,3 Katsuhiko Yanagisawa,4 Kunihiko Gekko,3

and Koichi Kato1, 2

1 Graduate school of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
2 Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences,
5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan

3 Hiroshima Synchrotron Radiation Center, Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima 739-0046, Japan
4 Department of Alzheimer’s Disease Research, National Center for Geriatrics and Gerontology,
National Institute for Longevity Sciences, 36-3 Gengo, Morioka, Obu, Aichi 474-8522, Japan

Correspondence should be addressed to Koichi Kato, kkatonmr@ims.ac.jp

Received 13 October 2010; Revised 30 November 2010; Accepted 3 December 2010

Academic Editor: J. Fantini

Copyright © 2011 Maho Yagi-Utsumi et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Clusters of GM1 gangliosides act as platforms for conformational transition of monomeric, unstructured amyloid β (Aβ) to its
toxic β-structured aggregates. We have previously shown that Aβ(1–40) accommodated on the hydrophobic/hydrophilic interface
of lyso-GM1 or GM1 micelles assumes α-helical structures under ganglioside-excess conditions. For better understanding of the
mechanisms underlying the α-to-β conformational transition of Aβ on GM1 clusters, we performed spectroscopic characterization
of Aβ(1–40) titrated with GM1. It was revealed that the thioflavin T- (ThT-) reactive β-structure is more populated in Aβ(1–40)
under conditions where the Aβ(1–40) density on GM1 micelles is high. Under this circumstance, the C-terminal hydrophobic
anchor Val39-Val40 shows two distinct conformational states that are reactive with ThT, while such Aβ species were not generated
by smaller lyso-GM1 micelles. These findings suggest that GM1 clusters promote specific Aβ-Aβ interactions through their C-
termini coupled with formation of the ThT-reactive β-structure depending on sizes and curvatures of the clusters.

1. Introduction

Conformational transitions of unstructured proteins into
β-structure-based oligomeric or amyloid states are crucial
processes in the onset and development of a variety of neu-
rodegenerative disorders such as Alzheimer’s disease (AD)
and Parkinson’s disease [1, 2]. Amyloid β(Aβ), a major player
in AD, is a 40- or 42-amino acid peptide cleaved from its
precursor membrane protein by sequential actions of β- and
γ-secretases and has a high propensity for toxic aggregation
to form cross-β-fibrils [3, 4]. Accumulated evidence indicates
that the GM1 ganglioside, a glycosphingolipid abundant in
neuronal cell membranes, interacts with Aβ and promotes
its assembly, resulting in pathogenic amyloid formation
[5–7]. For example, high-density GM1 clustering, which
is exclusively observed in synaptosomes, is suggested to

accelerate Aβ deposition [8]. In vitro experiments have
indicated that the Aβ-GM1 interaction depends on the
clustering of GM1, and its carbohydrate moiety alone cannot
induce conformational changes of Aβ [15, 30, 31].

Furthermore, it has been suggested that each of the
heredity variants of Aβ reported thus far has its own
specificities for gangliosides, which have been supposed to be
associated with their ectopic deposition [9, 10]. Promotion
of amyloid formation in membrane-bound states has also
been reported for prion and α-synuclein [11, 12]. For
example, prion protein has been reported to be localized
in the membrane microdomains and caveolae enriched
with ganglioside, which interacts with prion protein and
thereby promotes its α-to-β structural conversion [13, 14].
Therefore, detailed conformational characterization of Aβ
interacting with the ganglioside clusters not only provides
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structural information as cues for drug development in pre-
venting and treating AD but also offers general insights into
the mechanisms underlying the disease-associated amyloid
formation facilitated in membrane environments.

In previous papers, we have reported nuclear magnetic
resonance (NMR) studies of the interactions of Aβ (1–40)
with ganglioside clusters using lyso-GM1 micelles (approxi-
mate molecular mass 60 kDa) as model systems [15, 16]. Our
NMR data showed that Aβ(1–40) is accommodated on the
hydrophobic/hydrophilic interface of the ganglioside cluster
exhibiting an α-helical conformation under ganglioside-
excess conditions. In this state, Aβ(1–40) shows an up-
and-down topological mode in which the two α-helices
at segments His14-Val24 and Ile31-Val36 and the C-terminal
Val39-Val40 dipeptide segment are in contact with the
hydrophobic interior of the micelles, whereas the remaining
regions are exposed to the aqueous environment. A similar
tendency of Aβ(1–40) has been observed using excess
amounts of GM1, which forms micelles with an approximate
molecular mass of 140 kDa [15, 17]. These findings indicate
that ganglioside clusters offer unique platforms at their
hydrophobic/hydrophilic interfaces for binding coupled with
α-helix formation of Aβ molecules.

To gain further insights into the underlying mechanisms
of the amyloid formation of Aβ, it is necessary to char-
acterize the conformational transition from α-helices to β-
structures on the ganglioside clusters. On the basis of the
circular dichroism (CD) data, Kakio et al. demonstrated
that Aβ/GM1 ratios influence the secondary structure of
Aβ(1–40) on the raft-like lipid bilayers composed of GM1,
cholesterol, and sphingomyelin [18, 19]. Namely, Aβ adopts
an α-helical structure at lower Aβ/GM1 ratios (≤0.025),
while it assumes a β-sheet-rich structure at higher ratios
(≥0.05). Although more detailed structural information on
Aβ bound to the GM1 cluster is highly desirable, the small
unilamellar vesicles used for the CD measurements are still
too large to investigate with solution NMR techniques.

In the present study, we attempt to characterize con-
formational states of Aβ(1–40) in the presence of vary-
ing amounts of GM1 aqueous micelles using stable-
isotope-assisted NMR spectroscopy in conjunction with
synchrotron-radiation vacuum-ultraviolet CD (VUVCD)
spectroscopy. We found that GM1 micelles also induce
distinct secondary structures of Aβ(1–40) depending on the
Aβ/GM1 ratios. On the basis of the spectroscopic data, we
will discuss Aβ behaviours on the ganglioside clusters from a
structural point of view.

2. Materials and Methods

2.1. Preparation of Aβ(1–40). Recombinant Aβ(1–40) was
expressed and purified as a ubiquitin extension. The plasmid
vector encoding Aβ(1–40) was constructed and cloned as
a fusion protein with hexahistidine-tagged ubiquitin (His6-
Ub) using the pET28a(+) vector (Novagene), subsequently
transformed into Escherichia coli strain BL21-CodonPlus
(Stratagene) [15]. Transformed bacteria were grown at
37◦C in LB media containing 15 μg/mL of kanamycin. For
the production of isotopically labelled Aβ(1–40) protein,

cells were grown in M9 minimal media containing [15N]
NH4Cl (1 g/L) and/or [U-13C6] glucose (2 g/L). Protein
expression was induced by adding 0.5 mM isopropyl-β- D -
thiogalactopyranoside (IPTG) when the absorbance reached
0.8 at 600 nm. After 4 hours, cells were harvested and
then suspended into buffer A (50 mM Tris-HCl, 150 mM
NaCl, pH 8.0) containing 4-(2-aminoethyl) benzenesul-
fonyl fluoride hydrochloride, subsequently disrupted by
sonication. After centrifugation, the pellet was dissolved
in buffer A containing 8 M urea. His6-Ub-Aβ(1–40) was
purified by a Ni2+-nitrilotriacetic acid affinity column (GE
Healthcare). Recombinant glutathione S-transferase- (GST-
) tagged yeast ubiquitin hydrolase-1 (YUH-1) was grown
until the absorbance reached 0.8 at 600 nm and then induced
to express by IPTG. Cell pellets were dissolved in buffer
B (50 mM Tris-HCl, 1 mM EDTA, 1 mM DTT, pH 8.5)
and disrupted by sonication. GST-YUH-1 was purified by
a glutathione affinity column (GE Healthcare). Aβ(1–40)
protein was enzymatically cleaved from His6-Ub by incuba-
tion with GST-YUH-1 for 1 h at 37◦C at a molar ratio of
His6-Ub-Aβ(1–40): GST-YUH1 = 10 : 1. The cleaved Aβ(1–
40) was purified by reverse-phase chromatography using an
octadecylsilane column (TSKgel ODS-80TM, TOSOH) with
a linear gradient of acetonitrile. The fraction containing
Aβ(1–40) was collected and lyophilized.

Synthetic Aβ(1–40) labelled with 15N selectively at Val39

or Val40 was purchased from AnyGen Co. Both of recombi-
nant and synthetic Aβ(1–40) proteins were dissolved at an
approximate concentration of 2 mM in 0.1% (v/v) ammonia
solution then collected and stored in aliquots at −80◦C until
use.

2.2. Preparation of Micelles. Powdered lyso-GM1 and GM1
were purchased from Takara Bio Inc. and Sigma-Aldrich,
respectively. These gangliosides were dissolved in methanol.
Subsequently, the solvent was removed by evaporation. The
residual ganglioside was suspended at a concentration of
12 mM in 10 mM potassium phosphate buffer (pH 7.2) and
then mixed by vortexing. Micelle sizes were determined
by dynamic light scattering using a DynaPro Titan (Wyatt
technology).

2.3. Thioflavin T (ThT) Assay. Aβ(1–40) was dissolved at
a concentration of 0.2 mM in 10 mM potassium phosphate
buffer (pH 7.2) in the absence or presence of 0.4–9 mM
GM1 or lyso-GM1. The samples were kept on ice before
measurements. 980 μL of 5 μM ThT (Sigma) solution in
50 mM glycine-NaOH buffer (pH 8.5) was added to an
aliquot of 20 μL of each sample. Fluorescence was measured
immediately after mixing at the excitation and emission
wavelengths of 446 and 490 nm, respectively, [20] using
spectrofluorophotometer (Hitachi F-4500) at 37◦C.

2.4. VUVCD Measurements. Aβ(1–40) was dissolved at a
concentration of 0.2 mM in 10 mM potassium phosphate
buffer (pH 7.2). The CD spectra of Aβ(1–40) in the
presence or absence of GM1 were measured from 265
to 175 nm under a high vacuum (10-4 Pa) at 37◦C using
the VUVCD spectrophotometer constructed at beamline
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15 (0.7 GeV) of the Hiroshima Synchrotron Radiation Center
(HiSOR). Details of the spectrophotometer and optical cell
were described previously [21, 22]. The path length of
the CaF2 cell was adjusted with a Teflon spacer to 50 μm
or 100 μm for measurements. The VUVCD spectra were
recorded with a 1.0-mm slit, a 16-s time constant, a 4-
nm min-1 scan speed, and nine accumulations. The molar
ellipticities of Aβ(1–40) were calculated with the average
residue weight of 107.5. The secondary structure contents
of Aβ(1–40) were analysed using the modified SELCON3
program [23] and the VUVCD spectra down to 160 nm
for 31 reference proteins with known X-ray structures [24,
25]. The secondary structures of these proteins in crystal
form were assigned into four classes (α-helices, β-strandes,
turns, and unordered structures) using the DSSP program
[26] based on the hydrogen bonds between adjacent amide
groups. In this analysis, the 310-helix was classified as an
unordered structure. The root-mean-square deviation (δ)
and the Pearson correlation coefficient (r) between the X-ray
and VUVCD estimates of the secondary structure contents
of the reference proteins were 0.058 and 0.85, respectively,
confirming the high accuracy of the VUVCD estimation [27].

2.5. NMR Measurements. NMR spectral measurements were
made on a Bruker DMX-500 spectrometer equipped with
a cryogenic probe as well as a Bruker AVANCE III-400
spectrometer. The probe temperature was set to 37◦C. Iso-
topically labelled Aβ(1–40) was dissolved at a concentration
of 0.2 mM in 10 mM potassium phosphate buffer (pH 7.2)
containing 10% (v/v) 2H2O in the presence or absence of
GM1. For 1H-15N heteronuclear single-quantum correlation
(HSQC) measurements, the spectra were recorded using
Aβ(1–40) labelled with 15N uniformly or selectively at the
amide group of Val39 or Val40 at a 1H observation frequency
of 500 MHz with 128 (t1) × 1024 (t2) complex points and
256 scans per t1 increment. The spectral width was 1720 Hz
for the 15N dimension and 6000 Hz for the 1H dimension.

One-dimensional carbonyl 13C spectra were recorded
using uniformly 13C- and 15N-labelled Aβ(1–40) at a 1H
observation frequency of 400 MHz with a spectral width
of 22,000 Hz. In these experiments, 32,768 data points
for acquisition and 16,384 scans were acquired. NMR
spectra were processed and analysed with the program
nmrPipe/Sparky.

3. Results

3.1. ThT Fluorescence Enhancement. We examined whether
ThT fluorescence is enhanced by Aβ(1–40) in the presence
of varying concentrations of GM1 or lyso-GM1. As shown
in Figure 1, GM1 exhibited a bell-shaped dependence on
Aβ/GM1 ratios regarding ThT fluorescence enhancement,
while lyso-GM1 showed virtually no enhancement. Max-
imum enhancement was observed at a 1:15 molar ratio
of Aβ(1–40) to GM1. The dynamic light scattering data
confirmed that the GM1 and lyso-GM1 micelles exhibited
an approximate hydrodynamic radius of 6 nm and 4 nm,
respectively, irrespective of the Aβ/ganglioside ratios. The
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Figure 1: ThT fluorescence enhancement by Aβ(1–40) in the
presence of varying concentrations of GM1 (open circle) or lyso-
GM1 (closed circle). Each intensity value indicates the average of
four values ± S.D.
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Figure 2: VUVCD spectra of 0.2 mM Aβ(1–40) in the absence or
presence of GM1. Aβ/GM1 molar ratios were 1 : 0 (black), 1 : 15
(blue), and 1 : 30 (red).

observed fluorescence intensity remained almost constant up
to 12 h. These data indicated that GM1 micelles at appro-
priate Aβ/GM1 ratios promote some Aβ–Aβ interaction
with formation of their β-sheet-like conformation, which,
however, does not result in irreversible fibril formation.

3.2. Secondary Structure Transition. We characterized the
conformational transition of Aβ depending on Aβ/GM1
ratios by CD measurements. The short-wavelength limit of
CD spectroscopy can be successfully extended using syn-
chrotron radiation as a high-flux source of photons, which
yields much more accurate data than those obtained with a
conventional CD spectrophotometer [28, 29]. The spectral
data indicated that Aβ(1–40) undergoes conformational
transitions depending on GM1 to Aβ(1–40) ratios (Figure 2).
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Figure 3: Carbonyl 13C spectra of uniformly 13C-labelled Aβ(1–40).
Spectral data were obtained using 0.2 mM Aβ(1–40) titrated with
GM1 micelles at Aβ/GM1 molar ratios of (a) 1 : 0, (b) 1 : 15, and
(c) 1 : 30. In (b), the spectra measured in the presence of ThT are
displayed at Aβ/ThT molar ratios of 1 : 0 (black), 1 : 1 (red), and 1 : 2
(blue).

Table 1: Secondary structure contents (%) of Aβ(1–40) from
VUVCD spectra obtained in the presence of varying concentrations
of GM1.

Aβ : GM1 α-Helix β-Strand Turn Unordered structure

1 : 0 15.9 17.8 26.3 39.0

1 : 15 23.6 23.6 21.6 29.3

1 : 30 40.0 18.3 14.5 27.9

The secondary structure contents of Aβ(1–40) at Aβ/GM1
molar ratios of 1 : 0, 1 : 15, and 1 : 30 were estimated on the
basis of the spectral data (Table 1). The α-helix content of
Aβ(1–40) in the presence of GM1 at an Aβ/GM1 molar ratio
of 1:30 was calculated to be 40.0%, which is consistent with
our previous estimation based on the backbone chemical
shift data of lyso-GM1 [15], thus confirming close similarity
of the binding modes of Aβ(1–40) between GM1 and lyso-
GM1micelles. At an Aβ/GM1 molar ratio of 1:15, where
the maximum ThT fluorescence enhancement was observed,
the CD data consistently indicated a significantly increased
content of β-strands.

The conformation of Aβ(1–40) in the presence of varying
amounts of GM1 micelles was further characterized by
13C NMR spectroscopy. The carbonyl 13C NMR spectral
data of uniformly 13C-labelled Aβ(1–40) indicated that the
peaks shifted upfield, roughly corresponding to β-structures,
are more populated at an Aβ/GM1 molar ration of 1 : 15
in comparison with the GM1-excess conditions (Figure 3).
Intriguingly, intensities of these peaks were selectively
reduced upon the addition of ThT. These NMR data are again

consistent with the VUVCD data as well as the results of the
ThT assay.

3.3. Local Structure of the C-Terminus of Aβ(1–40). To
provide more detailed information on the conformational
transition of Aβ(1–40) on GM1 micelles, we observed 1H-
15N HSQC spectral changes of Aβ(1–40) upon titration
with GM1. Interestingly, at an Aβ/GM1 molar ratio of
1 : 15, Aβ(1–40) exhibited HSQC peaks that were not
observed in the spectra of free or fully micelle-bound forms
(Supplementary Figure 1). By using site-specifically 15N-
labelled Aβ, these extra peaks were assigned to Val39 and
Val40 (Figure 4 and Supplementary Figure 1 available online
at doi:10.4061/2011/925073). Namely, the amide groups of
these C-terminal residues of the micelle-bound Aβ species
show double HSQC peaks under the condition where
Aβ/GM1 ratio is relatively high. More interestingly, these
double peaks were perturbed upon the addition of ThT,
while the corresponding peaks originating from the free
and fully micelle-bound forms showed little or no change
(Figure 4). On the other hand, many of the 1H-15N HSQC
peaks from Aβ(1–40), including Val39 and Val40, were not
observed at an Aβ/lyso-GM1 molar ratio of 1 : 15 due to
intermediate chemical exchange between free and micelle-
bound states of Aβ(1–40) (data not shown).

4. Discussion

Accumulating evidence, including our previous reports,
indicates that the interaction of Aβ with GM1 involves
multiple steps including the initial encounter complex
formation and the accommodating process on the
hydrophilic/hydrophobic interface of the ganglioside
clusters [15–17, 30]. NMR spectral data of Aβ(1–40) titrated
with GM1 micelles under Aβ-excess conditions indicated
that they form a weak complex presumably through an
interaction between the N-terminal segment of Aβ(1–40)
and the outer carbohydrate branch of GM1 [15, 30].
Thus, it is conceivable that the outer-branch structures
of the carbohydrate moieties of gangliosides influence the
association phase of the interaction and thereby determine
the ganglioside specificities of Aβ. Nongangliosidic micelles
and vesicles are barely or not capable of trapping Aβ(1–
40) effectively [15, 18, 31, 32]. On the other hand, the
α-helical conformation of Aβ(1–40) accommodated on
sugar-lipid interface of the GM1 and lyso-GM1 micelles
have been characterized by NMR under ganglioside-excess
conditions (Aβ/ganglioside molar ratio of 1 : 30) [15].
Because the structure of the inner part is common among
the gangliosides, non-GM1 ganglioside, for example, GM2,
can accommodate Aβ and induce its α-helical conformation
[16]. Thus, the spectroscopic characterization of the
interactions of Aβ with gangliosidic micelles has so far
been performed only under the extreme conditions of the
Aβ/ganglioside ratios. The present study attempts to bridge
the gap in our understanding of Aβ behavior on GM1
micelles by carrying out spectroscopic analyses of Aβ in the
presence of varying amounts of GM1 micelles.
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Figure 4: 1H-15N HSQC peak originating from Val39 (upper) and Val40 (lower) of Aβ(1–40) in the presence or absence of GM1 micelles
and ThT. Site specifically 15N-labelled Aβ(1–40) proteins (0.2 mM each) were titrated with GM1 at Aβ/GM1 molar ratios of 1 : 0 (a, d), 1 : 15
(b, e), and 1 : 30 (c, f). The spectra measured in the absence (black) and presence (red) of 0.4 mM ThT are overlaid. The peak indicated by
asterisk originated from GM1.

The present data all indicated that β-structure is more
populated in micelle-bound Aβ(1–40) under the condition
where the Aβ/GM1 ratio is higher. It is intriguing that the
increased β-structure is reactive with ThT. Although the
binding mode of ThT to amyloid fibrils has yet to be fully
elucidated, it has been suggested that ThT is more likely
to bind perpendicularly to parallel β-strands in a β-sheet
[33–35]. In addition, recently reported solid-state NMR data
indicate that a ThT-reactive, neurotoxic amyloid intermedi-
ate of Aβ(1–40) is composed of parallel β-structures [36].
These data suggest that formation of parallel β-strands is the
minimum prerequisite for ThT fluorescence enhancement.
With this in mind, the bell-shape dependence of ThT
fluorescence enhancement (Figure 1) can be interpreted as

follows. At an extremely low concentration of GM1, most
of Aβ(1–40) exists as a free form, which is an unstructured
monomer and therefore is not reactive with ThT. Fraction
of the micelle-bound form of Aβ(1–40) increases with
increase of the GM1 amounts. To some extent, the micelles
promote intermolecular interaction of Aβ(1–40), giving rise
to the ThT-reactive Aβ(1–40) species. Under GM1-excess
conditions, however, Aβ(1–40) molecules are presumably
relatively isolated from one another and therefore are not
capable of forming an intermolecular β-structure. The
Aβ/GM1 molar ratio, where the maximum enhancement was
observed, was 1 : 15, which corresponds to average number of
Aβ/micelle of 11.2 with the assumption of the micellar GM1
aggregation number of 168± 4 [37]. Thus, the Aβ density on
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GM1 micelles is a crucial factor determining the occurrence
of the ThT-reactive Aβ species.

Under the circumstance where the Aβ(1-40) density on
GM1 micelles is high, the C-terminal dipeptide of Aβ(1–
40) shows, at least, two distinct conformational states that
are reactive with ThT. In a previous paper, we demonstrated
that the C-terminal Val39-Val40 dipeptide is inserted into the
hydrophobic interior of the gangliosidic micelles [15]. This
C-terminal segment is involved in the parallel β-structure
in the amyloid fibril and intermediate [36, 38]. On the
basis of these data, we suggest that GM1 clusters pro-
mote intermolecular Aβ-Aβ interactions coupled with the
conformational transition of their C-terminal hydrophobic
anchors into the ThT-reactive parallel β-structure, in which
the local chemical environments of the C-terminal segments
are different in different β-strands. This may account for
the multiple HSQC peaks originating from the C-terminal
segments (Figure 4).

It has been reported that Aβ exhibits ThT-reactive β-
sheet-rich aggregates in the presence of sodium dodecyl
sulfate (SDS) at submicellar concentrations [39, 40]. Under
these conditions, all the amide peaks of Aβ(1–40) disap-
peared from the 1H-15N HSQC spectrum because of the
formation of large aggregates, except for those from the
C-terminal residues that should still be mobile in this
assembly state. On the basis of the NMR data obtained using
paramagnetic probes, the C-terminal segment of Aβ(1–40)
bound to SDS micelles has shown to be exposed to aqueous
environment, exhibiting higher mobility [41]. Taking into
account these data in conjunction with our present data,
we suggest that different β-like structures of Aβ(1–40)
are induced by GM1 aqueous micelles and submicellar
concentrations of SDS.

Lyso-GM1 micelles could not induce the formation of the
ThT-reactive β-structure of Aβ(1–40) although the micelle-
interacting modes of Aβ(1–40) are almost identical between
GM1 and lyso-GM1 micelles under ganglioside-excess con-
ditions [15]. By inspection of the dynamic light scattering
data on an assumption of their globular shapes, the diameters
of GM1 and lyso-GM1 micelles have been estimated as 12 nm
and 8 nm, respectively. It is plausible that the sizes and curva-
tures of the gangliosidic micelles are determining factors for
the number of Aβ molecules that can be accommodated on
their hydrophilic/hydrophobic interface and the occurrence
of Aβ-Aβ interactions coupled with ThT-reactive β-structure
formation. Indeed, GM1 clusters with flatter curvature such
as GM1-containing unilamellar vesicles induce enhanced Aβ
fibrillogenesis [5] in comparison with GM1 micelles. Lipid
composition can also be a determining factor for assembly
states of GM1 molecules and their interaction with Aβ. Most
importantly, there is growing evidence that cholesterol and
sphingomyelin contribute to GM1 assembly and thereby
influence Aβ deposition promoted by its cluster [8, 18, 42,
43]. Elucidation of the structural basis of these molecular
events is an important subject for the forthcoming stage of
the research.

In conclusion, in the present study, we firstly identified
and characterized the ThT-reactive β-structure of Aβ(1–
40) promoted on GM1 micelles. Our findings offer struc-

tural insights into the mechanisms underlying the α-to-β
conformational transition of Aβ on GM1 clusters, which is
associated with the nucleation process in the Aβ aggregation.
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[37] R. Šachl, I. Mikhalyov, M. Hof, and L. B. A. Johansson, “A
comparative study on ganglioside micelles using electronic
energy transfer, fluorescence correlation spectroscopy and
light scattering techniques,” Physical Chemistry Chemical
Physics, vol. 11, no. 21, pp. 4335–4343, 2009.

[38] R. Tycko, “Progress towards a molecular-level structural
understanding of amyloid fibrils,” Current Opinion in Struc-
tural Biology, vol. 14, no. 1, pp. 96–103, 2004.



8 International Journal of Alzheimer’s Disease

[39] A. Wahlström, L. Hugonin, A. Perálvarez-Marı́n, J. Jarvet, and
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