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Glypican-3 (GPC3) is a membrane-associated proteoglycan that is specifically up-
regulated in hepatocellular carcinoma (HCC) although rarely or not expressed in normal
liver tissues, making it a perfect diagnostic and treatment target for HCC. Several GPC3-
based clinical trials are ongoing and recently several innovative GPC3-targeted
therapeutic methods have emerged with exciting results, including GPC3 vaccine, anti-
GPC3 immunotoxin, combined therapy with immune checkpoint blockades (ICBs), and
chimeric antigen receptor (CAR) T or NK cells. Here, we review the value of GPC3 in the
diagnosis and prognosis of HCC, together with its signaling pathways, with a specific
focus on GPC3-targeted treatments of HCC and some prospects for the future GPC3-
based therapeutic strategies in HCC.

Keywords: glypican-3 (GPC3), hepatocellular carcinoma (HCC), cancer immunotherapy, immune checkpoint
blockade, chimeric antigen receptor
1 INTRODUCTION

Liver cancer is the second-most cause of cancer death throughout the world (8.2% of the total) (1),
and hepatocellular carcinoma (HCC) is the most common type of liver cancer. Despite significant
advances in both diagnosis and treatment, only 40% of HCC is diagnosed at an early stage, and the
results of treatment are often disappointing. Surgery is still the preferred treatment. However, only
5%-10% of HCC tumors are suitable for resection, and tumor recurrence occurs in a majority (50%-
70%) of patients within five years of surgery. Although liver transplantation offers an alternative, the
numbers of suitable donor liver sources are extremely limited, while waiting for the donor liver, the
tumor may progress, which may lead to the loss of surgical opportunity or worsen the postoperative
prognosis (2). Systemic chemotherapy with oxaliplatin-based regimens has been found to increase
the overall survival (OS) by 1.47 months (3). Multiple tyrosine kinase inhibitors, sorafenib (4), used
as first-line treatments, while lenvatinib (5) and donafenib were found to be superior to sorafenib in
extending the OS in Chinese patients with advanced HCC (6).

Immunotherapy has become a powerful strategy for treating cancer. Anti-programmed cell
death protein 1 (PD-1) inhibitors of nivolumab (7) and pembrolizumab (8), anti-CTLA-4 inhibitors
of tremelimumab (9) and ipilimumab (10), the preliminary results showed promising antitumor
activity in HCC. At present, the general trend in tumor treatment is the use of combination therapy,
Atezolizumab combined with bevacizumab was found to improve the patient prognosis with an
excellent objective response rate (ORR) in advanced HCC (11), and lenvatinib combined with
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pembrolizumab or sintilimab combined with bevacizumab
showed similar results (12, 13). Nevertheless, despite the
progress of current treatments, there are still limited options
for effective systemic treatment of HCC. As a result, its five-year
survival rate is only a dismal 18% (14). Thus, the identification of
specific molecular markers and targets would assist both early
diagnosis and targeted therapy.

Glypian-3 (GPC3) is a heparan sulfate proteoglycan (HSPG).
There are six glypican subtypes, namely, GPCs 1-6, with similar
structures consisting of a 60-70 kDa protein connected to the cell
membrane by a glycosylphosphatidylinositol (GPI) anchor, 14
conserved cysteine residues, and the last 50 residues at the
carboxyl end modified by the heparan sulfate (HS) side-chain.
GPC3 has been implicated in a variety of processes, including cell
growth, differentiation, and migration (15, 16). The specific
expression of GPC3 in tumor cells has received widespread
attention. Here, we discuss the relevance of GPC3 to HCC
diagnosis and prognosis, and also address the signaling
pathways used by GPC3 to promote HCC development, and
focus on the feasibility of targeting GPC3 for treating HCC.
2 RELEVANCE OF GPC3 TO THE
DIAGNOSIS AND PROGNOSIS OF HCC

The potential of GPC3 in HCC diagnosis and prognosis is
gradually being recognized. Figure 1 compares GPC3
expression in various cancers and normal tissues (17). In1997,
Hsu et al. demonstrated that MXR7 (later shown to be GPC3)
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was more strongly expressed in HCC than AFP (18), but was not
visible in either normal liver or benign liver lesions (such as
cirrhotic or dysplastic nodules) (19). Immunostaining also
demonstrated the presence of GPC3 in small liver tumors (16).
Currently, GPC3-targeted imaging includes positron emission
tomography (PET) (20, 21), magnetic resonance imaging (MRI)
(22), and near-infrared imaging (NIR) (23) for the early
diagnosis of HCC, showing excellent results and high
specificity in HCC. GPC3 is also found in the serum of many
HCC patients but not in sera from healthy individuals or patients
with hepatitis. Despite the presence of GPC3 being indicative of
an HCC diagnosis, a single marker cannot meet the specificity
and sensitivity requirements of clinical practice. GPC3 + HSP70
(heat shock protein 70) + GS (glutamine synthetase) is an
optimal combination to distinguish early and grade 1 HCC
from dysplastic nodules in cirrhosis, strengthening the
diagnosis of suspected HCC, especially in a biopsy with few
samples (24, 25). Other investigations have also proposed some
combinations of potential markers, such as arginase-1/heppar-1/
GPC3 (26), GP73/GPC3/CD34 (27), and GPC3/CD34 (28).
Elevated levels of GPC3 in tumor cells is related to poor
prognosis, as Figure 2 shows (17). For example, the five-year
survival of patients positive for GPC3 was considerably reduced
compared to that of GPC-3-negative patients (54.5 vs 87.7%, P =
0.031), with this association between GPC3 level and HCC
prognosis demonstrated in many studies (29). The early
identification of GPC3-positivity may also predict tumor
recurrence after resection, and GPC3 is recognized as an
independent prognostic factor for disease-free survival (DFS)
(30). A raised serum level of the GPC3 N-terminal subunit
FIGURE 1 | The expression profile of GPC3 across tumor samples and paired normal tissues (Dot plot). Each dot represents expression of samples. T, tumor
samples; N, normal tissues; ACC, adrenocortical carcinoma; BLCA, bladder urothelial carcinoma; BRCA, breast invasive carcinoma; CESC, cervical squamous cell
carcinoma & endocervical adeno; CHOL, cholangiocarcinoma; COAD, colon adenocarcinoma; DLBC, lymphoid neoplasm diffuse large B-cell lymphoma; ESCA,
esophageal carcinoma, glioblastoma multiforme; HNSC, head & neck squamous cell carcinoma; KICH, kidney chromophobe cell carcinoma; KIRC, kidney renal clear
cell carcinoma; KIRP, kidney renal papillary cell carcinoma; LAML, acute myeloid leukemia; LGG, brain lower grade glioma; LIHC, liver hepatocellular carcinoma;
LUCD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; MESO, mesothelioma; OV, ovarian serous cystadenocarcinoma; PAAD, pancreatic
adenocarcinoma; PCPG, pheochromocytoma & paraganglioma; PRAD, prostate adenocarcinoma; READ, rectum adenocarcinoma; SARC, sarcoma; SKCM, skin
cutaneous melanoma; STAD, stomach adenocarcinoma; TGCT, testicular germ cell tumors; THCA, thyroid carcinoma; THYM, thymoma; UCEC, uterine corpus
endometrial carcinoma; UCS, uterine carcinosarcoma; UVM, uveal melanoma.
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antigen (sGPC3N) has also been shown to be independently
related to both OS (p < 0.05) and DFS (p < 0.01) (31).
Fur thermore , both GPC3 and osteopont in (OPN)
overexpression are linked to reduced DFS in HBV-positive
small HCC, with elevated levels of both molecules indicative of
adverse outcomes after curative resection (32). For HCV-positive
patients after surgical resection, GPC3 is a prognostic indicator
for reduced DFS (33). Consistently, raised levels of GPC3 mRNA
have been linked to the development of HCC after liver
transplantation (34). Furthermore, a viable GPC3-based
immunomagnetic fluorescent system (C6/MMSN-GPC3) has
been developed to identify circulating tumor cells (CTCs) in
HCC patients’ blood, further contributing to the early diagnosis
and determination of prognosis (35).
3 GPC3-ASSOCIATED SIGNALING
PATHWAYS IN HCC

3.1 Wnt Signaling Pathway
Wnt signaling plays a major part in HCC pathology and is
implicated in cell survival, proliferation, migration, and
invasion. The first step in the pathway is the binding of Wnt
to the membrane receptor Frizzled (FZD). Wnt signaling
involves both canonical and non-canonical pathways, with the
former involving the b-catenin protein (36, 37). b-catenin
influences the expression of numerous genes, some of which
are associated with cell proliferation and survival (38). GPC3
activates the canonical pathway, thereby stimulating HCC
progression (39, 40). The human monoclonal anti-GPC3
antibody, HS20, binds the GPC3 HS moiety and has been
shown to block the interaction between GPC3 and Wnt3a (41).
Frontiers in Oncology | www.frontiersin.org 3
GPC3 also interacts with FZD through the HS chain, suggesting
that GPC3 may form a signaling complex with both FZD and
Wnt (42). The N-leaf cysteine-rich domain (CRD) of GPC3 has a
Wnt-binding groove, and the mutation of the notch reduces
binding, thereby reducing Wnt activation, and inhibiting the
growth of mouse liver cancer (43).

3.2 Other Signaling Pathways
The Hippo signaling pathway is responsible for reducing cell
contacts and limiting both organ size and tumorigenesis (44).
The Hippo pathway is frequently activated in HCC, with
activation of the Yes-associated protein (YAP) (45, 46). GPC3
knockout inhibits YAP expression at both the mRNA and
protein levels and induces the apoptosis of Huh7 cells (47, 48).
In addition, the abnormal persistence of hedgehog signaling has
been directly related to HCC (49–51), and GPC3 appears to be a
negative regulator of hedgehog signaling (52–54). Transcription
factors zinc-fingers and homeoboxes 2 (ZHX2) (55) and C-myc
(56) are involved in the oncogenic activation of GPC3 in HCC to
modulate HCC cell growth, proliferation, and differentiation.
Sulfatase 2 may up-regulate GPC3 expression, promote fibroblast
growth factor (FGF) signal transduction, and reduce the survival
rate of HCC patients. A human monoclonal antibody against the
GPC3 HS chain inhibited HGF/c-Met pathway-mediated
migration and motility in hepatoma cells (41, 57–59).
Furthermore, GPC3 could promote the progression and
metastatic spread of HCC by influencing the functioning of
tumor-associated macrophages (TAM) through macrophage
recruitment (60). In Figure 3, we summarize the signal
pathways related to GPC3.
4 GPC3 TARGETED THERAPY FOR HCC

Since GPC3 is overexpressed in HCC, as Figure 4 shows, various
inhibitors targeting GPC3 are under investigation.

4.1 GPC3-Targeted Antibodies
4.1.1 Monoclonal Antibodies
GC33 is a recombinant, humanized, high-affinity monoclonal
antibody against the GPC3 C-terminus. In preclinical
assessments, GC33 was found to promote antibody-dependent
cellular cytotoxicity (ADCC) in an antigen-dependent manner
(61). The antibody also reduced tumor growth in xenograft
models, with the growth reduction correlated approximately to
the cell surface antigen level (61). In clinical application, Zhu, et
al. enrolled 20 patients in a dose-escalation study, showing no
dose-limiting toxicities (DLT) as the maximum tolerated dose
fell beyond even the highest dose planned. This suggested the
potential clinical efficacy and benefit of GC33 and warrants
further evaluation. The minimum serum concentrations of the
antibody were above the target concentrations at doses above 5
mg/kg and there was a significant reduction in the median time
to progression (TTP) between the high-GPC3 group and the
low-GPC3 group (26.0 weeks vs 7.1 weeks; P = 0.033) (62). Ikeda,
et al. enrolled seven patients in a similar study in Japan to
FIGURE 2 | The association between GPC3 expression and HCC prognosis.
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evaluate the safety and tolerability of GC33. They observed that
GC33 was well-tolerated overall, with no DLTs and with the
maximum tolerated dose (MTD) not reached. These findings are
consistent with those of the First-in-Human although the small
sample size did not allow a clear correlation between GPC3
expression and antitumor action (63). Recently, a double-blind,
phase II trial of GC33 in 185 patients with chemotherapy-
unresponsive HCC showed that, although Codrituzumab
therapy itself was ineffective, when increasing Codrituzumab
exposure, the levels of GPC3 and CD16 in circulating immune
cells could predict the efficacy of the drug, suggesting that
precision Codrituzumab therapy with this perspective may
have potential for treating HCC (64).

Another monoclonal antibody, 32A9, specifically targeting
the middle region of GPC3, reduced the growth of HCC tumors
in mice. This study then investigated two 32A9-based
immunotherapeutic strategies involving an immunotoxin and
Frontiers in Oncology | www.frontiersin.org 4
CAR-T cells. It was found that the antibody-immunotoxin
complex was specifically cytotoxic to GPC3-positive tumor
cells, while the 32A9-CAR-T cells destroyed the tumor cells in
vitro and promoted regression of HCC xenograft tumors in vivo
(65). Feng et al. described an antibody, HN3, that recognized the
full GPC3 molecule with high affinity. The antibody promoted
cell cycle arrest in G1, inhibiting the growth of GPC3-expressing
cells and reducing the growth of xenografts in mice (66). Another
human anti-GPC3 monoclonal antibody, HS20, that recognizes
the HS moiety on the molecule, was shown to block Wnt
signaling and inhibit tumor growth. This antibody also showed
no toxicity in mice (41). Thus, although GPC3 is a well-
characterized HCC-associated antigen, anti-GPC3 therapeutic
strategies have had limited clinical success.

4.1.2 Bispecific Antibodies
Given the low clinical response rate of monoclonal antibodies
targeting GPC3, bispecific antibodies have been investigated.
One such bispecific antibody, ERY974, a humanized IgG–
structured T cell–redirecting antibody (TRAB) with a common
light chain, could bind to both GPC3 and CD3, promoting
cytotoxicity through the action of T cell effectors. ERY974 also
showed significant non-immunogenic antitumor effects in
tumors that were unresponsive to treatment with immune
checkpoint (such as PD-1 and CTLA-4) inhibitors. Further
investigation showed that ERY974 induced a high degree of
inflammation in the tumor microenvironment, with toxicology
studies in cynomolgus monkeys showing raised levels of
cytokines in the short-term (67). A further report
demonstrated a significant improvement in antitumor action
in xenograft models using a combination of ERY974 and
chemotherapy (68). A phase I clinical trial of this antibody is
ongoing (NCT02748837). GPC3/CD47, a bispecific antibody
targeting GPC3 and CD47, was effective in preventing tumor
growth through recognition of both antigens. This antibody has a
long serum half-life with no adverse systemic effects compared to
an anti-CD47 antibody alone. The antibody was more effective
than treatment with a single anti-CD47 antibody or a
combination of individual anti-CD47 and anti-GPC3
antibodies in a mouse xenograft model (69). Taken together,
FIGURE 4 | GPC3 targeted therapy for HCC.
FIGURE 3 | GPC3 associated signaling pathways in HCC.
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these results suggest that anti-GPC3 bispecific antibodies might
be potential therapeutic treatments for HCC in the future.

4.2 GPC3-Derived Peptide/DNA Vaccines
In addition to antibodies targeting GPC3, the application of
GPC3-derived peptide/DNA vaccines is another potentially
attractive option for treating HCC. Nakatsura, et al. showed
that both HLA-A24(A*2402)-restricted and H-2Kd-restricted
GPC3298–306 peptide (EYILSLEEL) peptides, as well as the
HLA-A2(A*0201 ) - r e s t r i c t ed GPC31 4 4 – 1 5 2 pep t ide
(FVGEFFTDV), can induce GPC3-reactive cytotoxic T
lymphocytes (CTLs) (70, 71). These peptides were
subsequently tested as vaccines in preclinical trials using
mouse models, and schedules for clinical trials were set up,
testing the GPC3298–306 and GPC3144–152 peptides in a Phase
I clinical trial. In the trial, one patient showed a partial response
(PR), while 4 out of 19 patients with stable disease (SD) showed
tumor regression or necrosis beyond the PR criteria. After two
months of ongoing treatment, the disease control rate (PR+SD)
was 60.6% (72). A pilot study (UMINCTR: 000005093)
confirmed lymphocyte tumor infiltration by after vaccination
with the GPC3 peptides. A Phase II, open-label, single-arm trial
(UMIN-CTR: 000002614) enrolled 40 HCC patients who had
received either surgery or radiofrequency ablation. In the year
following curative treatment, 10 vaccinations were administered,
resulting in a significantly lower recurrence rate in patients who
had received surgery/radiofrequency ablation with vaccines than
in patients who had been treated with surgery only (73).
Intravenous administration of GPC3-coupled lymphocytes
(LC/GPC3+) resulted in the production of both anti-GPC3
antibodies and CTLS, reducing HCC growth and lysing HCC
cells in culture (74). Apart from these peptide vaccines, GPC3
DNA vaccines could elicit CTL responses against HCC cell lines,
inhibit homogenous tumor growth, and increase the survival
rates of xenograft-bearing mice (75). However, despite the
potential attraction of a peptide vaccine, the antitumor effects
are too weak for treating advanced HCC. Intratumoral peptide
injection or combining the peptide vaccine with an anti-PD-1
blocking antibody could feasibly enhance the antitumor effects.

4.3 Immunotoxins
GPC3-targeted human nanobody (HN3) immunotoxins have
been reported to have potent antitumor effects through the
blocking of protein synthesis and downregulation of the Wnt
signaling pathway. For example, it was found that intravenously
administering the immunotoxin HN3-PE38 either individually
or in combination with chemotherapeutic drugs promoted
regression of Hep3B and HepG2 tumor xenografts in mice.
These results indicate the potential of GPC3 use in
immunotoxin-based treatment. However, a drawback was that
the side effects and potential toxicity of the immunotoxin, which
could thus only be used at low doses (< 0.8 mg kg-1) (76). In
addition, another team of researchers constructed two mPE24-
based immunotoxins (HN3-mPE24 and HN3HN3-mPE24).
HN3-mPE24 had both high-affinity antigen-binding and
strong anti-tumor effects in HCC cells, with minimal side
Frontiers in Oncology | www.frontiersin.org 5
effects in mice even at high doses, and resulted in effective
tumor regression and improved survival rates. However,
immunogenic effects and the relatively short half-lives of
immunotoxins may limit their clinical application (77). To
overcome this shortcoming, another research team engineered
HN3-ABD-T20 and HN3-ALB1-T20 by adding an albumin-
binding domain (ABD) to prolong their half-life. This resulted
in effective tumor regression at one-tenth of the dose required for
HN3-T20. This increased potency was ascribed to the observed
45-fold prolongation of HN3-ABD-T20’s serum retention time.
Pharmacokinetic studies in mice showed that HN3-ABD-T20
had a half-life of about 5.5 hours compared to only 7 minutes for
HN3-T20. HN3-ABD-T20 thus represents the best option for
clinical translation because of its long serum retention, high
cytotoxicity, and reduced antigenicity (78). Although further
investigations, including clinical trials, are required, these
findings suggest that GPC3-targeted immunotoxins have
promising potential for treating HCC.

4.4 GPC3 CAR-T/NK Cells
In recent years, CAR-T cell therapy has proved effective for treating
several cancers, especially hematological malignancies (79, 80). To
date, there have been several clinical trials exploring the use of GPC3
CAR-T in HCC (Table 1). GPC3-targeted CAR-T cells are able to
destroy GPC3+ HCC cells in vitro and GPC3+ HCC tumor
xenografts in mice. Combinations of sorafenib and GPC3-CAR T
cells have also proved effective (81). Compared with GPC3-CAR-T
cells, the combination of GPC3 and epidermal growth factor
receptor (EGFR)-dual-targeting CAR-T cells is more effective in
reducing HCC growth (82). To further increase the specificity and
decrease the off-target risk, IL-12-armored GPC-3-redirected CAR-
T cells were designed which showed greatly improved antitumor
effects in mouse models (83). An IL-4/21 inverted cytokine receptor
also improved CAR-T cell potency in an immunosuppressive tumor
microenvironment (84). GPC3-specific CAR-T cells co-expressing
IL-15 and IL-21 (85) or IL-7 and PH-20 (86) were found to be
effective against HCC. Interestingly, disruption of PD-1 gene
expression in GPC3 CAR-T cells by the CRISPR/Cas9 gene-
editing system increased the in vivo activity of CAR-T cells
against HCC, improving their infiltration levels in mouse models
(87). Co-stimulation of DNAX-activating protein 10 was shown to
increase the anti-tumor action of CAR-T cells (88). Interestingly,
shed GPC3 competed with cell-surface GPC3 CAR-T cell binding,
inhibiting the effects of the cells in HCC (89).

There are, however, side effects in the use of CAR-T cells,
including tumor lysis syndrome, cytokine release syndrome, and
on-target, off-tumor effects. These side-effects, rather than the
neoplasm itself, may even be fatal. NK-92 cells have been
developed to incorporate improved efficacy with minimal toxicity.
The safety and cytotoxic specificity of genetically modified NK-92
cells have been attested to in preclinical trials, suggesting that these
cells may be ideal carriers for CAR (90). The anti-tumor efficacy of
NK-92/9.28.z cells has been confirmed in many HCC xenografts
with different GPC3 levels (91). The combination of CAR-T and
GPC3-targeted treatments appear to be highly promising, especially
if combined with ICBs.
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4.5 Gene Therapy
The use of gene therapy targeting GPC3 has also been
investigated. For example, sulfatase 2 (SULF2) knockdown
decreased HCC cell proliferation and migration as well as
xenograft growth (58). MicroRNAs (miRNAs) targeting GPC3
have been described, with low levels of miR-1271 related to
GPC3 overexpression in HCC, with the miRNA reducing HCC
cell growth in a GPC-3-dependent manner and inducing cell
death (92). However, although the siRNA technology is effective
for the specific silencing of individual genes, it is difficult to apply
to a clinical setting as it requires effective delivery with high
specificity and minimal toxicity. A GPC3-targeted siRNA
nanovector (NP-siRNA-GPC3 antibody for HCC treatment)
showed obvious antitumor efficacy in vitro with minimal
Frontiers in Oncology | www.frontiersin.org 6
toxicity and significantly inhibited orthotopic HCC xenografts
(93). It is known that long non-coding RNAs (lncRNAs) play
significant roles in cancer, including HCC. Knockdown of the
HOXA cluster antisense RNA2 (HOXA-AS2) lncRNA reduced
GPC3 expression and blocked HCC cell proliferation by G1
arrest, as well as promoting apoptosis and inhibiting HCC cell
migration and invasion in vitro (94).

4.6 Combination of Anti-GPC3 and ICIs
Combining anti-GPC3 antibodies and immune checkpoint
inhibitors (ICIs) may be a promising strategy for GPC3-
associated cancers. For example, treatment with the GC33
antibody increased the infiltration of PD-L1 positive immune
cells (such as macrophages and multinucleated giant cells), and
TABLE 1 | Clinical trials of GPC3-CAR-T for treating liver cancer.

Interventions Study Title Trial No. status Phase Locations

Monotherapy
GPC3 CAR-T cells GPC3 CAR-T cells in patients with refractory HCC NCT03146234 Completed Not

Applicable
Shanghai,
China

CAR-T Cells Targeting GPC3 NCT03884751 recruiting 1 Zhejiang,
China

4th generation CAR-T cells targeting GPC3 NCT03980288 recruiting 1 Zhejiang,
China

GPC3 CAR-T Cells for the Hepatocellular Carcinoma NCT04506983 a Not yet
recruiting

1 Beijing,
China

A Study of GPC3-targeted T Cells by Intratumor Injection for
Advanced HCC (GPC3-CART)

NCT03130712 Unknown 1/2 Beijing,
China

A Study of GPC3 Redirected Autologous T Cells for Advanced HCC NCT02715362 Unknown 1/2 Shanghai,
China

GPC3-CAR-T Cells for Immunotherapy of Cancer With GPC3
Expression

NCT03198546 recruiting 1 Guangdong,
China

A Study of Chimeric Antigen Receptor T Cells Combined With
Interventional Therapy in Advanced Liver Malignancy

NCT02959151 Unknown 1/2 Shanghai,
China

CAR-T Cell Immunotherapy for HCC Targeting GPC3 NCT02723942 Withdrawn 1/2 Guangdong,
China

GPC3-targeted CAR-T Cell for Treating GPC3 Positive Advanced
HCC

NCT04121273 recruiting 1 Jiangsu,
China

anti-GPC3 CAR-T Anti-GPC3 CAR T for Treating Patients With Advanced HCC NCT02395250 Completed 1 Shanghai,
China

Combined chemotherapy
GAP T cells, Cytoxan, Fludara GPC3-specific Chimeric Antigen Receptor Expressed in T Cells for

Patients With Pediatric Solid Tumors (GAP)
NCT02932956 Recruiting 1 Texas,

United
States

AGAR T cells, Cytoxan, Fludara Interleukin-15 Armored GPC3-specific Chimeric Antigen Receptor
Expressed in T Cells for Pediatric Solid Tumors

NCT04377932 Not yet
recruiting

1 Texas,
United
States

CARE T cells, Cytoxan, Fludara Interleukin-15 and -21 Armored Glypican-3-specific Chimeric
Antigen Receptor Expressed in T Cells for Pediatric Solid Tumors

NCT04715191 Not yet
recruiting

1 Texas,
United
States

TEGAR T cells, Cytoxan, Fludarabine T Cells co- Expressing a Second Generation GPC3-specific
Chimeric Antigen Receptor With Cytokines Interleukin-21 and 15 as
Immunotherapy for Patients With Liver Cancer (TEGAR)

NCT04093648 Withdrawn 1 Unknown

GLYCAR T cells, Cytoxan, Fludarabine GPC3-specific Chimeric Antigen Receptor Expressing T Cells for
Hepatocellular Carcinoma (GLYCAR)

NCT02905188 Recruiting 1 Texas,
United
States

Retroviral vector-transduced autologous
T cells to express anti-GPC3 CARs,
Fludarabine, Cyclophosphamide

Anti-GPC3 CAR-T for Treating GPC3-positive Advanced
Hepatocellular Carcinoma (HCC)

NCT03084380 Unknown 1/2 Chongqing,
China

Combined with other immunotherapy
CAR-CD19 T cell, CAR-BCMA T cell,
CAR-GPC3 T cell, (and 3 more…)

Clinical Study of Redirected Autologous T Cells With a Chimeric
Antigen Receptor in Patients With Malignant Tumors

NCT03302403 Active, not
recruiting

Not
Applicable

Zhejiang,
China
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mGC33 combined with an anti-mPD-L1 monoclonal antibody
was more effective against tumors than the antibody alone in
xenograft HCC models (95). A Phase I clinical trial of the anti-
GPC3 monoclonal antibody Codrituzumab combined with
atezozumab showed that the agents were well-tolerated and
effective in reducing tumor growth in patients with advanced
HCC. Among 18 evaluable patients, 1 case was diagnosed as PR,
and 10 were SD (including 1 case of unconfirmed PR), of which 6
cases had SD more than 6 months before progression. No DLT
was observed (96). Thus, GPC3-CAR-T in combination with
anti-PD-1 has increased antitumor efficacy and may have
potential for the treatment of HCC patients (97, 98).

4.7 Other Therapies
The direction of T cells to tumors is important in cancer therapy.
For example, T cells combined with GPC3-specific antibodies are
able to destroy GPC3-expressing HCC xenograft tumors in mice
(99). Photodynamic therapy (PDT) is a novel method for
treating tumors; this relies on the production of reactive
oxygen species that induce tumor cell death. This is linked to
both vascular shutdown and enhancement of immune activity,
but its applications have been limited by the poor tissue
penetration of visible light. The use of the near-infrared (NIR)
photosensitizer may solve these limitations (100). For example,
UCNPs@mSiO2-Ce6-GPC3 nanoparticles are biocompatible,
have low toxicity, and produce good cell imaging and
ant i tumor results (101) . A novel mult i - funct ional
nanostructure, galactose (GAL)- golden nanorods (GNR)-
siRNA of GPC3(siGPC3) was found to produce both silencing
of the GPC3 gene and photothermal action, and may be useful as
a synergistic treatment for cancer (102). A study on a GPC3-
targeting peptide (named G12)-modified liposome (GSI-Lip) co-
loaded with sorafenib (SF) and IR780 iodide (IR780) showed
promising sensitivity and specificity in detecting HCC together
with synergistic effects on chemo-photothermal theranostics
(103). Thus, the combination of chemotherapeutic drugs and
siRNA may have potential in improving anticancer effects using
synergistic interactions. SF-PL/siGPC3 with selected sizes and
zeta potentials, delivered by PEI-modified liposomes, was shown
to accumulate at the tumor site and to enter HCC cells, resulting
in suppression of both GPC3 and the pro-proliferation gene
cyclin D1 expression a. Intravenous injection of SF-PL/siGPC3
into HepG2-bearing nude mice both blocked tumor growth and
prolonged survival (104). GPC3 is involved in the progression of
HCC, including stimulation of Wnt signaling, Hedgehog
signaling. MiR-542-3p (105) and miR-485-5p (106) block the
Wnt signaling pathway, while GANT61 (107) and bufalin (108)
affect the Hedgehog signaling pathway to inhibit HCC.

4.8 Toxicities for Targeting GPC3
While exhibiting great efficacy, toxicities for targeting GPC3
must be attention. In GPC3 antibody therapy, GC33 was well
tolerated in HCC, the most common adverse events (AEs) were
the decrease of lymphocyte count (77%) and NK cell count
(77%), no grade 4 or 5 AEs were reported (63). When GC33
combined with anti-PD-L1 antibody, grade≥3 AEs were
increased aspartate aminotransferase and decreased
Frontiers in Oncology | www.frontiersin.org 7
lymphocyte count (96). Although the phase I clinical data of
ERY974 have not been published, in animal trials, the most
prominent AEs is cytokine release syndrome (CRS), an acute
inflammatory syndrome resulted from the activation of immune
cells and release of pro-inflammatory cytokines, however,
cytokine release can be managed by corticosteroid
premedication (67). In GPC3 vaccine therapy, there are reports
of patients with tumor lysis syndrome after the second GPC3
peptide injection, which led to high fever, liver failure, and death
(109). Thus, researchers need to optimize the balance between
superior tumor-killing abilities and severe tumor lysis syndrome.
In GPC3 CAR-T therapy, the commonest grade 3/4 adverse
event was hematotoxicity, mainly due to transient lymphocyte
count reduction resulted from lymphatic depletion (110, 111).
Moreover, cytokine release syndrome (CRS), an acute
inflammatory syndrome resulted from the activation of
immune cells and release of pro-inflammatory cytokines,
should be taken seriously. In a phase I clinical trial of GPC3
CAR-T for HCC, CRS occurred in 9/13 patients, including 1 case
of grade 5 CRS (died on day 19) (110). In another study, CRS
occurred in all patients, with a 50% incidence of grade≥3 CRS (3/
6) (111). In addition, neurotoxicity is related to CRS, cytokines
are elevated not only in blood, but also in cerebrospinal fluid, and
its clinical symptoms mainly include headache and disturbance
of consciousness (112). Fortunately, administrate high-dose
corticosteroids or IL-6 receptor antagonist drug tocilizumab
was able to alleviate CRS (113). In patients with high tumor
load, there is a more severe CRS (114).The use of CAR-T either
in the early stage of disease course or after reducing tumor
burden may significantly reduce the risk of severe CRS. Despite
the low expression of GPC3 in normal adult tissues (115), “on-
target off-tumor” may lead to disastrous side effects. GPC3 is
expressed in placenta and endometrium (116, 117), suggesting
that female patients, especially pregnant patients, may have a
high risk of “on-target off-tumor”. Furthermore, a small amount
of GPC3 was expressed in normal renal tubular and testicular
germ cells (115), so renal function should be monitored during
targeted GPC3 treatment, and reproductive protection should
also be paid attention to in infertile men. At present, assembling
suicide genes, synthetic notch receptors, on-switch CAR,
bispecific CAR-T cells can help prevent healthy cells from
CAR-T attacking (118). At present, no obvious toxicity has
been reported in GPC3 related gene therapy, immunotoxin
and photodynamic therapy (78, 93, 101).
5 CONCLUSION

Hepatocellular carcinoma has an extremely poor survival rate. To
improve both the outcome and quality of life of these patients, it is
necessary to discover and develop newmeans of treating the disease.
GPC3 is specifically associated with liver cancer and, although it is
useful in HCC diagnosis, an individual marker is not able to meet
the needs of clinical therapeutic application. While using a panel of
multiple markers greatly improves the rate of early cancer detection,
this only strengthens the suspected diagnosis of HCC, so further
February 2022 | Volume 12 | Article 824208
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exploration into increasing the sensitivity and specificity of these
markers is required.

GPC3 has exceptional cancer specificity and is currently being
investigated as a global target for cancer-targeted therapies and
immunotherapies. A series of antibodies against HCC is currently in
clinical and preclinical trials. However, single anti-GPC3 antibody
therapy does not kill liver cancer altogether, which may need to
achieve high target saturation in tumor cells to induce any beneficial
effect. Bispecific antibodies recognize different epitopes on the
antigen simultaneously, overcoming the shortcomings of
traditional monoclonal antibodies and showing excellent results in
animal experiments, but these results require verification in clinical
trials; nevertheless, the promising results suggest the potential of
developing combined immunotherapies by optimizing antibody
structures and raising antibodies against multiple targets. Second-
generation GPC3-based immunotherapies, such as CAR-T and
TCR engineering T cell therapy, have attracted worldwide
attention. CAR-T can effectively kill tumor cells with low
expression of cell surface antigens, which will expand substantially
in the body during treatment of patients. However, CAR-T cells
only show moderate anti-tumor activity in patients with solid
tumors, including liver cancer, partly because of their specific
immune microenvironment, containing the vascular-stromal
barrier reduces the expansion, persistence and penetration of
CAR-T; immune checkpoints and immunosuppressive cells allow
HCC to undergo immune escape (119). The CAR co-expressing IL-
15 and IL-21 showed improved activity. In addition, the toxicity
Frontiers in Oncology | www.frontiersin.org 8
caused by CAR-T has limited the application. Therefore,
optimization of the CAR structure to enhance the in vivo peak
expansion and safe half-life of CAR-T warrants further
investigation. It is also possible that the surviving cells may cease
to express GPC3 during the treatment, resulting in drug resistance.
GPC3-negative tumors may also grow and develop drug resistance
under such therapeutic pressure. Therefore, the exploration of novel
targets and combination therapies are future goals for
HCC research.
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