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Abstract: Ever since the immune regulatory strains of lymphocytic choriomeningitis virus (LCMV),
such as Clone 13, were isolated, LCMV infection of mice has served as a valuable model for the
mechanistic study of viral immune suppression and virus persistence. The exhaustion of virus-
specific T cells was demonstrated during LCMV infection, and the underlying mechanisms have been
extensively investigated using LCMV infection in mouse models. In particular, the mechanism for
gradual CD8+ T cell exhaustion at molecular and transcriptional levels has been investigated. These
studies revealed crucial roles for inhibitory receptors, surface markers, regulatory cytokines, and
transcription factors, including PD-1, PSGL-1, CXCR5, and TOX in the regulation of T cells. However,
the action mode for CD4+ T cell suppression is largely unknown. Recently, sphingosine kinase 2 was
proven to specifically repress CD4+ T cell proliferation and lead to LCMV persistence. As CD4+ T cell
regulation was also known to be important for viral persistence, research to uncover the mechanism
for CD4+ T cell repression could help us better understand how viruses launch and prolong their
persistence. This review summarizes discoveries derived from the study of LCMV in regard to the
mechanisms for T cell suppression and approaches for the termination of viral persistence with
special emphasis on CD8+ T cells.

Keywords: LCMV; persistent viral infections; viral immunology; immunology models; T cell immunology;
T cell exhaustion

1. Introduction

The lymphocytic choriomeningitis virus (LCMV) system is one of the most widely
used infection models for the study of virus-host immunity interactions. In large part, this
feat was possible due to the virus’s natural host, the mouse, which is useful for studying
biological concepts at the organismal level. The virus has proven easy to manipulate in cell
culture, and it is used as a model for more pathogenic arenaviruses (e.g., Lassa virus) and
to study meningitis diseases. In particular, the potent antiviral T cell response generated
against prototypic LCMV strains has become a characteristic model for host immunity to
acute and chronic viral infections. As a result, many seminal findings have been achieved
due to LCMV research, including insights into major histocompatibility restriction and T
cell memory. Moreover, the complex host-virus interactions leading to an establishment of
a persistent viral infection by other LCMV strains has fascinated many researchers and led
to the discovery of T cell exhaustion. This finding has been extended to other chronic virus
infections in humans as well as cancer studies and significantly influenced the development
of current PD-1-targeted cancer immunotherapies. This review will place a focus on the
mechanisms for immune suppression caused by chronic LCMV infections.

2. LCMV Clone 13 and Viral Persistence

Work with LCMV culminated in several key studies that identified LCMV variants
capable of causing persistent viral infection [1–3]. Of these, LCMV clone 13 (Cl 13), which
was isolated from the spleens of mice infected neonatally with LCMV Armstrong strain
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clone 53b (Arm), was shown to downregulate antiviral T cell responses and was able to
remain at high titers for long periods of time in mice [2]. Thus, LCMV Cl 13 became a
suitable model for the study of chronic viral infections. Adding to the complexity of how
LCMV Cl 13 establishes persistent infection, LCMV Cl 13 differs from LCMV Arm by
5 nucleotides. Only two of these nucleotide changes result in fundamental changes in the
amino acid sequence, one in glycoprotein (GP)-1 and the other in the L polymerase [4].
Specifically, a change in phenylalanine to leucine at position 260 in GP-1 was shown to be
critical for the generation of a viscerotropic LCMV strain (persistent) [5,6]. This substitution
led to better infectivity of macrophages and dendritic cells (DCs), including plasmacytoid
dendritic cells, due to enhanced binding with the alpha-dystroglycan receptor [7,8]. These
cells, especially DCs, express higher levels of alpha-dystroglycan, which makes them
important in the course of LCMV Cl 13 infection. Additionally, the change in L, lysine to
glutamine at residue 1079 leads to increased viral replication within infected cells (e.g.,
macrophages) [4,7]. Since the two variants are so similar, T cell epitopes recognized against
each virus are the same. Thus, minor variations in the viral genome can lead to very
significant changes in how the virus interacts with the host.

3. CD8+ T Cell Exhaustion

Early work with the persistent LCMV variants showed that the cytotoxic lymphocyte
response in chronically infected mice (carrier mice) was suppressed when compared to mice
infected with LCMV Arm [2,9,10]. However, the mechanism of LCMV Cl 13 persistence
had not been documented. It was later elucidated that the LCMV Cl 13 strain eventually
induces an absence of antiviral CD8+ T cell responses, which prevents clearance of the
virus [11]. Thus, the term “exhaustion” in the context of antiviral T cell responses was
introduced. This was clarified to show that the deletion of antiviral cytotoxic T cells was
specific to the NP397 epitope-recognizing CD8+ T cells, and the GP33 epitope-recognizing
effector CD8+ T cells were not completely deleted but were unable to elicit an antiviral
immune response [12]. Subsequent studies have focused many efforts at defining and
elucidating the mechanisms of T cell exhaustion.

The definition of an exhausted T cell has evolved. Initially, exhausted CD8+ T cells
were described as being absent or lacking cytotoxic and antiviral functions [11,12]. This
was later expanded to include a progressive loss of the capacity to produce antiviral
cytokines such as IL-2, tumor necrosis factor alpha (TNFα), and interferon γ (IFNγ), cells’
inability to proliferate in response to antigenic stimulation, and eventual deletion of the
cell itself through mechanisms dependent on Fas/Fas ligand (FasL), perforin, or the TNF
receptor (TNFR) [13,14]. The exhaustion process also has severe impacts on the generation
of memory CD8+ T cell phenotypes [15,16]. Further genomic analysis of exhausted CD8+

T cells and the identification of surface inhibitory markers (e.g., programmed cell death
protein 1, PD-1) on exhausted cells revealed a more nuanced picture in that exhausted
cells reflect a phenotype not wholly representative of other known T cell phenotypes,
including naïve, effector, memory, or anergy states [17,18]. In addition, exhausted CD8+ T
cells have altered metabolic and bioenergetic pathways, and downregulated translational
abilities [18,19].

More recent analyses have added further depth to the definition of exhausted CD8+

T cells, indicating that the progressive tendencies of the exhaustion phenotype give rise
to a heterogeneous population of exhausted cells as the infection continues. Initially, two
subpopulations of exhausted CD8+ T cells were identified: a memory-like population
consisting of T cell factor 1 (TCF1)hi T-box expressed in T cells (T-bet)hi PD-1lo cells,
which could potentially be revitalized with the use of inhibitory receptor blockade, and a
terminally exhausted population consisting of TCF1neg PD-1hi eomesodermin (Eomes)hi

CD39hi cells [20,21]. These populations have also been suggested to be dependent on tissue
localization. For example, it was noted that later during chronic infection a larger portion
of the terminally exhausted T cells were located in the peripheral tissues [13,22].
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As the memory-like subset may provide clues to the regulation of the exhaustion state,
further studies sought to investigate these cells in more detail. This subset was found to be
T follicular helper (Tfh)-like CD8+ T cells responsible for the so-called “proliferative burst”
following checkpoint blockade [20,23–26]. These cells express TCF1, C-X-C chemokine
receptor type 5 (CXCR5), and PD-1 but not T-cell immunoglobulin and mucin-domain
containing-3 (Tim-3) (TCF1hiPD-1+CXCR5+Tim3−), and regulation of this cell type was
dependent on B lymphocyte induced maturation protein 1 (Blimp-1), DNA-binding protein
inhibitor ID-2 (ID2), E2A, and B-cell lymphoma 6 protein homolog (Bcl6) signaling. These
cells were also suggested to be vital for clearing viral infections from lymphoid tissues
(particularly B cell follicles) as they had an increased ability to reduce viral loads and
worked synergistically with treatments targeting PD-1 and PD-1 ligand-1 (PD-L1).

Another group of transitional, less exhausted cells, residing between the memory-like
cells and terminally exhausted cells, was identified based on the expression of the glyco-
protein CD101 [27]. The progenitor or memory-like TCF1hi population of exhausted CD8+

T cells was shown to differentiate first into CD101−Tim3+ cells, which exhibited reduced
TCF1 expression and an effector-like transcriptional profile, including the expression of
CX3C chemokine receptor 1 (CX3CR1), production of pro-inflammatory cytokines and
granzyme B. In addition, these cells contributed to viral control [27,28]. These cells eventu-
ally convert into CD101+Tim3+ CD8+ T cells, representing a more exhausted phenotype.
Independent observations by another team identified a similar group of effector-like ex-
hausted cells that express CX3CR1 and have increased cytolytic abilities, which makes
them critical for viral control [29]. This study further defined the subsets of exhausted CD8+

T cells into three populations: (1) a memory-like, progenitor cell subset that expresses
TCF1, Ly108, CXCR5, and PD-1, does not express Tim-3 or CD101, and had the most
self-renewing properties; (2) an effector-exhausted subset that expresses CX3CR1, PD-1,
and Tim-3, were CD101-negative and TCF1-negative, and display some cytotoxic abilities;
(3) a terminally exhausted subset that expresses PD-1, Tim-3, and CD101, does not express
CX3CR1 or Ly108, and are highly dysfunctional [29]. All three subtypes display differen-
tial transcriptional profiles, phenotypical properties, functionality, and tissue localization.
Essentially, this scheme reciprocates the progressive exhaustion phenotype hypothesis
in that progenitor cells give rise to effector exhausted or terminally exhausted cells, and
effector exhausted cells can give rise to terminally exhausted cells. It should be noted that
a fourth population of exhausted CD8+ T cells was identified based on single-cell RNA
sequencing analysis and termed “proliferating” due to the mRNA expression profile of
Mki67 (Ki67) and Top2a, which appeared to represent Havcr2 (Tim-3), Pdcd1 (PD-1), and
Cx3cr1-expressing cells that do not express Tcf7 (TCF-1), Slamf6 (Ly108), or Cd101 and
have a phenotype more similar to terminally exhausted cells than to stem-like cells [30].
However, these observations were based on transcriptional profiling. The role of these
cells during LCMV Cl 13 infection and whether these cells represent another transitory
population within the effector-exhausted subpopulation or simply proliferating versions of
effector-exhausted CD8+ T cells is unknown.

A recent study sought to gain a better understanding of the role of these exhausted
CD8+ T cell subsets and their distribution within infected mice. Utilizing transcriptional
profiles from the above studies, the authors identified five functional groups of exhausted
CD8+ T cells: (1) memory (stem)-like, (2) proliferating, (3) effector-like, (4) intermedi-
ate exhaustion, and (5) advanced exhaustion [31]. The stem-like population, exhibiting
characteristics as defined above, was primarily found in the secondary lymphoid organs
(spleen and lymph nodes). The proliferating population was found in the lymphoid and
peripheral tissues at low frequencies. The effector-like population had high Cx3cr1 and
Gzmb (granzyme B) expression, expressed several molecules important for lymphocyte
trafficking (e.g., S1pr1, sphingosine 1-phosphate receptor 1), and were found mostly in the
lung, blood, and spleen. The intermediate exhausted population was found in all tissues
and displayed a transitory phenotype between effector-like and terminally exhausted.
Finally, the advanced (terminally) exhausted population was found in all tissues and made
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up the major populations of cells in the liver and bone marrow. This population generally
had higher levels of inhibitory gene expression (e.g., Pdcd1, Cd160, Lag3), and lower levels
of molecules associated with T cell receptor (TCR) activation (Nfkbid, Jun, Jund). Inter-
estingly, the authors found that the different populations generally displayed plasticity
in their function. To show this, exhausted CD8+ T cells from specific tissues were taken
and transferred into infection-matched recipient mice (at the same point of infection, i.e.,
14 days post infection). Transferred cells did not home preferentially to their originating
tissue, but they were able to change their phenotype to more closely resemble their new
tissue of residency. However, this was not the case for cells from the liver, which had more
advanced exhausted cells. While most cells did transition to the phenotype associated with
their new tissue localization, there seems to be some transitory lag as certain populations
retained characteristics of their original phenotype. Also, plasticity was much less prevalent
later on in the progression of the chronic infection (i.e., 21 days post infection). This work
demonstrates that the exhausted CD8+ T cell population is extremely heterogeneous, and
the development of exhaustion is dependent on the environment in which the T cells reside.
Furthermore, these studies highlight the ability of the populations to remain “plastic” in
that certain phenotypes are not as terminal as previously thought.

4. CD4+ T Cell Exhaustion

Many T cell exhaustion studies have primarily focused on CD8+ T cells. However,
it was appreciated from early experiments how important CD4+ T cell help was to the
eventual resolution of LCMV Cl 13 infection and in the maintenance of antiviral CD8+ T
cell responses throughout the exhaustion phase [12,32–34]. For instance, the transfer of
unexhausted CD4+ T cells into a mouse infected with LCMV Cl 13 greatly improves the
functionality of exhausted CD8+ T cells and promotes viral clearance [35]. Virus-specific
CD4+ T cells have also been shown to display an exhausted phenotype similar to exhausted,
CD8+ T cells, which appears to occur early during LCMV Cl 13 infection [14,36,37]. Hetero-
geneity in the exhausted CD4+ T cell population has been observed as some subsets of CD4+

T cells are able to persist throughout infection while others are functionally diminished
early in the course of infection [36]. Furthermore, it appears that CD4+ T cell exhaustion
is not merely a loss of function but a more nuanced altered functionality as some CD4+

T cells retain their ability to produce antiviral cytokines [36,38]. One explanation for this
is that viral persistence may push CD4+ T cells from a primarily antiviral, helper T cell
1 (Th1) phenotype to a Tfh cell phenotype [39]. This may be counterproductive for the
present viral infection but may aid in the eventual clearance of the virus. Exhausted CD4+

T cells have distinct transcriptional profiles from effector and memory CD4+ T cells, and
exhausted CD8+ T cells, though some similar pathways between exhausted T cells exist [38].
Therefore, T cell exhaustion is an intricate phenotype in that both CD8+ T cells and CD4+ T
cells can become exhausted, but this seemingly occurs by different mechanisms.

Unlike acute infection, strong TCR signaling induces the development of Tfh cells
and the strength of the signal inversely correlates with Th1 differentiation during chronic
LCMV infection [40]. Linking TCR signal to enhanced Tfh differentiation during chronic
LCMV infection was partly supported by an earlier study on the role of the signaling
adaptor CD2-associated protein (CD2AP). Inactivation of CD2AP was shown to promote
CD4+ Tfh cell differentiation and germinal center response, leading to enhanced control of
viral infection [41].

Previously, CD30, a member of the TNFR superfamily, was reported to regulate
multiple CD4+ Tfh cell responses, such as providing help for memory B cell responses [42].
However, during persistent infection with LCMV Cl 13 the level of T cell exhaustion or
viral control did not change in CD30-deficient mice compared to WT mice, indicating that
CD30 was proven to have no clear role in CD4+ or CD8+ T cell responses [43].
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5. Regulation of T Cell Exhaustion

The initiation of T cell exhaustion is a complex process requiring many interlinking
factors. Studies with LCMV Cl 13 have discovered several factors that may be primarily
involved in this process. The creation of a T cell-intrinsic or extrinsic suppressive envi-
ronment is due to high antigen levels, disruption of antigen presentation, upregulation of
inhibitory receptors, synthesis of immunoregulatory cytokines, and changes within the
epigenetic and transcriptional regulation of T cells. Several of these factors as they pertain
to LCMV Cl 13 are discussed below.

5.1. High Antigen Burden

Early work with some LCMV strains suggested that persistence was due to rapid
dissemination of the virus throughout the tissues [44]. This systemic spread was observed
with LCMV Cl 13, and it was suggested that high viral titers, and in correlation high
antigen loads, contribute to the downregulation of antiviral T cell responses [2,45]. Later
use of a perforin-deficient mouse model, which is incapable of clearing the virus, added
more substance to this hypothesis [14]. In this study, high viral loads led to a reduction
in antiviral CD8+ T cell effector functions as well as a reduction in antiviral CD4+ T
cell functionality (specifically IL-2 production). Furthermore, these high antigen loads
were shown to be important for sustaining the exhaustion phenotype and the level of
antigen, not the strength of TCR stimulation, initiates the exhaustion phenotype [46–48].
Interestingly, it has also been suggested that the kinetics of antigen presentation, with NP
antigens being expressed before GP antigens, and the inability of NP-recognizing T cells
to withstand the increased antigen burden during LCMV Cl 13 infection both contribute
to the impaired T cell response during chronic viral infection [14,49]. This may explain
why NP396-recognizing CD8+ T cells, the primary cytotoxic lymphocyte directed against
LCMV Arm, are rapidly diminished following LCMV Cl 13 infection [12,37,50,51].

5.2. Disruption of Lymphoid Organs

The physical disruption of lymphoid architecture is also responsible for the onset
of viral persistence. As noted, the mutation in GP-1 of LCMV Cl 13 led to increased
infectivity of macrophages and dendritic cells [7,52–55]. Work with LCMV strains that
cause persistent infections showed that these infected cells could be targeted by cyto-
toxic lymphocytes, leading to a disruption of the lymphoid tissues and an impairment
of the antigen-presentation process [56,57]. Further analysis showed that the lymphoid
architectural cells, fibroblastic reticular cells, were also infected with LCMV Cl 13, which
interrupted several lymphocyte processes that are regulated by these cells and led to the
increased disruption of the lymphoid structure. A more recent study has also shown that
LCMV Cl 13 triggers severe thymic depletion due to cytotoxic lymphocyte-mediated killing
of infected cells in the thymus [58]. While the thymus tissue eventually recovers during
chronic infection, the early disruption of this tissue contributed to an inability to replenish
antiviral T cells early during the establishment of persistence.

5.3. Inhibitory Receptors

The increased levels of inhibitory receptors are one of the more popular subtopics
in the study of persistent viral infections as these represent potential therapeutic targets.
Therapeutics that target inhibitory receptors discovered by the experimental use of LCMV
Cl 13 have also been analyzed and confirmed with other persistent viral infections and in
cancers (and vice versa). In this section, several key inhibitory receptors and their roles
during LCMV Cl 13 infection are discussed.

5.3.1. PD-1/PD-L1

In 2006, a ground-breaking study identified PD-1, a known inhibitory receptor of
TCR co-stimulation, as highly upregulated on exhausted CD8+ T cells during Cl 13 in-
fection [17,59,60]. PD-1 binding to PD-L1/PD-L2 on target cells/antigen presenting cells



Viruses 2021, 13, 1951 6 of 20

disrupts TCR signaling and inhibits T cell proliferation [61]. It was observed that antibody-
mediated disruption of PD-1 signaling via targeting of PD-L1 led to increased antiviral
CD8+ T cell functionality and viral clearance independent of CD4+ T cell help [17]. Another
study added to these findings to show that tissue expression of PD-L1 often correlated with
PD-1 expression of exhausted CD8+ T cells in those tissues [62]. Also, viral persistence may
result from PD-1hi CD8+ T cell populations in specific tissues, including the bone marrow
and liver. However, blockade of the PD-1/PD-L1 pathway does not completely restore
CD8+ T cell functionality but may act on a specific subset of exhausted CD8+ T cells [17,63].
The levels of PD-1 were also shown to be high on exhausted CD4+ T cells during LCMV
Cl 13 infection [38]. Nevertheless, it is unknown how important PD-1 on CD4+ T cells is
to the exhaustion phenotype. Targeting PD-1 has since been applied to multiple areas of
immunology for its role in repressing the immune response [64].

5.3.2. LAG-3

Lymphocyte activation gene-3 (LAG-3) is a molecule expressed on activated CD4+

and CD8+ T cells that negatively regulates T cell function through its interactions with
MHC-II [65–67]. LAG-3 is structurally similar to the CD4 molecule making it a competitor
with CD4 for MHC-II binding. Since CD8+ T cells do not interact with MHC-II, LSECtin,
which is expressed in the liver, has been suggested as a binding partner for LAG-3 [68–70].
LAG-3 can be strongly activated by IL-12, a pro-inflammatory molecule, and it is expressed
on T cells in inflamed tissues as opposed to lymphoid tissues. LAG-3 was shown to
be highly upregulated on exhausted CD8+ T cells during LCMV Cl 13 infection [18,62].
However, LAG-3 expression peaks early during infection and, unlike PD-1, seems to
wane throughout the exhaustion phase [18]. LAG-3 expression slightly reduces the rate
of CD8+ T cell division during LCMV infection, which may point to its function during
exhaustion [71]. Antibody-mediated blockade of LAG-3 did not drastically increase the
population of antiviral CD8+ T cells but did lead to a reduction of LCMV Cl 13 viral
titers. Importantly, dual blockade of PD-1 and LAG-3 led to a significant increase in the
functionality of antiviral CD8+ T cells during LCMV Cl 13 infection [62].

5.3.3. Tim-3

Tim-3 is expressed on Th1 CD4+ T cells and cytotoxic CD8+ T cells [72]. Binding of
Tim-3 with one of its ligands, galectin-9, induces cell death [73]. Another ligand, Ceacam-1,
was identified for Tim-3, which is vital for the inhibitory function of Tim-3 and is important
for the role of Tim-3 in exhaustion in a tumor setting [74]. Tim-3 regulates downstream
TCR signaling, thus mediating its suppressive function [69,74,75]. During LCMV Cl 13
infection, Tim-3 was found to be co-expressed with PD-1 and was associated with a severe
exhaustion state [76]. This has subsequently made Tim-3 a favorable marker for CD8+

T cells that have reached the advanced exhaustion stage as opposed to the memory-like
phenotype (i.e., Tim-3−) [23,29]. Similar to other inhibitory molecules, Tim-3 blockade
alone only slightly increased the function of antiviral CD8+ T cells and reduced LCMV
titers in the liver by a minimal amount but not at all in the serum [76]. However, the dual
blockade of Tim-3 and the PD-1/PD-L1 axis significantly increased antiviral CD8+ T cells
and viral clearance. The role of Tim-3 on exhausted CD4+ T cells is currently unknown.

5.3.4. CD160

Interestingly, CD160, a binding partner of herpes virus entry mediator (HVEM), has
been found to be a negative regulator of T cell activation and is upregulated on exhausted
CD8+ T cells during LCMV Cl 13 infection [18,62,77,78]. However, the exact mechanism
of CD160 signaling is unknown. Blocking of CD160 improved CD8+ T cell cytotoxicity
and survival of PD-1hi CD8+ T cells, in an in vitro experiment [62]. CD160 may only be
expressed on a subset of exhausted CD8+ T cells late during infection making it a player in
sustaining the persistent infection.
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5.3.5. TIGIT

T cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain
(TIGIT) is another immunoglobulin superfamily member that was found to be upregulated
on exhausted CD8+ T cells during LCMV Cl 13 infection [79,80]. TIGIT competes with
CD226 (a costimulatory molecule) for the ligand poliovirus receptor (PVR) and functions
by disrupting downstream TCR signaling [69,81,82]. While in vivo antibody-mediated
blockade against TIGIT alone did not restore antiviral function in CD8+ T cells, co-blockade
with PD-1 synergistically reduced viral titers and increased the proportion of IFNγ+ CD8+

T cells [80].

5.3.6. 2B4

As a CD2 receptor family member, 2B4 (CD244) has primarily been studied for its
role in inhibition of NK cells [83,84]. Additionally, 2B4 is found on some CD8+ T cells and
may function in a similar suppressor role; yet this T cell suppressive function is debated
by some studies [83,85,86]. 2B4 was found to be upregulated on exhausted CD8+ T cells
during LCMV Cl 13 infection and is mostly sustained during the infection [18,62]. The
transfer of 2B4-deficient virus-specific CD8+ T cells during a persistent infection promotes
sustained cell viability, which is not seen in the presence of 2B4 [16]. The blocking of 2B4
signaling did not enhance the cytotoxic ability of exhausted CD8+ T cells but did increase
IFNγ production [62]. 2B4 appears to be biased towards exhausted CD8+ T cells rather
than exhausted CD4+ T cells [38].

5.4. Immunoregulatory Cytokines

Several cytokines known to display immunoregulatory function during an immune
response have also been shown to promote an immunosuppressive environment during
LCMV Cl 13 infection. Several of these are discussed below.

5.4.1. IL-10

IL-10 is known for its suppressive functions on an array of immune cells [87]. During
LCMV Cl 13 infection, IL-10-producing, virus-specific CD4+ T cells significantly increase
in the spleen and the liver [36]. These cells were found early during infection but were
diminished by 9 days post infection. Also, IL-10 producing DCs were increased during
Cl 13 infection. Further analysis utilizing blockade of the IL-10 receptor or IL-10-deficient
mice showed that IL-10 contributes to the establishment of a persistent infection [88]. This
treatment enhanced antiviral CD8+ T cell responses, reduced PD-1-expressing CD8+ and
CD4+ T cells and promoted viral clearance. IL-10 was shown to function in a distinct
mechanism from PD-1/PD-L1-mediated suppression [89]. Importantly, this allowed a
combinatory blockade of PD-L1 and IL-10 to increase the antiviral response against LCMV
Cl 13 and promoted viral clearance. One of the major cell types identified to produce
IL-10 during LCMV Cl 13 infection is virus-specific Th1 CD4+ T cells [90]. Thus, exhausted
CD4+ T cells themselves appear to be reprogrammed, ultimately contributing to the ex-
haustion environment.

5.4.2. Type I IFN

Type I interferons (IFN-I) are well known for their role in antiviral responses [91].
While IFN-I was first discovered as an antiviral molecule that inhibits influenza virus
replication in 1957 [92], its immune regulatory activities have also been revealed during
virus infection [93]. The T cell protective function of IFN-I signaling has been well inves-
tigated during acute virus infection. For example, using the adoptive transfer of LCMV
epitope-specific T cells, the expression of IFN-I receptor on CD8+ T cells was proven to
be important for effector T cell expansion and memory formation [94]. The underlying
mechanism for IFN-I was shown to be mediated by blockade of natural killer (NK) cell-
mediated T cell lysis through the regulation of natural cytotoxicity triggering receptor 1
(NCR1) ligand on T cells [95]. However, during a chronic viral infection IFN-I signaling has
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been shown to negatively impact the adaptive immune response. IFN-I levels are elevated
early during LCMV Cl 13 infection [96]. Similarly, IFN-I stimulated genes are upregulated
and remain elevated in spleen tissue [97]. Blockade of the type I IFN receptor (IFNAR)
leads to decreased PD-L1 expression on LCMV-infected DCs and on macrophages as well
as a decrease in IL-10 levels in the serum early during infection [96,97]. Furthermore,
blocking IFN-I signaling promotes control of viral persistence, which is due to an increase
in virus-specific CD4+ T cells. IFN-I signaling is responsible for suppressing the formation
of antiviral CD8+ T cells by antagonizing the TCF1-mediated generation of stem-like CD8+

T cells. IFNAR1 blockade increases the proportion of TCF1+ CXCR5+ Tim-3− CD8+ T cells
during LCMV Cl 13 infection [26,98].

Exhaustion of CD4+ T cells during LCMV Cl 13 infection has also been associated
with chronic IFN-I signaling [38]. Even with low IFN-I levels later during LCMV Cl
13 infection, virus-specific CD4+ T cells appear to respond to IFN-I signals. In relation
to other cells, IFN-I is implicated in the disruption of B cell generation during LCMV
infection, which is defined as “B cell decimation.” This process involves the depletion
of virus-specific B cells due to the generation of short-lived plasma cells [99]. This effect
was independent of IFN-I signaling intrinsic to B cells. Instead, the process required a
coordinated effect from DCs, T cells, and myeloid cells. Of note, IFN-I signaling also
prevents the development of DCs during LCMV Cl 13 infection [100] where its signaling is
dependent on STAT2 but independent of STAT1. The transient decrease in functional DC
population will substantially disturb the antiviral host immunity required for controlling
viral spread.

Finally, a recent study has shown that IFN-I signaling during LCMV Cl 13 infec-
tion imposes changes on liver cell metabolism, which downregulates antiviral T cell
responses [101]. Signaling through IFNAR caused a break in the urea cycle, which is an
important metabolic pathway in the liver, leading to an alteration of arginine and ornithine
ratios in the serum. This change in metabolites was shown to impact the ability of virus-
specific CD4+ and CD8+ T cells to respond to the LCMV infection but simultaneously
protected the liver tissue from T cell-mediated damage. Overall, IFN-I appears to play a
central role in the induction of exhaustion due to its potent immunoregulatory abilities
during chronic infection.

5.4.3. TGF-β

TGF-β is a well-characterized cytokine known for its role in inhibiting immunopathol-
ogy [102]. Virus-specific CD8+ T cells were shown to have increased TGF-β expression
during LCMV Cl 13 infection [103]. In the absence of TGF-β signaling, virus-specific CD8+

T cells had reduced levels of the pro-apoptotic molecule Bcl-2-like protein 11 (Bim), which
correlated with increased survival and functionality of both virus-specific CD4+ and CD8+

T cells during infection. Furthermore, TGF-β-deficient mice had reduced LCMV Cl 13 titers,
which was dependent on CD8+ T cells and partially on CD4+ T cells. The observed effects
on CD8+ T cells occurred through intrinsic TGF-β signaling and extrinsic effects of TGF-β
on other cells. However, subsequent studies showed that antagonizing TGF-β signaling,
as opposed to complete deletion, was only able to minimally increase virus-specific T
cell responses and did not promote viral clearance [104,105]. These studies imply that
TGF-β may be integral in contributing to the exhaustion state but not necessary to its
continued maintenance.

5.5. Regulation of Transcription and Epigenetic Modification

During T cell exhaustion, exhausted cells have been shown to acquire a distinct
state of epigenetic and transcriptional changes that affect gene expression. These are
distinct from effector and memory CD8+ T cells during acute viral infection [18,106–108].
Interestingly, changes in regulatory regions in exhausted CD8+ T cells were found to
be typically associated with the activation of local genes, rather than the repression of
those genes [106,107]. For instance, chromatin accessible regions related to the genes
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for inhibitory receptors PD-1 and Tim-3 were found to be open in exhausted cells [106].
Exhausted T cells appear to contain an open enhancer region for the Pdcd1 (PD-1) locus,
inaccessible in normal CD8+ T cells. Transcription factors commonly associated with
exhausted T cells were also shown to localize to this enhancer region. Nevertheless, many
accessible gene regions are shared between exhausted CD8+ T cells and normal CD8+ T
cells, but the differences arise in the gene regulatory areas [107]. Interestingly, another study
found that PD-1/PD-L1 blockade did not significantly change the epigenetic organization
in exhausted CD8+ T cells [108]. Thus, PD-1 may regulate signaling and transcriptional
events in cells, but it does not appear to regulate the epigenetic programming of exhausted
T cells. Furthermore, PD-1/PD-L1 blockade failed to generate a lasting effector or memory
phenotype from exhausted CD8+ T cells. This implies that changes in exhausted T cells
are seemingly hard-wired in the genome and therapeutics may need to target upstream
regulators of chromatin remodeling or specific transcriptional regulators that affect gene
expression to alleviate the exhaustive state.

Differential expression patterns of transcription factors in both exhausted CD8+ and
CD4+ T cells have been observed [18,38]. These are often considered the regulatory mecha-
nisms that influence the exhaustive state. In exhausted CD8+ T cells, regulatory changes
were associated with not only an increase in inhibitory receptors but also changes in in-
tracellular signaling pathways and changes in metabolic regulation [18]. Exhausted CD4+

T cells did show some of the conserved regulatory pathways of exhausted CD8+ T cells,
but additional changes were seen in distinct transcription factors. Also, exhausted CD4+

T cell transcriptional patterns displayed a striking correlation with IFN-I signaling [38].
Several regulatory factors that have been identified as important during T cell exhaustion
are discussed in this section.

5.5.1. TOX

Thymocyte selection-associated high mobility group box protein TOX (TOX) has
recently been identified as a critical transcriptional factor associated with the development
of exhaustion [109–111]. TOX was shown to be required for the development of exhausted
CD8+ T cells through its impact on modulating epigenetic and transcriptional regulatory
features associated with the exhaustion state [110]. TOX was initially found to be induced
by calcium signaling via calcineurin, which functions through the transcriptional regulator
nuclear factor of activated T cells (NFAT) 2. TOX was shown to be required for the formation
of stem-like exhausted CD8+ T cells and differentiates them from normal memory precursor
CD8+ T cells [109,111]. Moreover, TOX promoted the survival of this subset of exhausted
CD8+ T cells as well as terminally exhausted CD8+ T cells. Therefore, TOX may play an
important role in the early differentiation into the exhaustion state but could also impart
longevity on these cells.

5.5.2. NFAT

NFAT, a group of transcription factors, normally involved in T cell activation, has
consistently been associated with the exhaustion state [18]. NFAT proteins interact with
the Fos-Jun (activator protein 1, AP-1) transcription factors [112]. Modification of NFAT
to prevent its partnering with AP-1 was shown to control aspects of T cell exhaustion
through its binding to the regulatory regions of exhaustion-associated genes, like Pcdc1 and
Havcr2 [113]. Interestingly, Fos, a binding partner of NFAT, was shown to be downregulated
during LCMV Cl 13 infection, while NFAT was increased [18]. This gives substance to the
role of unpartnered NFAT in regulating exhaustion. NFAT activity may also promote the
establishment of the exhaustion phenotype through changes in active chromatin regions
as well as transcriptional activation of genes [107]. NFAT is capable of inducing PD-1
expression. As a result, NFAT-deficient mice were shown to have fewer virus-specific CD8+

T cells expressing PD-1, Tim-3, and LAG-3 during LCMV infection [113,114]. Moreover,
PD-1/PD-L1 blockade reduced the expression levels of targets for unpartnered NFAT [108].
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5.5.3. TCF1

TCF1 is important for the generation of memory and Tfh cells and is suggested to
play a role in long-term T cell maintenance [26,115,116]. TCF1 was identified as a critical
transcription factor in the generation of the memory-like subset of exhausted CD8+ T
cells [20,23,25,26]. TCF1 is critical for maintaining this population during the exhaustion
phase, which contributes to eventual viral clearance. TCF1-expressing exhausted CD8+ T
cells express PD-1 but have lower levels of inhibitory receptors that are associated with
more terminally exhausted cells (e.g., Tim-3) [26]. Moreover, these cells have enhanced
proliferative capabilities [20]. TCF1 works in conjunction with Bcl6 to mediate this phe-
notype but was shown to repress Blimp-1, which antagonizes CXCR5 expression crucial
for the function of these cells [25,26]. Later work showed that TCF1 functions early during
the generation of the exhaustion state to prevent the formation of terminally differentiated
effector cells [117]. PD-1 expression in this group of cells may protect them from alternative
differentiation or deletion. Furthermore, this early regulation may facilitate the actions
of TOX to provide stable epigenetic changes for the preservation of these memory-like
cells [117]. Another transcription factor Forkhead box O1 (FOXO1), which can regulate
TCF1 expression, has also been shown to be vital for sustaining the memory-like population
of exhausted cells during LCMV Cl 13 infection [118]. Thus, TCF1 may be an essential
regulator that positions T cells to differentiate towards the exhaustion state. While this
seems to be a negative consequence, it may also prevent burn-out or host damage from
over-activated T cells.

5.5.4. T-bet/Eomes

The transcription factor T-bet is often associated with its role in effector T cells. During
LCMV Cl 13 infection, T-bet functions to repress exhaustion [79,119]. T-bet levels were
lower in virus-specific CD8+ T cells following LCMV Cl 13 infection compared to LCMV
Arm infection due to the higher antigen loads seen during LCMV Cl 13 infection [119].
In the absence of T-bet, LCMV Cl 13 titers are higher and antiviral CD8+ T cells are less
functional. Furthermore, T-bet was shown to repress PD-1, LAG-3, and CD160 expression,
and specifically repressed PD-1 expression at the transcriptional level. Therefore, T-bet may
play a critical role in the maintenance of the effector function of exhausted CD8+ T cells.
Alternatively, T-bet may promote an antiviral response but loses out to pro-exhaustion
factors early during infection.

Eomes is another transcription factor that is upregulated in exhausted CD8+ T cells.
However, it is generally associated with effector T cells and generation of a memory CD8+

T cell phenotype [18,79,120]. Eomes was found to be upregulated during LCMV Cl 13
infection and its expression represented a more terminally differentiated population [121].
Furthermore, the Eomes-expressing cells appeared to be derived from the T-bet-expressing
population but had enhanced proliferating capabilities. Thus, T-bet-expressing cells and
Eomes-expressing cells may represent distinct populations of exhausted CD8+ T cells that
both play roles in the antiviral response [119,121]. In fact, Eomes expression was increased
in the memory-like population of exhausted CD8+ T cells expressing TCF1 [20]. These
studies show the complexity of differential populations within the exhausted state as well
as the importance of their maintenance for eventual viral control.

5.5.5. Blimp-1

Blimp-1 is a transcriptional repressor known to regulate cytokine expression in T
lymphocytes as well as regulate B cell development [122]. Blimp-1 expression is increased
in exhausted CD8+ T cells [18,62]. Deletion of Blimp-1 led to increased virus-specific
CD8+ T cells and decreased PD-1, LAG-3, CD160, and 2B4 protein levels [62]. Like other
transcriptional regulators the exhaustion-promoting function of Blimp-1 is necessary for
eventual viral control, and Blimp-1-deficiency led to moderately increased viral levels. As
noted, Blimp-1 antagonizes generation of the memory-like population of exhausted CD8+ T
cells [25]. In another study, Blimp-1 was also found to promote the expression of IL-10 from
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Th1 cells due to constant antigen exposure [90]. Therefore, Blimp-1 may play important
roles in the generation of effector-like exhausted CD8+ T cell populations that are required
for intermediate viral control before the resolution phase but also in the generation of
regulatory CD4+ T cells that contribute to the immunosuppressive environment.

5.6. Other Markers
5.6.1. Sphingosine Kinase 2

We have recently identified a cellular protein, sphingosine kinase 2 (SphK2), which
is important for regulating T cell exhaustion, specifically through an intrinsic mechanism
in CD4+ T cells [123]. SphK2 is an enzyme responsible for the generation of sphingosine
1-phosphate (S1P), a bioactive lipid metabolite, which regulates diverse cellular and disease
conditions. While SphK2 has been associated with regulation of the replication process of
viruses including influenza A virus, little is known regarding its function in host immunity
to infection [124,125]. SphK2 as well as the activated, phosphorylated form of SphK2
were shown to increase in CD4+ T cells during LCMV Cl 13 infection, and deletion of
SphK2 led to increased virus-specific T cell responses resulting in immunopathologic
fatality of infected mice with nephrosis [123]. Thus, SphK2 negatively regulates CD4+ T
cell functionality, which extrinsically contributes to the exhaustion of virus-specific CD8+

T cells. Use of a SphK2-selective inhibitor led to an increase in virus-specific, antiviral
cytokine producing CD8+ and CD4+ T cells and consequent acceleration of viral clearance.
The effects on viral resolution could even be observed if the inhibitor was given after the
establishment of a chronic viral infection, which suggests that SphK2 is important for
sustaining T cell exhaustion during the chronic stage of infection. Although the exact action
of SphK2 on CD4+ T cells is unknown, significant changes in transcriptional regulation and
cell cycle progression was observed in SphK2-deficient CD4+ T cells. Furthermore, SphK2-
deficient CD4+ T cells were able to proliferate better in response to antigenic stimulation
than SphK2-sufficient cells. Previous studies by others have shown the ability of SphK2 to
repress histone deacetylase activity and regulate gene expression in the nucleus of cancer
cells as well as regulate DNA synthesis [126,127]. Thus, SphK2 may play a role in mediating
the exhaustion state of CD4+ T cells through epigenetic or transcriptional manners which
warrants further investigation.

In addition, CD2AP was reported to regulate CD4+ T cell differentiation during chronic
LCMV infection [41], but SphK2 deletion did not affect the expression of Cd2ap from the
RNA-Seq analysis performed by us (not shown). This suggests that SphK2 functions in
CD4+ T cells independently of CD2AP.

5.6.2. PSGL-1

A recent finding identified P-selectin glycoprotein ligand-1 (PSGL-1) as a novel regu-
lator of CD8+ and CD4+ T cells exhaustion. PSGL-1 is normally involved in T cell motility;
however, PSGL-1-deficient CD4+ and CD8+ T cells have reduced inhibitory receptor levels
and increased antiviral functionality against LCMV Cl 13 [128]. PSGL-1 appears to function
through the extracellular signal-related kinases (ERK) and protein kinase B (AKT) signaling
pathways, which are known to regulate T cell responses. Upregulation of PSGL-1 promotes
increased PD-1 levels and reduces TCR stimulation and IL-2 signaling. PSGL-1 was also
found to be linked to transcriptional changes that promote CD8+ T cell exhaustion. In the
absence of PSGL-1, the observed enhanced T cell functionality was linked to increased
expression of the IL-7 and IL-2 receptors. Reduction of both of these signaling pathways
are hallmarks for the exhaustion phenotype due to their roles in T cell proliferation and
the memory response. Furthermore, several other inhibitory receptors (e.g., BTLA, CD160)
were decreased on PSGL-1-deficient T cells, which may indicate that PSGL-1 is involved in
upstream regulatory events that contribute to terminal exhaustion. Finally, CD4+ T cells
were critical to the increased effector response of exhausted CD8+ T cells in the PSGL-1-
deificient mice, indicating that PSGL-1 may play a role in the exhaustion of both CD4+ and
CD8+ T cells [128].
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5.6.3. PTPN22

Protein tyrosine phosphatase non-receptor 22 (PTPN22) is traditionally associated
with diverse autoimmune diseases as well as playing a role in T cells and innate immune
cells [129]. Interestingly, during LCMV Cl 13 infection PTPN22-deficient mice showed
reduced viral titers at 14dpi in several tissues and viral clearance in serum by 14dpi [130].
The absence of PTPN22 led to reduced IFN-I levels produced by the DCs and T cells of
infected mice. These reduced IFN-I levels were correlated with reduced expression of the
cAMP responsive element modulator, CREM, which is known to block IL-2 production.
Overall, PTPN22-deficiency increased the amount and functionality of virus-specific CD4+

T cells, which appeared to be cell-extrinsic, leading to a better virus-specific CD8+ T
cell response. These findings were corroborated by another group soon after, showing
that PTPN22-deficient mice exhibited a reduced CD8+ T cell exhaustion phenotype, and
improved virus-specific CD8+ and CD4+ T cell responses, which depended on T cell-
extrinsic factors [131]. Therefore, PTPN22 can promote persistent LCMV infection by
acting on CD4+ T cells, which prevents efficient help for the cytotoxic lymphocytes. It may
be important to note that, in contrast to other molecules mentioned in this review, PTPN22
deficiency does not lead to harmful effects on the infected host through an increased
immune response. This may be due to PTPN22’s extrinsic function.

5.6.4. PTPN2

Recently, Tyrosine-protein phosphatase non-receptor type 2 (PTPN2) was identified
as a negative regulator for generating the terminally exhausted (Tim-3+) CD8+ T cell
population [132]. While not a transcriptional factor itself, PTPN2 is normally associated
with several important signaling cascades [133]. In the absence of PTPN2, the Tim-3+

terminally exhausted population was found to increase during LCMV Cl 13 infection.
This occurs due to increased IFN-I signaling. Thus, PTPN2 appears to work against the
IFN-I-induced mechanism of instigating terminal exhaustion.

6. Resolution of Chronic Viral Infection

While LCMV Cl 13 is able to last long term when adult mice are infected intravenously,
the virus is ultimately cleared from mice due to the anti-viral immunity after 60–100 days
of infection. Therefore, this model also provided an opportunity to investigate how the
anti-viral immunity can be strengthened over time to eradicate viruses. For example, when
CD4+ T cells were depleted, LCMV Cl 13 could establish life-long persistence, indicating
that the presence of CD4+ T cells is important for the eventual clearance of the virus [12].
Several studies were conducted to reveal the mechanism for the termination of chronic
LCMV Cl 13 infection.

IL-21 produced by CD4+ T cells during LCMV Cl 13 infection and signaling through
the IL-21 receptor is crucial for maintaining antiviral CD8+ T cell responses and ensuring
clearance of infection [134–136]. In the absence of IL-21, CD8+ T cells cannot control the
infection and are deleted [134]. These studies also showed that IL-21+ CD4+ T cells were
diminished in LCMV Cl 13 infection compared to LCMV Arm infection [135]. This may
provide a potential explanation for the lessened antiviral capacity during LCMV Cl 13
infection; even though, the reduced IL-21 production is eventually able to promote viral
clearance. Conversely, the switch to IL-21 producing CD4+ T cells may serve to promote
sustained antiviral CD8+ T cell response [134]. Recently, this study was expanded to
show that IL-21 produced by CD4+ T cells during LCMV Cl 13 infection promoted the
formation of CX3CR1+ CD8+ T cells during the exhaustion phase, which are important for
maintaining viral control [29]. IL-21 can also promote B cell responses, the development of
Th17 CD4+ T cells, and Tfh CD4+ T cells, which may assist in the resolution of inflammation
and the infection [137,138].

The IL-6 family of cytokines and signaling through the IL-6 family receptors are
also vital for LCMV Cl 13 clearance. IL-6-deficient mice were shown to be incapable of
controlling the viral infection [139]. Additionally, IL-6 was shown to be important for the
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generation of Tfh CD4+ T cells (through upregulation of Bcl6) and B cell responses later
during LCMV Cl 13 infection. Follicular dendritic cells were a suggested source of this
IL-6. In addition, IL-27, another IL-6 family member, was shown to play a critical role in
LCMV Cl 13 viral control [140]. Overall, signaling through the shared IL-6 family receptor,
gp130, was crucial for promoting an antiviral response and producing IL-21 during LCMV
Cl 13 infection. IL-27 can also contribute to the early innate antiviral response through its
actions on DCs, which contributes to increased IFN-I levels but also is required for eventual
viral clearance [141]. IL-6 can promote B cell responses by mediating the production of
IL-21 by CD4+ T cells and inhibit the formation of Tregs [142,143]. Recently, IL-27 has
been identified to play an intrinsic role in promoting the survival of CXCR5+ CD8+ T cells,
which were important for maintaining the antiviral T cell response during LCMV Cl 13
infection [20,25,98]. Thus, IL-27 could oppose IFN-I signaling during LCMV infection.

Both IL-21 and IL-6 are important for generating Tfh CD4+ T cells that are selected for
during LCMV Cl 13 infection [39,139,144]. Ultimately, these cells promote an adequate B
cell and neutralizing antibody response that aids in the clearance of the infection [145–147].
Interestingly, chronic infection with LCMV Cl 13 virus was shown to instigate more robust
germinal center B cell responses and antibody production than was capable during LCMV
Arm infection [148,149]. This may be a result of the CD8+ T cell-dominated response during
LCMV Arm infection. Despite diminished T cell responses during chronic viral infection,
eventually protective B cell responses develop, and viral clearance is achieved.

Taken together, these studies show that many arms of the adaptive immune response
are critical for the eventual clearance of LCMV Cl 13. The mechanisms behind the regulation
of these immune responses are complex and appear to be precisely coordinated.

7. Conclusions and Perspectives

LCMV Cl 13 has been observed to cause drastic immunoregulatory events during
infection, which functionally impairs the host immune response (Figure 1). These events
are fascinating considering the similarity of LCMV Cl 13 to its variant strain LCMV Arm,
which is rapidly cleared upon infection. Many programs contribute to instigating T cell
exhaustion. Synthesis of immune regulatory molecules in the presence of high antigen
burdens mediate changes in immune cells. The process is often associated with a change
in gene transcriptional regulations that result in the increased expression of inhibitory
receptors and other molecules to modulate the immune response. However, the immune
protective signals can instill changes in antiviral T cells that burst and restore immune
responses to promote clearance of the infection. Many of these concepts have been extended
to chronic viral infections in humans as well as during cancer. Thus, the LCMV Cl 13 model
has been a very influential contributor to our understanding of the immune response
and continues to be a useful model for understanding virus-host defense interactions.
Further research has the potential to lead to the development of new immune therapeutic
maneuvers to cure viral diseases, as well as illnesses caused by immune dysregulation.
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a strong host CD8+ T cell response and an ancillary CD4+ T cell response are able to clear the
viral infection quickly. However, a variant strain of LCMV, Clone 13 (Cl 13), has two functional
amino acid (aa) changes, which affect the virus’s ability to bind to its receptor and replicate in the
host cell. These changes instigate a progressive exhaustion phenotype in both CD8+ and CD4+

T cells during LCMV Cl 13 infection. Studies have revealed that early, high antigen levels, the
production of immunosuppressive cytokines, and disruption of lymphoid tissues promote epigenetic
and transcriptional changes in T cells. These regulatory events lead to and occur in conjunction with
increases in inhibitory receptor levels on exhausted T cells. Ultimately, exhausted T cells lose their
ability to function and proliferate allowing the virus to persist in the host.
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