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Abstract 

Background: The triglyceride and glucose index (TyG) and triglyceride to high-density lipoprotein cholesterol ratio 
(TG/HDL-C) are substitute markers of insulin resistance (IR). In a retrospective cross-sectional study, the authors aimed 
to compare the efficacy of the two indicators in diagnosing metabolic-associated fatty liver disease (MAFLD) to con-
struct a novel disease diagnosis model.

Methods: Overall, 229 patients (97 MAFLD and 132 Non-MAFLD at West China Hospital of Sichuan University were 
included. MAFLD was diagnosed using ultrasonography. Biochemical indexes were collected and analyzed by logistic 
regression to screen out indicators that were expressed differently in MAFLD patients and healthy controls, which 
were incorporated into a diagnostic model.

Results: After adjusting for age, sex, and body mass index (BMI), serum alanine transaminase (ALT), aspartate 
transaminase (AST), AST/ALT (A/A), fasting plasma glucose (FPG), cystatin C (Cys-C), uric acid (URIC), triglycerides 
(TG), high-density lipoprotein cholesterol (HDL-C), alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT), 
non-HDL-C, LDL-C/HDL-C, non-HDL-C/HDL-C, TG/HDL-C, TC/HDL-C, TyG, and TyG-BMI were risk factors for MAFLD. The 
odds ratio of TG/HDL-C and TyG were 5.629 (95%CI: 3.039–10.424) and 182.474 (95%CI: 33.518–993.407), respectively. 
In identifying MAFLD, TyG, TyG-BMI, TG, and TG/HDL-C were found to be the most vital indexes based on the random 
forest method, with the area under the curve (AUC) greater than 0.9. In addition, the combination of BMI, ALT, and TyG 
had a high diagnostic efficiency for MAFLD.
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Background
Considering the current understanding of its pathogen-
esis and its rising prevalence, nonalcoholic fatty liver 
disease (NAFLD) is now regarded as metabolic-associ-
ated fatty liver disease (MAFLD) [1]. Different diagnos-
tic criteria did not affect the prevalence of NAFLD or 
MAFLD in the United States (US) [2]. Affecting more 
than a quarter of adults worldwide, MAFLD is becoming 
one of the most common liver diseases [3]. The incidence 
of MAFLD continues to increase in developed countries 
such as the US and European countries like Germany, 
France, Italy, and the United Kingdom, causing a tre-
mendous economic burden [4]. In China, a significant 
increase in the occurrence of MAFLD is expected, from 
243.66 million in 2016 to 314.58 million in 2030 [5]. In 
China, several challenges associated with MAFLD are as 
follows: a large number of cases, high genetic susceptibil-
ity, high occurrence in young patients, absence of atten-
tion and recognition, and the lack of adequate diagnostic 
methods and treatments [6].

Although the pathogenesis theory of MAFLD has 
changed from the “two-hit” theory to the “multi-hit” 
theory, insulin resistance (IR) still plays a significant role 
in the development of MAFLD [7]. Regarded as the gold 
standard method to measure IR, hyperinsulinemic-eug-
lycemic clamp (HIEC) is complicated, time-consuming, 
and expensive. Triglyceride to high-density lipoprotein 
cholesterol (TG/HDL-C) and triglyceride and glucose 
index (TyG) have been shown to be useful biomark-
ers for identifying individuals with IR in a large group 
of Chinese individuals [8, 9]. Early in 2005, TG/HDL-C 
was considered an important factor in predicting IR and 
was shown to increase the risk of cardiovascular diseases 
in patients [10]. In addition to race, the optimum cut-
off value of TG/HDL-C for predicting IR was different 
between genders (female > 2.5, male > 3.5), and patients 
with TG/HDL-C above the cut-off value were exposed 
to higher cardiovascular diseases (CVD) risk [11]. Both 
TG/HDL-C and metabolic syndrome (MS) can effectively 
diagnose IR and predict the risk of CVD, while TyG is 
relatively weak in predicting the occurrence of CVD [12–
14]. TG/HDL-C is also correlated with the occurrence of 
diabetes mellitus (DM) with related vascular diseases and 
fatty liver disease [15–17]. TyG, calculated using fasting 
plasma glucose (FPG) and triglycerides (TG), has a close 
connection with IR, which is related to glucolipid metab-
olism [18]. In detecting IR, TyG is cheaper and more 
convenient than the homeostasis model assessment of 

insulin resistance (HOMA-IR) index, which is commonly 
used as a substitute for the HIEC [19]. TyG is also asso-
ciated with cardiometabolic diseases and is a risk prog-
nostic factor for stroke, DM, acute myocardial infarction, 
and acute coronary syndrome [20–22]. In addition, TyG 
may be a useful indicator of MAFLD not only in adults 
but also in children and the elderly [23–25]. Therefore, 
this study aimed to compare the ability of TG/HDL-C 
and TyG to distinguish MAFLD from healthy people and 
establish a better prediction model for MAFLD.

Methods
Overall, 229 participants were enrolled from West China 
Hospital between October 2018 and March 2021, includ-
ing 97 patients with MAFLD (MAFLD group) and 132 
individuals who underwent a physical examination (non-
MAFLD group). MAFLD was diagnosed by experienced 
clinicians based on the abdominal ultrasound diagnosis 
of hepatic steatosis and evidence of any of the follow-
ing three conditions: overweight/obesity, type 2 diabe-
tes mellitus (T2DM), or metabolic disorders [26]. Since 
MAFLD emphasizes the influence of metabolic fac-
tors and can coexist with other liver diseases, MAFLD 
patients included in our study did not exclude patients 
with liver diseases caused by excessive alcohol consump-
tion and viruses [27, 28].

Fasting blood samples from the median cubital vein 
were used to quantify total bilirubin (TBIL), indirect 
bilirubin (IBIL), direct bilirubin (DBIL), ALT, AST, total 
protein (TP), albumin (ALB), globulin (GLB), ALP, FPG, 
TG, total cholesterol (TC), TG, HDL-C, low-density 
lipoprotein cholesterol (LDL-C), URIC, urea (UREA), 
creatinine (CREA), Cys-C, creatine kinase (CK), lactate 
dehydrogenase (LDH), and hydroxybutyrate dehydro-
genase (HBDH) using Roche’s automatic biochemical 
analyzer and the corresponding kit (Roche, Mannheim, 
Germany). In this study, TyG was calculated using estab-
lished formulas: TyG = Ln [TG (mg/dl) × FPG (mg/dl)/2] 
[19]. The formula used for converting mmol/L to mg/
dL is as follows: for FPG, 1 mmol/L = 18 mg/dL; for TG, 
1 mmol/L = 88.5 mg/dL. TyG-BMI was equal to TyG 
index × BMI. Hepatic steatosis index (HSI) = 8 × (ALT/
AST ratio) + BMI (+ 2, if female; + 2, if diabetes mellitus).

Statistical analysis and graph drawing was done using 
SPSS 22.0 (IBM, Corp., N.Y., USA) and R software 4.1.1 
(R Foundation for Statistical Computing, Vienna, Aus-
tria). Student’s t-test and Mann-Whitney U test were 
used to compare two groups of normal or non-normal 

Conclusions: TyG and TG/HDL-C were potential risk factors for MAFLD, and the former performed better in diagnos-
ing MAFLD. The combination of BMI, ALT, and TyG improved the diagnostic capability for MAFLD.
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distributed continuous variables through the tableone 
package of the R language, respectively. Through SPSS 
22.0, Pearson’s chi-square test was used for categorical 
variables, and logistic regression analysis was used to 
identify independent risk factors for MAFLD with the OR 
value expressed with a 95% confidence interval (CI). After 
constructing a new predictive MAFLD model by binary 
logistic regression, the model was graphed by nomogram 
through the rms package. A receiver operating charac-
teristic curve (ROC curve) through the pROC package 
was used for diagnostic value analysis, and the maximum 
value of the Youden index (sensitivity+specificity-1) was 
taken as the optimal cut-off value. Cross-validation was 
used to describe the predictive efficacy of the model by 
tidyverse and caret packages. Hosmer-Lemeshow test and 
calibration plot through the rms package were used for 
calibration capability analysis and decision curve analysis 
(DCA) through the nricens package for determining the 
net clinical benefits. Differences were considered statisti-
cally significant at P < 0.05.

Results
Baseline characteristics of the study participants
Overall, 229 patients were enrolled in this study. Table 1 
lists the baseline characteristics of subjects with and 
without MAFLD. Individuals with MAFLD had higher 
levels of BMI, ALT, AST, FPG, UREA, CREA, Cys-C, 
URIC, TG, TC, ALP, GGT, LDH, HBDH, non-HDL-C, 
TyG, TyG-BMI, and lower AST/ALT, TP, ALB, GLB, and 
HDL-C levels (all P < 0.05). As a result, the ratios of the 
above indicators, such as LDL-C/HDL-C, non-HDL-C/
HDL-C, TG/HDL-C, and TC/HDL-C were greater in 
MAFLD patients than in the non-MAFLD group.

Variable selection and model construction
Among these indexes, 28 variables showed significant dif-
ferences between the MAFLD and non-MAFLD groups. 
The differences in 17 variables remained after adjust-
ing for a variety of factors, including age, sex, and BMI 
(Table 2).

After all the above 17 variables, age, gender and BMI 
were included in binary logistic regression, the remaining 
5 variables showed statistical differences, namely BMI, 
ALT, TG, TyG, and TyG-BMI. In order to strictly con-
trol the collinearity of variables, Variance Inflation Factor 
(VIF) was controlled below 2.5 [29]. Finally, a predictive 
model consisting of BMI, ALT, and TyG was constructed. 
The logistic regression model (Model) is expressed as 1/
(1+ e^-(− 57.472 + 0.576*BMI + 0.061*ALT+ 4.15*TyG
)) and the result of the Model means the probability of 
a diagnosis of MAFLD ranging from 0 to 1. As shown in 
Fig.  1, a dynamic nomogram was used to describe the 
probability of the MAFLD in the Model. For example, 

a patient with a BMI of 23.9 kg/m2, ALT of 77 IU/L, and 
TyG of 8.75 had a likelihood of MAFLD of 0.791 based on 
the Model.

Diagnostic performance of vital indexes and the Model 
in MAFLD
When all the variables were adopted, a graph provided 
an overview of the importance score of each variable in 
predicting MAFLD by using the random forest method. 

Table 1 The basic characteristics of the Non-MAFLD and MAFLD 
groups

Data were expressed as mean ± SD. P value < 0.05 were considered statistically 
significant and indicated in bold

*using Mann-Whitney U test, **using Pearson’s chi-square test, others using 
Student’s t-test

Non-MAFLD 
(n = 132)

MAFLD (n = 97) P value

Age (years) 38.93 ± 9.51 42.59 ± 12.64 0.019*
Male (%) 60.6 77.3 0.008**
BMI (kg/m2) 22.87 ± 2.92 27.68 ± 3.53 < 0.001*
TBIL (μmol/L) 12.97 ± 4.73 13.77 ± 6.99 0.918*

DBIL (μmol/L) 3.74 ± 1.37 3.83 ± 1.95 0.597*

IBIL (μmol/L) 9.11 ± 3.50 10.45 ± 7.09 0.606*

ALT (IU/L) 20.11 ± 9.69 60.25 ± 44.58 < 0.001*
AST (IU/L) 20.04 ± 5.38 38.30 ± 24.70 < 0.001*
AST/ALT 1.15 ± 0.49 0.74 ± 0.29 < 0.001*
TP (g/L) 76.10 ± 3.35 74.74 ± 4.48 0.010
ALB (g/L) 48.91 ± 2.40 48.17 ± 2.78 0.033
GLB (g/L) 27.19 ± 2.87 27.05 ± 7.00 0.012*
ALB/GLB 1.82 ± 0.24 1.85 ± 0.35 0.111*

FPG (mmol/L) 4.89 ± 0.36 6.56 ± 2.78 < 0.001*
UREA (mmol/L) 4.57 ± 1.03 5.06 ± 1.64 0.015*
CREA (mmol/L) 69.78 ± 14.50 78.37 ± 20.56 0.001*
Cys-C (mg/L) 0.80 ± 0.08 0.88 ± 0.19 < 0.001*
URIC (μmol/L) 329.10 ± 65.94 393.14 ± 102.24 < 0.001
TG (mmol/L) 1.10 ± 0.48 2.81 ± 1.78 < 0.001*
TC (mmol/L) 4.59 ± 0.66 4.87 ± 1.02 0.011
HDL-C (mmol/L) 1.51 ± 0.41 1.03 ± 0.24 < 0.001*
LDL-C (mmol/L) 2.77 ± 0.61 2.87 ± 0.84 0.284

ALP (IU/L) 72.25 ± 19.23 85.69 ± 32.00 < 0.001*
GGT (IU/L) 23.61 ± 17.46 69.19 ± 64.38 < 0.001*
CK (IU/L) 133.11 ± 179.06 116.90 ± 60.95 0.586*

LDH (IU/L) 173.40 ± 26.34 194.08 ± 39.18 < 0.001*
HBDH (IU/L) 133.32 ± 19.58 143.60 ± 28.57 0.003*
nonHDL-C (mmol/L) 3.07 ± 0.71 3.84 ± 1.00 < 0.001
LDL-C/HDL-C 2.03 ± 1.07 2.86 ± 0.84 < 0.001*
nonHDL-C/HDL-C 2.29 ± 1.42 3.91 ± 1.29 < 0.001*
TG/HDL-C 0.85 ± 0.70 3.04 ± 2.43 < 0.001*
TC/HDL-C 3.29 ± 1.42 4.91 ± 1.29 < 0.001*
TyG 8.29 ± 0.40 9.40 ± 0.65 < 0.001*
TyG-BMI 189.87 ± 28.31 260.07 ± 38.91 < 0.001*
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The Mean Decrease in Gini is a measure to estimate the 
importance of the target variable. The higher the value is, 
the higher the importance of the variable is. As shown in 
Fig. 2, TyG, TyG-BMI, TG, and TG/HDL-C are the four 
most important indicators for identifying MAFLD.

To compare the performance of the four indexes and 
the new Model with HSI in diagnosing MAFLD, ROC 

curve analyses were conducted to identify the diagnostic 
value of TG, TG/HDL-C, TyG, TyG-BMI, HSI, and the 
Model (Fig.  3). As a result, the area under the receiver 
operating characteristic curve (AUROC) of the Model 
was 0.985 (95% CI 0.973–0.998) with 0.979 sensitivity 
and 0.932 specificity when the cut-off value was 0.985, 
showing the best capacity for assessing MAFLD. TG, 
TG/HDL-C, TyG, TyG-BMI, and HSI could also detect 
MAFLD as shown in Table 3.

This study also compared the diagnostic efficacy of 
sex-specific cut-off point values of different indicators in 
the diagnosis of MAFLD. It could be seen from Table 4 
that the cut-off values of TG, TG/HDL-C, TyG, TyG-
BMI, HSI, and the Model in males were larger than that 
in females. As for males, the Model was the most sensi-
tive to MAFLD diagnosis when the cut-off point value 
was 0.293, with a sensitivity of 100%. TG with a cut-off 
point value of 1.765 and TyG with a cut-off point value 
of 8.905 both had the same high specificity of 95% for 
MAFLD diagnosis. As for females, the sensitivity of the 
diagnosis of MAFLD was 100% when the cut-off values of 
TG/HDL-C and TyG-BMI were 0.765 and 207.96, respec-
tively. The specificity in diagnosing MAFLD was 98.1% 
with a cut-off point value of 8.770 of TyG and 0.138 of the 
Model.

As for the Model, five-fold cross-validation was used 
to describe its predictive efficacy for MAFLD. The values 
of RMSE (Root Mean Squared Error), MAE (mean abso-
lute error), and R-squared were 0.3008045, 0.2404456, 
and 0.6548626 respectively. R-squared, also called the 

Table 2 Logistic regression analysis of risk factors for MAFLD 
patients after adjusting age, gender, and BMI

Index OR 95% CI P Value

ALT 1.121 (1.075, 1.169) < 0.001

AST 1.206 (1.124, 1.293) < 0.001

A/A .023 (0.005, 0.098) < 0.001

FPG 8.408 (3.655, 19.341) < 0.001

Cys-C 122.475 (3.920, 3826.590) 0.006

URIC 1.009 (1.004, 1.014) < 0.001

TG 15.827 (6.209, 40.344) < 0.001

HDLC .009 (0.002, 0.047) < 0.001

ALP 1.022 (1.005, 1.040) 0.012

GGT 1.055 (1.032, 1.078) < 0.001

nonHDL-C 2.228 (1.429, 3.475) < 0.001

LDL-C/HDL-C 1.796 (1.175, 2.745) 0.007

nonHDL-C/HDL-C 2.188 (1.555, 3.078) < 0.001

TG/HDL-C 5.629 (3.039, 10.424) < 0.001

TC/HDL-C 2.188 (1.555, 3.078) < 0.001

TyG 182.474 (33.518, 993.407) < 0.001

TyG-BMI 1.215 (1.142, 1.293) < 0.001

Fig. 1 Dynamic nomogram of the diagnostic model
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Fig. 2 Importance score of different variable

Fig. 3 ROC curves of TG, TG/HDL-C, TyG, TyG-BMI, HSI, and the Model for MAFLD
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coefficient of determination, was used to indicate how 
well a model fits. The closer the R-squared value was to 
1, the better the model discrimination was, and the closer 
to 0, the worse the model discrimination was. The value 
of this Model was 0.6548626, indicating that the Model 
fitted well.

As for calibration capability, the P-value of the Hos-
mer-Lemeshow test of the predictive model was 0.926, 
indicating that the difference between the predicted 
value and the observed value was not statistically sig-
nificant, and the Model had good calibration ability. The 
calibration plot and DCA curves of the model are shown 
in Figs. 4 and 5, respectively. In the calibration plot, the 
abscissa is the probability predicted by the model, and 
the ordinate is the probability of the real event. The closer 
the calibration curve (called bias-corrected) was to the 
ideal curve (called ideal), the better the prediction ability 
of the Model was. As a result, the Model had good cali-
bration ability.

The utility of the Model was verified by quantifying the 
net benefit under different risk thresholds. “None” indi-
cated that all patients were non-MAFLD, “All” indicated 
that all patients were MAFLD, and “model_1” indicated 

the Model for diagnosing MAFLD. The red line was 
higher than the other two curves, which meant that the 
clinical benefit could be improved by using the Model to 
diagnose MAFLD.

Discussion
This retrospective cross-sectional study assessed the abil-
ity of TG, TG/HDL-C, TyG, and TyG-BMI to predict 
MAFLD and constructed a novel model for diagnosing 
MAFLD. TyG-BMI performed the best among the four 
indices. The sensitivity and specificity of the Model based 
on BMI, ALT, and TyG improved to more than 90%. The 
most sensitive indicators for the diagnosis of MAFLD 
were the Model in males and TG/HDL-C and TyG-BMI 
in females. The most specific indicators for the diagno-
sis of MAFLD were TG and TyG in males and TyG and 
the Model in women. It was apparent from the Hos-
mer-Lemeshow test, five-fold cross-validation, and the 
pictures of the calibration plot and DCA curve that the 
Model fitted well and could improve the net benefit.

About 7.4% of MAFLD patients develop liver fibrosis 
[2]. In addition, MAFLD is also an increasing cause of 
hepatocellular carcinoma (HCC). With MAFLD-HCC, 

Table 3 AUROC of TG, TG/HDL-C, TyG, TyG-BMI, HSI, and the Model for MAFLD

Variable AUROC 95%CI Cut-off value Sensitivity (%) Specificity (%)

TG 0.921 0.886 to 0.957 1.745 75.3 97.0

TG/HDL-C 0.925 0.892 to 0.959 1.260 83.5 90.9

TyG 0.943 0.912 to 0.973 8.805 86.6 93.9

TyG-BMI 0.956 0.933 to 0.980 221.585 91.8 88.6

HSI 0.927 0.895 to 0.959 35.275 90.7 82.6

Model 0.985 0.973 to 0.998 0.293 97.9 93.2

Table 4 AUROC of the sex-specific cut-point of TG, TG/HDL-C, TyG, TyG-BMI, HSI, and the Model for MAFLD

Variable AUROC 95%CI Cut-off value Sensitivity (%) Specificity (%)

Male

 TG 0.903 0.854 to 0.952 1.765 78.7 95.0

 TG/HDL-C 0.906 0.857 to 0.954 1.300 86.7 85.0

 TyG 0.926 0.882 to 0.969 8.905 85.3 95.0

 TyG-BMI 0.945 0.912 to 0.978 226.885 90.7 87.5

 HSI 0.913 0.870 to 0.957 36.950 77.3 90.0

 Model 0.982 0.964 to 1.000 0.293 100.0 90.0

Female

 TG 0.953 0.904 to 1.000 1.250 95.4 86.5

 TG/HDL-C 0.969 0.935 to 1.000 0.765 100.0 78.8

 TyG 0.979 0.949 to 1.000 8.770 90.9 98.1

 TyG-BMI 0.978 0.951 to 1.000 207.960 100.0 90.4

 HSI 0.951 0.904 to 0.998 34.855 95.5 90.4

 Model 0.996 0.987 to 1.000 0.138 95.5 98.1
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Fig. 4 Calibration plot of the model

Fig. 5 DCA curves of the model
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patients were older and had shorter survival times and 
more advanced tumors [30]. MAFLD patients were found 
to have an increased risk of hypertension [31]. There-
fore, the identification of MAFLD is of vital importance. 
Liver biopsy is still the gold standard for MAFLD diag-
nosis, although it has a variety of associated risks, such 
as bleeding, pain, and death [32, 33]. In addition, sam-
pling errors and sampling biases exist [34]. Noninvasive 
biomarkers that are cheap and effective for diagnosing 
MAFLD have been studied.

In MAFLD, TG accumulates in the liver and blood. 
Interestingly, TG/HDL-C and TyG, which are surrogate 
IR markers, are both derived from triglycerides. Inde-
pendent of age, BMI, and waist circumference, it was 
observed that the expression of TG/HDL-C was higher 
in fatty liver patients with normal or even higher levels 
of ALT [35]. A cross-sectional study involving 18,061 
physical examination patients from China found that 
TG/HDL-C can be considered as a risk factor and even 
a predictor of MAFLD with a lower cut-off value (0.9 
vs. 1.4) and a greater AUROC (0.85 [0.84–0.86] vs. 0.79 
[0.78–0.80]) in women than in men [36]. Similar to the 
previous study, this study found that the cut-off value of 
TG/HDL-C in diagnosing MAFLD was lower in women 
than in men (0.765 vs. 1.300) and higher in AUROC 
(0.969 [0.935–1.000] vs. 0.906 [0.857–0.954]). Besides, a 
follow-up study of non-obese people in China with nor-
mal blood lipids exhibited that the cut-off values of TG/
HDL-C in diagnosing MAFLD were 0.69 and 0.65 for 
women and men [37]. In Japan, a cohort study of patients 
with more than 10 years of follow-up duration discovered 
the optimal cut-off points of TG/HDL-C for MAFLD 
diagnosis were 0.64 and 0.88 in women and men, respec-
tively [38]. In addition, in a randomized controlled study, 
a decrease in TG and TG/HDL-C was associated with the 
resolution of non-alcoholic steatohepatitis (NASH) [39]. 
In another study, TC/HDL-C, a lipid ratio parameter, 
was used to diagnose MAFLD with an AUROC of 0.645 
[40]. Both higher levels of TC/HDL-C and TG/HDL-C 
indicated more severe liver steatosis, while the former 
showed higher specificity [41]. It was previously shown 
that TC/HDL-C, TG/HDL-C, LDL-C/HDL-C, and non-
HDL-C/HDL-C were positively related to the severity of 
hepatic steatosis [42]. From the results of this research, 
all of the above indexes were risk factors for MAFLD 
independent of age, sex, and BMI.

A high level of TyG means a patient has high levels of 
TG or FPG. However, in IR patients, glucose uptake in 
fat and muscle tissue is decreased and fat accumulation 
in the liver is increased. As a result, the increase of TG 
and FPG leads to an increase of TyG [43]. Compared 
with HIEC and HOMA-IR, TyG can be used as an effec-
tive surrogate indicator of IR [19, 44, 45]. TyG index was 

also found to be related to damage of large vessels and 
microvessels [46]. Some studies had found that TyG was 
a risk factor for metabolic diseases such as hypertension, 
diabetes, and coronary heart disease, and could be used 
to predict the risk of CVD [47–50]. Previous studies have 
shown that the incidence of MAFLD also significantly 
increases with the increase in TyG [51, 52]. In other stud-
ies, the AUCs of the TyG index to detect adult MAFLD 
were 0.760–0.782, with MAFLD diagnosed by ultrasound 
[53–56]. A study showed that the AUC of TyG was larger 
than that of ALT, with the AUC of TyG at 0.9 (95%CI 
0.84–0.94) in biopsy-proven MAFLD with 80% sensitiv-
ity and 92% specificity when the cut-off value was 8.38 
[57]. Similarly, the AUC of TyG in diagnosing MAFLD 
in this study was 0.943 (95%CI 0.912–0.973) with 86.6% 
sensitivity and 93.9% specificity when the cut-off value 
was 8.805. Furthermore, among 50 asymptomatic women 
who underwent a liver biopsy, TyG displayed high sensi-
tivity in screening simple steatosis and NASH [58]. Based 
on a large number of MAFLD participants (n = 11,424) in 
a follow-up study, it was found that patients with a high 
TyG index were more likely to have MAFLD progression 
[59]. TyG-BMI, a modified TyG index, showed a better 
ability to identify MAFLD than TyG itself, not only in 
males but also in females. The AUROC of TyG-BMI in 
diagnosing MAFLD ranged from 0.774–0.9084 [60–62]. 
In this study, it was discovered that the AUROC of TyG-
BMI was 0.956 (95% CI 0.933–0.980), which was higher 
than that reported in other studies. As for non-obese 
subjects, TyG-BMI could identify MAFLD and predict its 
occurrence effectively [63, 64]. In addition to liver steato-
sis, TyG and its related marker TyG-BMI were found to 
be related to liver fibrosis [56, 65].

HSI was made up of indexes chosen by multivariate 
logistic analysis of the derived cohort (2680 NAFLD and 
2680 non-NAFLD patients). The AUROC of HSI for diag-
nosis of NAFLD was 0.812 (95%CI 0.801–0.824). In the 
validation cohort (2682 NAFLD and 2682 non-NAFLD 
patients), the AUROC of NAFLD was 0.819 (95%CI 
0.808–0.830) [66]. It was found that the AUROC of HSI 
(0.8678 (95%CI 0.8604–0.8752)) in diagnosing NAFLD 
was higher than TyG (0.8084 (95%CI 0.7996–0.8173)) 
and TG/HDL-C (0.8147 (95%CI 0.8060–0.8233)), lower 
than TyG-BMI (0.8862 (95%CI 0.8777–0.8927)) [61]. 
In this study, the AUROC of HSI (0.927 (95%CI 0.895–
0.959)) in diagnosing MAFLD was higher than TG/
HDL-C (0.925 (95%CI 0.892–0.959)), and lower than TyG 
(0.943 (95%CI 0.912–0.973)), TyG-BMI (0.956 (95%CI 
0.933–0.980)) and the Model (0.985 (95%CI 0.973–
0.998)). The diagnostic value of indicators such as TG/
HDL-C, TyG, and TyG-BMI in the study was higher than 
that of other studies mentioned above, which may be due 
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to a small number of samples and the lack of suspected 
cases of MAFLD.

Strength and limitations
Previous studies demonstrated that TyG and TG/HDL-C 
were increased in MAFLD patients and could be used as 
diagnostic markers. The current study compared these 
two IR-related indicators and found that both had good 
diagnostic efficacy for MAFLD. Based on this, a better 
diagnostic model was established. This study has several 
limitations. First, major limitations of the study include 
a small sample size and the use of liver ultrasound as a 
gold-standard to evaluate the accuracy of the two scores. 
Ultrasound detection of steatosis less than 20% has lim-
ited sensitivity. It also performs poorly when differenti-
ating between steatosis and fibrosis and is inconsistent. 
Furthermore, the detection capability is highly dependent 
on the examiner [67]. Second, the relationships between 
TG/HDL-C, TyG, and HOMA-IR aren’t verified in this 
research. Third, to measure the diagnostic significance of 
the indicators for MAFLD more accurately, the suspected 
population of MAFLD should be included; otherwise, the 
value of these indicators will be exaggerated. Finally, the 
basic of machine learning is the task of dividing the data-
set into training and testing sets to validate the model. 
However, due to the difficulty of the cumulation of data 
in the medical field, this work was replaced into hypoth-
esis work, such as p-value or confidence interval.

Conclusion
This study compared the ability of two surrogate indices 
for IR, TG/HDL-C, and TyG, in predicting MAFLD for 
the first time. TyG and TG/HDL-C can be easily meas-
ured with high accuracy and is low cost because TG, 
FPG, and HDL-C can be conveniently measured. When 
the cut-off point value was 8.805, the sensitivity and spec-
ificity of TyG in the diagnosis of MAFLD were higher 
than TG/HDL-C. In addition, the combination of BMI, 
ALT, and TyG could improve the diagnosis of MAFLD. 
This study suggested that overweight person with abnor-
mal glycolipid metabolism and liver function were more 
likely to develop MAFLD, which is conducive to promot-
ing the screening and management of MAFLD.
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