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The aryl hydrocarbon receptor (AhR) is a DNA binding protein that acts as a nuclear receptor mediating xenobiotic metabolism and
environmental responses. Owing to the evolutionary conservation of this gene and its widespread expression in the immune and
circulatory systems, AhR has for many years been almost exclusively studied by the pharmacological/toxicological field for its role
in contaminant toxicity. More recently, the functions of AhR in environmental adaption have been examined in the context of the
occurrence, development, and therapy of cardiovascular diseases. Increasing evidence suggests that AhR is involved in maintaining
homeostasis or in triggering pathogenesis by modulating the biological responses of critical cell types in the cardiovascular system.
Here, we describe the structure, distribution, and ligands of AhR and the AhR signaling pathway and review the impact of AhR on
cardiovascular physiology. We also discuss the potential contribution of AhR as a new potential factor in the targeted treatment of

cardiovascular diseases.

1. Introduction

Aryl hydrocarbon receptor (AhR) is a ligand-activated tran-
scriptional factor belonging to the superfamily of basic helix-
loop-helix/Per-ARNT-Sim (bHLH/PAS) [1], and is the only
member of this family known to bind naturally occurring
xenobiotics [2]. Traditionally AhR acts as a crucial regu-
lator mediating xenobiotic metabolism and environmental
responses, and it was discovered to bind closely with 2,3,7,8-
tetrachlorodibenzo-p-dioxin (TCDD, dioxin) and then was
hyperactivated to release a myriad of toxicologic outcomes,
which contribute to the potency of TCDD as an inducer
or promoter of some carcinogenesis in 1982 [3, 4]. Thus,
for many years, AhR has been almost exclusively studied by
the toxicological field for its role in various environmental
and food contaminants such as polycyclic aromatic hydro-
carbons, polychlorinated biphenyls and dioxins. Numerous

studies have found that cytosolic AhR can be activated by
many natural and synthetic ligands, and translocated into the
nucleus where it complexes with the AhR nuclear translocator
(ARNT) [5]. The complex recognizes the specific dioxin-
responsive elements (DREs) and modulates subsequent tran-
scription of its downstream target genes including phase I and
phase II metabolic enzymes, which can affect the metabolism
of environmental toxicants and chemical substances [6].

The increasing deterioration of the natural environment
is having serious consequences on human health. The cir-
culation system is the major organ exposed xenobiotics and
endobiotics during metabolic homeostasis [7], and long-
term exposure to environmental pollutants can drastically
alter this system, resulting in cardiovascular diseases such as
hypertension, atherosclerosis, and ischemic heart disease [8-
12]. Because many environmental pollutants contain exoge-
nous aryl hydrocarbon receptor (AhR) ligands, increasing


http://orcid.org/0000-0002-8372-1545
http://orcid.org/0000-0002-1314-5028
http://orcid.org/0000-0003-1810-9656
http://orcid.org/0000-0002-4033-4799
https://doi.org/10.1155/2018/6058784

BioMed Research International

----- HSP90 Binding -----

[——

DNA binding Dimerization

’ T

Ligand binding

FIGURE 1: Structure of AhR.

attention is being given to the relationship between AhR and
cardiovascular diseases. Recent evidence from gene knock-
out studies and clinical trials suggests that not only does
AhR have a major impact on general physiological functions,
including immune responses, reproduction, oxidative stress,
tumor promotion, the cell cycle, and proliferation [13, 14], but
also influences cardiovascular physiological functions [15-
18].

In this review, we discuss the progress of AhR biology
and toxicology, its pathophysiology roles in the heart and
vascular systems, and the prospects as a therapeutic target for
cardiovascular diseases, with the aim of providing a potential
direction for the prevention and treatment of the diseases.

2. AhR

2.1. The Structure of AhR. Anthropogenic AhR comprises
848 amino acid residues and has three functional domains,
including the bHLH domain, Per-ARNT-Sim (PAS) domains
(A and B), and the transactivation domain (TAD), that span
from the amino (N-) terminal to the carboxy (C-) terminal
[1, 19] (Figure 1). The amino acid sequence of the bHLH
domain and the PAS domains are both highly conserved
among species [20]. The bHLH domain is located at the
(N-) terminal and can divide into an HLH domain and a
basic domain, which determines dimerization of the protein
molecule and the combination of AhR with DNA [21]. The
main role of the PAS A and B domains is to participate in
binding to ligands, release of heat shock protein 90, and
increase the stability of the heterodimer AhR-ARNT complex
to further affect conformation of DNA [1, 22]. The TAD
domain functions as a mediator in transcriptional activation
of downstream genes [23].

2.2. Distribution of AhR in Fetal and Adult Tissues. AhR is
expressed ubiquitously in the fetus and in adults, with the
distribution changing significantly with age [24] (Figure 2).
In the fetus, there are specific distribution of AhR in the
lungs, liver, kidneys, pancreas, testicles, esophagus, thymus
glands, retinas, and epithelial cells, and relatively low levels
in the heart, brain, choroids, thoracic aorta, and sclera; In
adults, AhR is expressed at relatively high levels in the lungs,
placenta, spleen, pancreas, and liver, and relatively low levels
in the heart, brain, and skeletal muscles [25, 26]. AhR exerts
diverse physiological effects depending on where it is located
in different tissues.

2.3. The Ligands of AhR. AhR ligands can be divided
into endogenous ligands and exogenous ligands (Figure 3).
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FIGURE 2: Expression levels of AhR in adult and fetal tissues.

Endogenous ligands include indigoids, heme metabolites,
eicosanoids, tryptophan derivatives, and equilenin [27].
Exogenous ligands include polycyclic aromatic hydrocar-
bons, polychlorinated biphenyls, natural compounds, and
small molecule compounds [28]. The different structures and
properties of AhR ligands mean that when they combine with
AhR they have distinct biological effects.

2.4. The AhR Signaling Pathway. The AhR signaling pathway
involves both classical and non-classical signal transduction
mechanisms [2, 24] (Figure 4). In the classical signaling
pathway, AhR exists as an AhR molecular chaperone complex
comprising an AhR, two heat shock protein 90, and X-
associated protein 2 and 23 in the cytosol [24, 29]. Being
activated by ligands, AhR is translocated from the cytosol
to the nucleus where it disassociates from the complex. The
ligand-AhR complex combines with ARNT and binds to a
specific DNA promoter sequence called DRE or xenobiotic
responsive element (XRE). Ultimately, transcription of a
large number of target genes activates and triggers various
biological and/or toxicological effects [30].

In the non-classical signaling pathway, the AhR signaling
pathway can interact with other pathways by competition
for transcriptional coactivators or corepressors [30]. For
instance, crosstalk between AhR and hypoxia can inter-
act through competition with ARNT [22]. In the nucleus,
sustained AhR activation results in Gl phase cell cycle
arrest via hyperphosphorylation of retinoblastoma protein
and repression of E2F-dependent transcription [31-35]. In
macrophages, AhR, in combination with signal transducer
and activator of transcription 1 and nuclear factor-«B
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FIGURE 4: Classical and non-classical AhR signaling pathways.



(NF-xB), inhibit the promoter activity of interleukin-6 (IL-6)
induced by lipopolysaccharide [36]. AhR also regulates the
development of regulatory type 1 T cells by combining with
the transcription factor c-Mcf [37]. Additionally, numerous
studies have described interactions between AhR and estro-
gen receptors, RelB, RelA, -catenin, and nuclear factor-like
2[38-43].

3. Role of AhR in Cardiovascular Physiology

3.1. AhR in Cardiac Function and Cardiomyogenesis. Despite
low expression levels of AhR in the heart, AhR does have
noticeable effects on the physiological functioning of the
heart. For example, a study has reported obvious cardiac
hypertrophy in AhR—/— mice at 5 months, with increasing
levels of the 3-myosin heavy chain and 8-myosin light chain
2V. It was suggested that the underlying mechanism may
be associated with the elevated level of vascular endothelial
growth factor (VEGF) in AhR-/- mice [44]. In 2003,
Vasquez et al. observed that cardiac hypertrophy induced
in AhR deficiency showed low indices for contractility, pre-
load, afterload, cardiac output, stroke volume, and minimal
fibrosis, differing from pressure- or volume overload-related
cardiac hypertrophy [15]. The researchers suggested that
AhR deficiency mainly lead to cardiomyocyte hypertrophy,
resulting in cardiomyopathy and cardiac hypertrophy [45].
Paradoxically, another study reported that cardiac hyper-
trophy in AhR-/— mice was caused by pressure overload
and accompanied by evident fibrosis and elevated expression
of plasma endothelin-1 (ET-1) and angiotensin II (Ang II).
Captopril, an angiotensin-converting enzyme inhibitor, was
used to alleviate the pressure overload, leading to a lowered
expression of plasma ET-1 and Ang II and a delay in the
increase of mean arterial pressure [16]. Subsequent research
found that cardiac function in AhR-/— mice could be
completely reversed with BQ-123, an ET, receptor antag-
onist, indicating that ET-1 could be mediated by AhR and
function as the key molecule in the progression of cardiac
hypertrophy [46]. A recent study revealed that Vav3, an
activator of Rho/Rac GTPases, regulated by AhR, was closely
associated with cardiac hypertrophy and fibrosis in AhR-/-
mice [47]. Nevertheless, the specific mechanism has yet to
be completely determined. Although there are contradictions
among studies, it is evident that AhR signaling in cardiac
function is important.

The AhR signaling pathway is vital for the development of
the heart. When AhR was activated by dioxin, transforming
growth factor B (TGF-)/bone morphogenic protein (BMP)
and WNT signaling pathways were disrupted, cardiomyocyte
differentiation of enterochromaffin cells stopped, and car-
diogenesis was impaired during early differentiation [48].
When AhR was silenced by short hairpin RNA interference
in P19 cells, an embryonic carcinoma cell line, expression
of the downstream signal molecules of AhR such as ARNT
and CYPIAl and the key molecule in WNT signaling,
p-catenin, were suppressed, following by the increase in
expression of the cardiomyogenesis-specific GATA4 and
Nkx2.5 genes. These results suggest that AhR mediated the
differentiation of P19 mouse embryonic carcinoma cells into
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cardiomyocytes through the AhR and WNT1 signaling path-
ways [49]. Another study found that activation, inhibition, or
knockdown of AhR all could affect cardiomyocyte differen-
tiation of mouse embryonic stem cells; the cause of which
was connected with AhR-relating incongruous expression
of genes, including genes encoding homeobox transcrip-
tion factors and polycomb and trithorax group genes [50].
The expression of AhR in the undifferentiated embryonic
stem cells impacts their choice of lineage in differentiation,
restricting cardiogenesis and commit to a neuroglia cell
fate. With regard to self-renewal of embryonic stem cells,
a relatively low level of AhR expression was required for
cells to retain their stem cell properties. Han et al. propose
that after activation by endogenous ligands AhR participates
in the coordination of multiple biological processes which
define pluripotency and embryonic development, and AhR
can regulate cardiogenesis by modulating the cardiac DNA
methylome and the expression of imprinting genes [51].
Hence, cardiomyocyte differentiation is a carefully regulated
process in which AhR plays a crucial role.

3.2. AhR in the Regulation of Vascular Physiological Functions.
Maintenance of the function and structure of blood vessels
relies in part on laminar fluid shear stress. Normally, laminar
fluid shear stress-activated AhR mediate cell cycle arrest by
activating CYP1Al in human umbilical vein endothelial cells,
suggesting the involvement of AhR in the regulation of the
vascular microenvironment [52]. A study reported that there
exists abnormal vascular structures in the liver, kidneys, and
hyaloids in AhR—/— mice [53]. A study of hepatic vascular
development revealed that hepatic necrosis and decreased
perfusion in the fetal liver was the cause of patent ductus
venosus and comparatively smaller livers in adult AhR—/-
mice [54]. The results align with that of another study
in which mutation of DRE binding sites in AhR affected
liver vascular development, suggesting that DNA binding
is necessary for AHR-mediated developmental and TCDD-
induced toxic signaling [55].

When AhR was activated by 3-methylcholanthrene, an
AhR agonist, cell permeability, adhesion, and tube formation
of human umbilical vascular endothelial cells was inhibited;
but a-naphthoflavone, an AhR antagonist, could reverse the
effects of 3-methylcholanthrene [56]. Another study reported
that TCDD activated the AhR/CYP1Al and AhR/CYPIB1
pathways, resulting in suppression of angiogenesis, and
angiogenic inhibition was reversed with AhR deficiency [57].
Ichihara et al. used middle cerebral artery occlusion in mice
and oxygen-glucose deprivation in rat cortical neurons to
define the role of AhR in stroke, and the results found
that L-kynurenine is an endogenous ligand that mediates
AhR activation in the brain, and demonstrated that an
L-kynurenine/AhR pathway mediates acute brain ischemic
damage after stroke[58]. Ischemia-induced angiogenesis was
observed to significantly increase with AhR deficiency, with
the effects being associated with the hypoxia-inducible factor-
la (HIF-1)-ARNT heterodimer and its downstream gene,
VEGF [59]. VEGF is necessary for vascularization. Compared
with AhR+/+ transgenic adenocarcinoma of the mouse
prostate (TRAMP) mice, AhR—/— TRAMP mice showed
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a higher incidence of prostate cancer accompanied by an
increase in VEGF [60]. Similarly, AhR activation inhibited
hypoxia-induced VEGF in prostate bone metastasis cells and
endothelial progenitor cells, and was associated with HIF-1«
[61]. It is therefore suggested that AhR may prevent interac-
tion of ARNT with HIF-1a and suppress VEGF expression,
ultimately blocking angiogenesis.

In summary, AhR participates in the regulation of vascu-
lar physiological functions, including vascular development
and angiogenesis. Both deficiency and abnormal activation
of AhR give rise to vascular dysfunction, and many vascular
diseases.

3.3. AhR in Blood Pressure Regulation. It is reported that
AhR-deficient mice showed decreased cardiac output and low
systolic and diastolic aortic pressure compared with normal
mice of the same age [15]. In 2010, Zhang et al. reported that
the renin-angiotensin system participated in the regulation
of normal blood pressure in AhR heterozygous mice but not
AhR-/- mice, confirming the importance of the rennin-
angiotensin system in the progression of hypotension in
AhR-/—mice. ET-1 signaling was also found to be involved in
the mediation of hypotension in AhR—/— mice. Importantly,
the study reported that the sympathetic nervous system
and nitric oxide (NO) signaling were not involved in the
activation of the rennin-angiotensin system and ET-1 [62].
AhR-/— mice tend to develop hypertension at a modest
altitude (1632 m), caused by hypoxia [63]. Captopril could
alleviate high blood pressure in AhR—/—mice, in part because
of the reduction of Ang II [16]. Increasing evidence indicates
that vascular alD-adrenoceptor overexpression is another
influential factor of hypertension in AhR-/— mice, and
hypertension could be reversed by treatment with captopril
[64]. However, inhibition of ET-1 could not only lower mean
arterial pressure and the levels of ET-1, but also reduce
Ang II expression levels in AhR—/— mice with hypertension,
indicating involvement of the regulation of the ET-1-Ang II
axis in hypertension in AhR-/— mice induced by hypoxia
[65]. Sauzeau et al. found that AhR controlled cardiovascular
and respiratory functions by regulating the expression of the
Vav3 proto-oncogene, and demonstrated Vav3 to be a bona
fide AhR target in charge of a limited subset of the devel-
opmental and physiological functions of cardiorespiratory
systems [46]. Taken together, the findings suggest that AhR
is involved in the complicated networks that regulate blood
pressure, and possible mechanisms should be further studied.

4. AhR as a Therapeutic Target in
Cardiovascular Diseases

4.1 AhR and myocarditis. Myocarditis is a significant cause of
heart disease, especially in young people[66]. It can lead to
dilated cardiomyopathy, a common precursor of heart failure.
Myocarditis can be induced by multiple causes, including
infection and auto-immune or auto-inflammatory diseases
[67, 68]. Infection remains a major factor in myocarditis
and is closely associated with the immune and inflammatory
responses of the host. Numerous studies have reported
that AhR is a crucial factor in the immune system and is

involved in the differentiation of antigen-presenting cells and
specific T cell subpopulations [69, 70]. AhR participates in
the regulation of innate and adaptive immune responses
in some models of infection. AhR is also an important
protein to limit the inflammatory response. Deletion of AhR
exacerbated the inflammatory response to Listeria mono-
cytogenes, Toxoplasma gondii, and Plasmodium falciparum
[71-73], and was confirmed in a model of Leishmania
major infection [74]. There is strong evidence to suggest
that AhR is a pivotal molecule in myocarditis. In 2016, it
was first reported that AhR modulated the development
of myocarditis during Trypanosoma cruzi infection. When
model mice were infected with T. cruzi, parasitemia, inflam-
mation, and fibrosis of the myocardium were significantly
reduced in AhR—/- mice compared with wild-type mice
through the reduction in reactive oxygen species (ROS) and
cytokines [75]. Viral infection is the most common cause of
myocarditis. No study has examined the relationship between
AhR and viral myocarditis. However, Coogan et al. found
that AhR activation increased the number of neutrophils
in the lungs, which contributed to poor survival in mice
with influenza virus infection [76]. It is possible that AhR
modulates the inflammatory response in viral myocarditis.
AhR is a promising line of research on myocarditis.

4.1. AhR and Hypertension. It has been reported that expo-
sure to environmental pollutants, particularly traffic-related
pollutants, could increase the risk for hypertension [77];
however, causation has not been determined. One possible
mechanism is that AhR, as an important regulator of blood
pressure, could be activated by abundant exogenous AhR
ligands in environment pollutants, such as TCDD [10].
Support for this theory is provided by studies on AhR-/-
mice. When AhR was knocked out, mice showed significantly
elevated blood pressure as well as elevated Ang II and ET-
1 [46]. Another study suggested that 3-methylcholanthrene,
an exogenous AhR agonist, can induce high blood pressure
associated with endothelial NO synthase (eNOS) inactivation
[78]. Endothelial cell-specific AhR-null mice had hypoten-
sion, accompanied by increases in eNOS activity and NO
production [79]. These findings suggest that AhR could
serve as a therapeutic target in hypertension, or other AhR-
regulated NO-dependent vascular diseases.

Besides endogenous and exogenous ligands, activation
of AhR can also be influenced by genetic polymorphisms.
Genetic polymorphisms of the AhR signaling pathway are
reported to be closely associated with the pathogenesis of
essential hypertension. The majority of single-nucleotide
polymorphisms in the AhR pathway, such as rs2228099
(ARNT), rs1048943 (CYPIAL), rs762551 (CYP1A2), and
rs1056836 (CYPIBI), are associated with susceptibility to
hypertension. The genetic environment and gene-gene inter-
actions in the AhR signaling pathway are reported to deter-
mine susceptibility to essential hypertension [80]. Therefore,
it is possible that gene therapy targeting AhR signaling
could be a potential candidate in the treatment of essential
hypertension.

The advent of CRISPR/Cas9, a versatile genome-ed-
iting tool, has allowed for precision medicine based on



the detection of genetic polymorphisms. CRISPR/Cas9-
regulated genome editing is a powerful technology for gene
therapy [81]. It is thought that CRISPR/Cas9 will provide
great advancements in the potential treatment of hyperten-
sion.

It has recently been reported that AhR is expressed in
immune cells such as Th17 cells and dendritic cells [70]. Mice
lacking T cells exhibited reduced blood pressure increases
with Ang II infusion [82]. Whether expression levels of
AhR in immune cells influence blood pressure, and possible
mechanisms, is an interesting potential area of research.

4.2. AhR and Atherosclerosis. Atherosclerosis mainly occurs
in the intimal layer of the blood vessel wall, and is character-
ized by subendothelial lipid deposits, vascular smooth muscle
cell migration and proliferation, and formation of foam cells
in the subendothelial space [83]. Risk factors for cardiovascu-
lar diseases include vascular senescence and obesity. Chronic
vascular inflammation and oxidative stress contribute to
atherosclerosis [84, 85], but the molecular mechanisms are
not well understood. Exposure to contaminants containing
ligands of AhR (dioxins, TCDD, PAH, benzo(«)pyrene) are
thought to promote the development and progression of
atherosclerosis, indicating that AhR may play a role in the
regulation of atherosclerosis [9, 86-88].

Vascular senescence, a risk factor for cardiovascular
diseases, is an important factor in the development of
atherosclerosis. Studies suggest that senescent vascular cells
are present in human atherosclerotic lesions [89-91]. A study
in 2014 reported that indoxyl sulfate regulated sirtuin 1 via
AhR activation, promoting endothelial senescence [92]. It
was suggested that endothelial senescence in atherosclerosis
is linked to AhR activation.

Obesity is also a vital contributor to atherosclerosis. In
an AhR-directed luciferase-expressing mouse hepatocyte cell
line, treatment with oxidized low-density lipoprotein and
transforming growth factor-f1 could induce lipid accumula-
tion and luciferase expression, owing to the overexpression
of kynurenine, an endogenous AhR ligand, by enhanced
indoleamine 2,3-dioxygenase 1 activity. Inhibition of AhR, in
turn, prevented obesity [93].

Inflammatory responses contribute to AhR-regulated
atherosclerosis. The inflammation-related cytokine mon-
ocyte chemoattractant protein-1 (MCP-1), an important
endothelium-derived chemokine, was reported to recruit
monocytes into the subendothelial space where they differ-
entiated into macrophages, promoting atherosclerotic plaque
development [94]. Activation of AhR by TCDD induced
the release of a number of inflammatory mediators, includ-
ing MCP-1, in ApoE-/- mice, leading to the promotion of
atherosclerotic lesions and the formation of foam cells [6,
95, 96]. Treatment with CH223191, an AhR antagonist, sig-
nificantly reduced the development of atherosclerotic lesions
induced by TCDD. Expression of MCP-1 triggered by the
AhR agonists indoxyl sulfate and coplanar polychlorinated
biphenyl 77 could be reversed with the AhR antagonists
CH223191 and «-naphthoflavone, respectively[94, 97]. ROS
also play an important role in AhR-related atherosclerosis.
There is evidence to suggest that ROS are involved in the
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process of indoxyl sulfate-induced MCP-1 production[98].
Indoxyl sulfate activates AhR and promotes ROS pro-
duction by enhancing NADPH oxidase 4 expression in
human umbilical vein endothelial cells. The AhR antagonist,
CH223191, could reverse indoxyl sulfate-induced NADPH
oxidase 4 expression [99]. A recent report showed that TCDD
increased ROS production in endothelial cells and reduced
NO-related vasodilation by AhR-dependent pathway which
may be mediated, in part, via induction of cytochrome
CYP1A1 [88]. Intercellular adhesion molecule-1 and matrix
metalloproteinases, both regulated by AhR, may play a role
in atherosclerosis [9, 100]; however, the mechanism remains
to be determined. Taken together, these studies suggest that
AhR could be a potential drug target to interfere with the
development and progression of atherosclerosis.

4.3. AhR and Ischemic Heart Disease. Ischemic heart disease,
including ST-segment elevation myocardial infarction, non-
ST-segment elevation myocardial infarction, and stable and
unstable angina pectoris, has high global morbidity and
mortality. Coronary artery occlusion or stenosis stemming
from coronary atherosclerosis is the major cause of ischemic
heart disease [12]. Numerous studies have shown that
environment pollutants associated with AhR signaling are
important factors in atherosclerosis [9, 86-88]. There is
evidence to indicate that exposure to exogenous ligands of
AhR, such as dioxin, TCDD, and coplanar polychlorinated
biphenyls, increase the risk for ischemic heart disease [12].
A study examined the role of AhR in coronary artery
disease susceptibility in a Chinese population, and the results
suggested that expression of circulating AhR was elevated
in patients with coronary artery disease. Further analysis
of AhR polymorphisms found that AhR rs2066853 showed
a significant correlation with the risk for coronary artery
disease [101]. A study at Stanford University reported that
the transcription factor TCF2l promoted the expression
of inflammation-related genes in human coronary artery
smooth muscle cells via interaction with AhR, leading to
an increased risk for coronary artery disease [102]. Xue et
al. reported that, in myocardial ischemic injury, AhR gave
rise to substantial expression of inflammatory cytokines,
including high-sensitivity C-reactive protein, interleukin-1p,
and interleukin-6. However, baicalin, a flavonoid compound,
could attenuate the inflammatory response and myocardial
injury via suppression of the expression of AhR [103]. Taken
together, the findings suggest that AhR may be an important
gene or drug target for the prevention and treatment of
ischemic heart disease.

4.4. AhR and Myocardial Ischemia-Reperfusion Injury. Myo-
cardial ischemia-reperfusion injury is a byproduct of reperfu-
sion after acute myocardial infarction (reperfusion being the
best treatment for acute myocardial infarction), and results in
cardiomyocyte dysfunction and aggravated myocardial tissue
injury [104]. Over the past few decades, researchers have
found that ischemic post-conditioning (a treatment other
than the traditional ischemic preconditioning) has a car-
dioprotective effect on ischemic reperfusion injury. In 2013,
Vilahur et al. demonstrated that ischemic post-conditioning
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exerted a protective effect on cardiac structure and function
via downregulation of the AhR signaling pathway [105].
Ischemic post-conditioning for myocardial ischemic reper-
fusion injury could reduce the expression of AhR and ARNT,
resulting in a decrease in apoptosis. A recent study found that
flavonoids capable of inhibiting AhR have a dual character
in myocardial ischemia-reperfusion injury, either protection
or deterioration [106]. While there are inconsistencies in
the studies, AhR appears to be a significant mediator in
myocardial ischemia-reperfusion injury.

4.5. AhR and Pulmonary Arterial Hypertension. Pulmonary
arterial hypertension, a malignant chronic progressive vas-
cular disease, usually leads to right heart failure and death in
the late stage. There are various strategies for the treatment
of pulmonary arterial hypertension, such as phosphodi-
esterase type 5 inhibitor, prostanoids (PGI2), prostacyclin,
and endothelin receptor antagonists [107]. However, there is
no ideal efficacy among the therapeutic treatments. A new
effective therapy is needed, and the role of AhR should be
further studied.

A study reported that baicalin, a natural flavone, could
attenuate the abnormal proliferation of human pulmonary
artery smooth muscle cells induced by TGF- 1 via inhibition
of the HIF-1aw and AhR pathways, indicating the participation
of the AhR pathway in the progression of pulmonary arterial
hypertension [108]. In addition, HIF-la and AhR pathways
could interact with each other through ARNT [22]. A study
suggested that hypoxic pulmonary hypertension could be
attenuated by suppressing HIF-1a triggered by hypoxia via
RNA interference [109]. Studies examining the effect of the
suppression of AhR in combination with suppression of HIF-
la in pulmonary arterial hypertension could prove to be
useful. Therefore, AhR could be a potential drug target for
the treatment of pulmonary arterial hypertension.

5. Conclusion

With an increased understanding of the link between envi-
ronmental pollutants and cardiovascular diseases, the impact
of AhR on the cardiovascular system has become evident.
AhR plays an important role in maintaining cardiovascular
homeostasis. In the cardiovascular system, the absence of
AhR can result in abnormal cardiac function, hypertension
or hypotension, vascular dysfunction, and cardiovascular dis-
ease. The types of cardiovascular disease include myocarditis,
hypertension, atherosclerosis, ischemic heart disease, and
pulmonary arterial hypertension. The pathogenesis induced
by AhR varies among cardiovascular diseases, but includes
inflammatory responses, immune responses, oxidative stress,
and endothelial dysfunction. The molecular mechanisms
behind AhR signaling, crosstalk between AhR signaling
and other signaling pathways, and genetic polymorphisms
require further study. Genetic polymorphisms of AhR will
provide valuable information for guiding targeted gene ther-
apy. Despite progress in our understanding of AhR-relating
cardiovascular diseases, crosstalk between the cardiovascular
system and the microenvironment is unclear. For targeted
medical therapy, an effective dosage is hard to determine. And

because most agonists and antagonists of AhR are not tissue-
specific, further development is required. Therefore, clinical
application of AhR-related therapies still has a long way to go.

AhR is a key bridging molecule in the cardiovascular
system. Problems with AhR ligands and AhR transcripts
can lead to abnormal activation of AhR, and result in an
unbalanced cardiovascular system and cardiovascular dis-
eases. AhR is a potential drug or gene target for the treatment
of cardiovascular diseases.
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