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guides the treatment options
and predicts the prognosis of
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Background: Bladder carcinoma (BLCA) is a heterogeneous disease that makes

it difficult to achieve proper individual treatment and predict prognosis. This

study aimed to develop a risk score from a new perspective of pyroptosis and

guide accurate treatment and prognosis prediction for BLCA.

Methods: The TCGA-BLCA cohort data were downloaded from The Cancer

Genome Atlas database. Two external validation cohorts were collected from

the Gene Expression Omnibus. Another independent validation cohort (the

Xiangya cohort) was recruited from our hospital. The least absolute shrinkage

and selector operation (LASSO) algorithm and Cox regression models were

used to establish the pyroptosis risk score. Thereafter, we correlated the

pyroptosis risk score with prognosis, tumor microenvironment (TME)

immune hallmarks, and multiple treatments, including anticancer

immunotherapy, chemotherapy, radiotherapy, and targeted therapy.

Results: The pyroptosis risk score was an independent prognostic predictor of

BLCA. We found that the activities of multiple steps of the anticancer immune

response cycle, such as the release of cancer cell antigens, CD8 T cell

recruitment, and NK cell recruitment, were significantly higher in the high-

risk score group than in the low-risk score group. In addition, the infiltration

levels of the corresponding tumor-infiltrating immune cells (TIICs), such as

CD8 T cells and NK cells, were positively correlated with the pyroptosis risk

score. Thus, BLCA with a high-risk score may be associated with inflamed

phenotypes. Simultaneously, the expression of multiple immune checkpoints

(such as PD-L1, CTLA-4, and PD-1) and enrichment scores of gene signatures

positively correlated with immunotherapy response were positively correlated

with the pyroptosis risk score. Therefore, patients with a high pyroptosis risk

score may be more sensitive to immunotherapy. In addition, patients with high
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pyroptosis risk scores may be more sensitive to chemotherapeutic drugs, such

as cisplatin, docetaxel, and paclitaxel. In addition, the pyroptosis risk score

accurately predicted the molecular subtypes of BLCA, which were cross-

validated in several independent systems.

Conclusions: This study developed and validated a robust pyroptosis risk score

that can predict the clinical outcomes and TME immune phenotypes of BLCA.

In summary, the pyroptosis risk score helps drive precision therapy in patients

with BLCA.
KEYWORDS

bladder cancer, pyroptosis, risk score, tumor immune microenvironment,
immunotherapy, chemotherapy, radiotherapy
Introduction

Bladder cancer is one of the most common urinary tumors

with an increasing incidence. Approximately 150,000 people

worldwide die of this disease every year (1). Non-muscle invasive

bladder cancer (NMIBC) can be treated with surgical resection

and intravesical perfusion therapy; however, most patients still

experience recurrence (2). In muscle invasive bladder cancer

(MIBC), the main treatments include surgery, radiotherapy,

targeted therapy, and anticancer immunotherapy (2, 3).

However, these treatment options are insufficient to cure

BLCA. Only a minority of patients are sensitive to these

regimens, which are caused by many primary or acquired

resistance mechanisms such as pyroptosis (4). The inherent

genetic heterogeneity of tumor cells and metabolism-related

factors cause tumor cells to acquire drug resistance to

treatments (4). Bladder cancer is a heterogeneous tumor with

many molecular subtypes, making it difficult to achieve accurate

treatment (2). Therefore, it is important to develop effective tools

to reveal the heterogeneity of BLCA and predict its prognosis

and efficacy.

Pyroptosis is a programmed inflammatory cell death usually

accompanied by the activation of inflammatory bodies and

maturation of proinflammatory cytokines IL-1 b (IL-1 b) and

interleukin-18 (IL-18) (4, 5). In recent years, researchers have

conducted several studies on tumor cell pyroptosis. Pyroptosis

inhibits tumor growth in colorectal, liver, skin, and other cancers

(6). The role of pyroptosis in bladder tumors requires further

investigation. Some studies have shown that GSDME, a member

of the gasdermin superfamily, can trigger pyroptosis by cleaving

GSDMD by activating caspase-3 during chemotherapy (7). Caspase

8 is considered a molecular switch that regulates pyroptosis (8).

Pyroptosis affects tumor proliferation, invasion, and metastasis,

reshapes the tumor microenvironment, and stimulates anti-tumor
02
immune responses. Some molecules related to pyroptosis have been

identified in some tumors and can be used to predict prognosis and

therapeutic response (5, 9). Current immunotherapy, including

anti-CTLA-4, anti-PD-1/PD-L1, and chimeric antigen receptor

(CAR) T-cell therapy, has significantly improved the survival

outcomes of patients with cancers (10–12). However, the

relationship between pyroptosis and the tumor immune

microenvironment in BLCA needs to be further explored.

This study integrated several independent BLCA datasets

and developed a novel pyrolysis risk score. We correlated the

pyrolysis risk score with clinical prognosis, the tumor

microenvironment (TME) phenotypes, and response to

multiple treatment regimens.
Materials and methods

Data sets collection

External public cohorts
The mRNA expression matrix (FPKM) of 414 BLCA tumor

samples and 19 normal tissues were downloaded from the TCGA

Cancer Genome Atlas (https://portal.gdc.cancer.gov/). Thereafter,

the FPKM values were converted to TPM values. Two externally

validated GSE cohorts with detailed survival data, GSE32894 and

GSE48075 were collected from the Gene Expression Omnibus

(GEO). GSE32894 (platform: GPL6947) contained 224 BLCA

samples and GSE48075 (platform: GPL6947) contained 73 BLCA

samples with survival information.

Xiangya cohort: According to our previous study, the Xiangya

cohort (GSE188715) comprised 57 BLCA samples sequenced on

the BGISEQ-500 platform (BGI-Shenzhen, China) (13–15).

Determination of pyroptosis gene sets: The keyword “pyroptosis”

was searched in the GSEA public database (http://www.gsea-
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msigdb.org/gsea/msigdb/genesets.jsp). Two gene sets, “GO

BP_PYROPTOSIS” and “REACTOME_PYROPTOSIS, “ were

obtained. Forty pyroptosis-related genes were also identified. In

addition, we extracted 33 pyroptosis-related genes from previous

studies (16–19). Finally, 57 pyroptosis-related genes were obtained

(Supplementary Table 1).

The detailed information of these cohorts was provided in

Supplementary Table 1.
Single cell RNA sequencing (scRNA-seq)

Three muscle-invasive bladder cancer (MIBCs) samples were

obtained from the Department of Urology, Xiangya Hospital, and

scRNA-seq was performed at OE Biotech Co, Ltd (Shanghai,

China), named as the Xiangya scRNA cohort. There are studies

reporting that the detailed preparation of single-cell suspensions is

based on droplet processing of raw data and single-cell sequencing

(20, 21). After processing through cell ranger, the Seurat R package

(version 4.1.0) was used to convert the count matrix to a Seurat

object. Low-quality cells were cells with a unique molecular

identifier (UMI) number of less than 1000, a gene number of less

than 200, a log10GenesPerUMI number of less than 0.70, and a

mitochondrial-derived UMI number of more than 20%, and these

cells were discarded. The count matrixs were then normalized and

the effects of mitochondrial proportion were regressed. The

functions SelectIntegrationFeatures, findinintegrationanchors and

IntegrateData integrate these three samples based on the first 3000

variable features. Afterwards, principal component analysis (PCA)

was used to display the cell clusters through the tSNE plot and use

the FindClusters function to screen the main cell clusters (res=0.4).

To identify malignant bladder cancer cells, CNVs in epithelial cells

were screened by the InferCNV package.
Identification of differentially expressed
pyroptotic genes (pyroptotic DEGs) and
functional analysis

The empirical Bayesian method of the limma R package was

used to identify differentially expressed pyroptotic DEGs between

bladder cancer and normal tissues. The screening criteria for

pyroptotic DEGs were as follows: |log(fold change)|>1 and

adjusted P-value< 0.05 (22). The Kyoto Encyclopedia of Genes

and Genomes (KEGG) and Gene Ontology (GO) analyses were

performed using the aforementioned pyroptotic DEGs (23).
Development and validation of
pyroptosis risk score

First, pyroptotic DEGs from cancerous and paracancerous

tissues were screened in the TCGA-BLCA cohort. Thereafter, we
Frontiers in Immunology 03
screened the prognostic pyroptotic genes in the TCGA-BLCA

cohort using univariate Cox analysis. Furthermore, least absolute

shrinkage and selection operator (LASSO) regression was

performed to identify the pyroptotic DEGs with the best

prognosis. Finally, based on the best prognostic pyroptotic

DEGs, the risk score for pyroptosis was calculated using the

LASSO coefficient: Risk score = ∑ bi * RNAi, where bi is the

coefficient of the i-th.

Patients were divided into high- and low-scoring groups

according to the median pyroptosis risk score. Kaplan-Meier

survival analysis was used to obtain the survival curves. The

predictive prognostic accuracy of pyroptosis risk score was

determined using the tROC R package. The prognostic

accuracy of the pyroptosis risk score was validated in the

GSE32894, GSE48075, and an internal cohort (Xiangya

cohorts). In addition, the pyroptosis risk score was correlated

with the grade and stage of tumors. Univariate and multivariate

Cox analyses were used to analyze the independent prognostic

role of sex, age, stage, and the pyroptosis risk score in the TCGA-

BLCA cohort. Finally, a nomogram was plotted based on these

factors with an independent prognostic predictive value. The

nomogram was validated using clinical decision curves.
Description of BLCA molecular subtypes
and TME characteristics

In our previous study, seven independent molecular subtype

systems were analyzed, including the UNC, Baylor, TCGA,

MDA, CIT, and consensus systems (15). Relevant molecular

subtype-specific signatures were collected and correlated with

pyroptosis risk scores. In our previous study, the related

immunological characteristics and algorithms in the TME

were described in detail (13–15, 20, 24). The steps of the

cancer-immune cycle include cancer antigen presentation,

release, immune cell trafficking, recognition, and killing.

Thereafter, various independent algorithms, such as TIP,

CiberSort-ABS, and TIMER, were used to obtain the

infiltration degree of tumor-infiltrating immune cells (TIIC)

(13–15, 20, 24).
Gene set variation analysis (GSVA)
and response prediction of several
treatment options

GSVA is often used to estimate the activity differences of

pathways or biological processes in expression dataset samples

and is a nonparametric unsupervised method (25). To study the

differences of 50 correlation pathways among the pyroptosis risk

score groups, the corresponding paths from MSigDB and

analyzed GSVA enrichment were collected using “GSVA” R

software package (26). Individualized chemotherapy response
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was estimated using the pRRophetic software package based on

data from the Genomics of Cancer Drug Sensitivity (GDSC)

(https://www.ancerrxgene.org/) (27). We calculated the IC50

values of cisplatin, docetaxel, paclitaxel, bleomycin,

camptothecin, and vinblastine. In addition, we summarized

some effective indicators for predicting the efficacy of ICB,

including the pan-cancer T cell inflammation score (TIS) and

20 inhibitory immune checkpoints (15). Finally, the enrichment

fraction of the signature related to clinical response to targeted

therapy and radiotherapy was calculated using the

ssGSEA algorithm.
Statistical analysis

Statistical analysis of all relevant data was performed using

the R software. Pearson or Spearman coefficients were used to

analyze the correlations between variables. The t-test or Mann-

Whitney U test was used to compare differences in continuous

variables between the groups. Survival curves were plotted using

the Kaplan-Meier method. We used receiver operating

characteristic (ROC) curves to calculate the accuracy of

pyroptosis risk scores for predicting survival and molecular

subtypes. Statistical tests were two-sided, and the level of

significance was set at P< 0.05.
Results

Identifying differentially expressed
genes between bladder cancer
and normal tissues

Among the 57 pyroptosis-related genes, 14 were

differentially expressed between BLCA and adjacent normal

tissues (Figure 1A), including CASP9, CHMP3, CHMP7, BAX,

CHMP4B, HMGB1, CASP3, CHMP4C, CASP8, ELANE, IL6,

TREM2, BAK1, and PYCARD. Meanwhile, we further analyzed

the expression patterns of these DEGs in the BLCA

microenvironment from the single cell level. First, it was found

that seven genes, BAK1, CASP3, CASP8, CASP9, CHMP7,

ELANE, and IL6, were not specifically expressed in each cell

line (Supplementary Figure 1). In contrast, the genes HMGB1,

PYCARD and BAX were expressed in all cell lines without

specificity (Supplementary Figure 4). Second, two genes,

CHMP4B and CHMP3, were not expressed in immune cells

(T/NK and B cells) (Supplementary Figure 2). Third, the

CHMP4C was specifically expressed in bladder cancer

epithelial cells (Supplementary Figure 3). Last, the gene

TREM2 was found to be specifically expressed in myeloid cell

lines (Supplementary Figure 5).

Figure 1B shows the correlation network diagram of the 14

pyroptotic DEGs, and the results show that most of the genes
Frontiers in Immunology 04
were related to each other. To observe the genetic variation in

pyroptotic molecules in bladder cancer, we displayed the somatic

mutation frequencies of 14 differentially expressed pyroptotic

molecules in the TCGA-BLCA cohort using waterfall plots.

Among the 412 BLCA samples, pyroptotic mutations were

found in 37 cases with a mutation frequency of 8.98%. We

found that CASP8 had the highest mutation frequency (2%), of

which missense mutations were the most common. In summary,

the mutation frequencies of these pyroptosis-related genes were

low (Figure 1C). Therefore, we performed a functional

enrichment analysis based on these 14 pyroptosis DEGs. GO

analysis showed that these differentially expressed pyroptotic

genes were enriched in multiple biological pathways, including

multi-organism processes, ESCRT III complex, and membrane

proteins (Figure 1D). KEGG analysis showed that these

pyroptosis genes were enriched in Necroptosis, Apoptosis and

Influenza A (Figure 1E). Furthermore, we performed pan-cancer

analysis based on the 14 differentially expressed pyroptosis

genes. The results suggested that 14 pyroptosis genes were

closely related to nine important tumor-related pathways in

pan-cancer (Figure 1F). We found that most pyroptosis genes

were related to activation of the apoptosis pathway. For example,

BAK1, BAX, and IL6 are associated with the activation of

apoptosis in 50%, 32%, and 29% of tumors, respectively. In

contrast, only ELANE was associated with apoptosis inhibition

in 15% of tumors. Several other obvious pathways have been

described in the manner of apoptosis: cell cycle, EMT, hormone

AR, hormone ER, and RTK.
Pan-cancer multi-omics analysis of
pyroptotic DEGs

We further analyzed the multi-omics features of the 14

pyroptotic DEGs in pan-cancer. The results suggested that

these genes had high mutation frequencies in UCEC, HNSC,

STAD, COAD, and BLCA. Among them, the mutation

frequency of the CASP8 gene was the highest at 55% in UCEC

(Supplementary Figure 6A). In addition, we found that TREM2,

CASP3, BAX, CASP8, PYCARD, CHMP4C, and BAK1 were

highly expressed in most tumors compared to paracancerous

tissues. Conversely, IL6 and ELANE were downregulated in

most tumors compared to adjacent tissues (Supplementary

Figure 6B). The main types of copy number variations of

pyroptosis genes in pan-cancer were heterozygous

amplifications and deletions, among which the CNVs of

CHMP4B, CHMP4C, and IL6 in most tumors were

heterozygous amplifications. In contrast, CASP3, CASP9, and

CHMP7 had CNV-type loss-of-heterozygosity in most tumors

(Supplementary Figure 6C). We found that an important factor

affecting the expression of pyroptotic molecules was gene copy

number variation, as CNV and mRNA expression levels were

positively correlated in most tumor types (Supplementary
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FIGURE 1

Screening of differentially expressed pyroptotic genes and functional analysis. (A) Fourteen pyroptotic genes differentially expressed in BLCA and
normal tissues. (B) protein–protein interaction (PPI) network of the differentially expressed pyroptotic genes. (C) Landscape of mutation profiles
in 412 patients with bladder cancer from the TCGA-BLCA cohort. Each waterfall plot represents the mutation information of each pyroptosis-
related regulator. Corresponding colors have annotations at the bottom, indicating different mutation types. The barplot shows mutation
burden. The right numbers represent mutation frequency individually. (D) GO analysis of the differentially expressed pyroptotic genes. The
corresponding colors have annotations at the bottom, indicating different biological pathways. (E) KEGG analysis of the differentially expressed
pyroptotic genes. The corresponding colors have annotations at the bottom, indicating different pathways. (F) Heatmap showing correlations
between 14 pyroptotic genes and their expression levels in important cancer signaling pathways. Red represents the activated pathway, whereas
blue represents the inhibitory pathway.
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Figure 6E). In particular, for CHMP7, there was a significant

positive correlation between CNV and mRNA expression in

most tumors (Supplementary Figure 6E). Furthermore, in most

cancers, the methylation levels of the aforementioned pyroptotic

genes were negatively correlated with the mRNA expression

levels (Supplementary Figure 6D).
Development and validation of a
pyroptosis risk score in the TCGA-
BLCA cohort

First, we performed a univariate Cox regression analysis

based on 14 pyroptotic DEGs in the TCGA-BLCA cohort.

Univariate Cox regression analysis revealed that CASP9,

CHMP4C, and CASP8 were associated with prognosis.

Furthermore, we identified three optimal candidates for

constructing a pyroptosis risk score using the LASSO

algorithm (Figures 2A−C). In the TCGA training cohort, we

divided the patients into low-and high-risk score groups based

on the median risk score. The results showed that the overall

survival time of patients in the low-score group was significantly

longer than that in the high-score group (Figure 2D). The AUC

of the pyroptosis risk score for predicting the OS of bladder

cancer OS was 0.650, 0.636, and 0.658 at 1, 3, and 5 years,

respectively (Figure 2E). In the independent external validation

cohort GSE32894, patients in the low-score group also had a

significantly longer overall survival than those in the high-score

group (Figure 2F). The AUC of the pyroptosis risk score for

predicting bladder cancer OS were 0.802, 0.824, and 0.804 at one,

three, and five years, respectively (Figure 2G). We found

consistent results in the Xiangya internal validation cohort.

The patients in the low-scoring group had a better overall

prognosis (Figure 2H). The AUC of the pyroptosis risk score

for predicting the OS of bladder cancer OS was 0.596, 0.642, and

0.816 at 1, 3, and 5 years, respectively (Figure 2I).
Relationship between pyroptosis risk
score and clinicopathological features

As shown in Figures 3A, B, patients with higher grades and

stages had higher risk scores, which was consistent with the

prognostic correlation of pyroptosis risk scores. Muscle invasive

status, metastasis and histological type also had the same

relationship with pyroptosis risk score (Supplementary

Figure 7).Furthermore, univariate Cox analysis suggested that age,

stage, and the pyroptosis risk score were significant prognostic

predictors (Figure 3C). Further multivariate Cox analysis confirmed

that the pyroptosis risk score was an independent prognostic risk

factor (Figure 3D). However, staging no longer has an independent

prognostic predictive value. These results demonstrate that the

pyroptosis risk score is an effective indicator for predicting the
Frontiers in Immunology 06
prognosis of patients with BLCA. To improve the predictive value

of the pyroptosis risk score for the prognosis of bladder cancer, we

established a comprehensive line chart by combining the pyroptosis

risk score with several factors that had prognostic value in the

univariate Cox regression analysis, such as age and tumor stage.

Figure (Figure 3E). We further used the ROC and calibration curves

to verify the accuracy of the line chart in predicting the prognosis of

bladder cancer. In the TCGA-BLCA cohort, the prediction

accuracies of the line charts for 1-, 3-, and 5-year OS were 0.714,

0.711, and 0.737, respectively (Figure 4A). As shown in the

calibration curve (Figure 4B), the OS predicted by the line chart

was highly consistent with the actual OS, highlighting the clinical

significance and accuracy of this comprehensive line chart. More

importantly, the line chart showed a higher prognosis prediction

accuracy in the two verification sets, GSE32894 and Xiangya

cohorts. (Figures 4C−F).
Pyroptosis risk score were related to
TME immune characteristics and ICB
clinical response

Immunotherapy has become the first-line treatment for

advanced bladder cancer. Therefore, it is crucial to explore the

correlation between the pyroptosis risk score and the immune

microenvironment of bladder cancer. The fate of cancer cells and

the efficacy of immunotherapy depend on the state of the tumor

immune microenvironment. The whole cancer immune cycle

consists of a series of continuous steps (28), the seven main steps

were: release of cancer cell antigens, cancer antigen presentation,

priming and activation, trafficking of immune cells to tumors,

infiltration of immune cells into tumors, recognition of cancer

cells by T cells, and killing of cancer cells (15). We analyzed the

correlation between risk score and activities of several anticancer

immune steps. The results suggested that the activities of release of

cancer cell antigens, T cell recruitment, CD8 T cell recruitment, Th1

cell recruitment, NK cell recruitment, and other steps were

significantly higher in the high-score group than in the low-score

group (Figure 5A). Consistently, the infiltration levels of the

corresponding TIICs, such as CD8 T cells, NK cells, Th1 cells,

and dendritic cells, were positively correlated with the pyroptosis

risk score. These results were highly consistent across the six

independent algorithms (Figure 5B). These results suggest that

patients in the high-risk score group may have an inflammatory

phenotype that is more sensitive to ICB. Therefore, we correlated

the risk score with several predictors of ICB efficacy. We found a

significant positive correlation between the risk scores and TIS

(Figure 5C). In addition, the expression of many immune

checkpoints (such as CD274, CTLA4, and PDCD1) and the

enrichment score of immunotherapy-related gene signatures were

positively correlated with the risk score (Figures 5D, E).

In summary, high-risk score tumors are inflamed

phenotypes that are more sensitive to ICB.
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FIGURE 2

Construction and validation of a pyroptosis risk score in the multiple BLCA cohorts. (A) Lasso coefficients of 14 predicted pyroptotic genes in the TCGA-
BLCA cohort. (B) Cross-validation for turning parameter selection via minimum criteria in the LASSO regression model. (C) Three best candidates were
screened by LASSO algorithm to further determine the generation of the pyroptosis risk score. (D) Kaplan–Meier analysis of OS for the pyroptosis risk
score in the TCG-BLCA cohort. (E) ROC curves of the pyroptosis risk score for predicting OS in the TCG-BLCA cohort. (F, G) Validation of the
pyroptosis risk score in GSE32894. (H, I) Validation of the pyroptosis risk score in the Xiangya cohort.
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Pyroptosis risk score accurately predicts
molecular subtypes and promotes
precision medicine for BLCA

Bladder cancer comprises a variety of molecular subtypes

with significantly different biological functions. Therefore, we
Frontiers in Immunology 08
first compared the differences in the enrichment activities of the

50 hallmark signaling pathways between the high- and low-risk

groups. We found significantly different biological functions

between the high- and low-pyroptosis score groups

(Figure 6A). EPITHELIAL MESENCHYMAL TRANSITION

and INFLAMMATORY RESPONSE were the most abundant
A B

D

E

C

FIGURE 3

Construction of a nomogram in the TCGA-BLCA cohort. (A, B) Relationship between the pyroptosis risk score and tumor grade and stage in the
TCGA-BLCA cohort. (C, D) Results of univariate and multivariate Cox analyses. (E) Nomogram developed based on stage, age, and the
pyroptosis risk score to predict overall survival at 1, 3, and 6 years. **P value < 0.01, ***P value < 0.001.
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signals in the high-risk group, whereas PEROXISOME and

ESTROGEN RESPONSE_EARLY were the most abundant

signals in the low-score group. These results suggest that

pyroptosis genes may affect the progression of BLCA by

regulating hallmark signaling pathways. Thereafter, we

analyzed the correlation between risk score and molecular

typing of bladder cancer. The results showed that the high-
Frontiers in Immunology 09
scoring group was mostly the basal subtype characterized by

basal differentiation, EMT differentiation, immune

differentiation, myofibroblasts, and interferon response,

whereas the low-scoring group was mainly the luminal

subtype characterized by the Ta pathway and luminal

differentiation (Figure 6B). Figure 6C shows that the risk score

of pyroptosis could accurately predict molecular subtypes, and
A B

D

E F

C

FIGURE 4

Validation of multiple cohorts of the pyroptosis risk score (A) ROC curves of the nomogram. (B) Calibration curves of the nomogram measured
using the Hosmer–Lemeshow test. (C, D) Validity of pyroptosis risk score in GSE32894. (E, F) Validity of the pyroptosis risk score in the Xiangya
cohort.
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FIGURE 5

Pyroptosis risk score correlated with the tumor immune microenvironment characteristics. (A) Differences in cancer immune cycling activity
between high- and low-risk groups. (B) Relationships between the pyroptosis risk score and several immune cells (CD8+T cells, NK cells,
macrophages, Th1 cells, and DCs) in six independent algorithms. (C) Relationships between the pyroptosis risk score and T cell inflamed score
(TIS). (D) Correlation between the pyroptosis risk score and enrichment of ICB response-related pathways. (E) Relationship between pyroptosis
risk scores and immune checkpoints (*P < 0.05; **P < 0.01; ***P < 0.001). NS, P value > 0.05, no significant difference;
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the AUC for predicting molecular subtypes in UNC, TCGA,

MDA , Lund , C IT , c on s en su s , and Bay l o r we r e

0.78,0.78,0.79,0.89,0.82,0.76, and 0.65, respectively. Different

molecular types have different sensitivities to different

treatments, including radiotherapy, chemotherapy, and

targeted therapies. Therefore, we further analyzed the
Frontiers in Immunology 11
sensitivity of the pyroptosis risk score in predicting the most

frequently used chemotherapeutic drugs among the six BLCA.

Patients with high scores were more sensitive to chemotherapy

drugs including cisplatin, camptothecin, paclitaxel, bleomycin,

docetaxel, and vinblastine (Figure 6D). Finally, we found that the

enrichment activity of gene signatures related to the efficacy of
A B

D

EC

FIGURE 6

Pyroptosis risk score effectively predicts molecular subtypes and guides precise treatment of BLCA. (A) Differences in biological function
between pyroptosis risk groups. (B) Relationships between pyroptosis risk score and seven classical molecular subtypes. (C) Predictive accuracy
of pyroptosis risk score for molecular subtypes in multiple different algorithms. (D) Difference on the effects of six chemotherapy drugs. (E)
Relationships between the pyroptosis risk score and enrichment scores of multiple therapeutic signatures.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.965469
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Deng et al. 10.3389/fimmu.2022.965469
EGER-targeted therapy and radiotherapy was higher in

the high-score group, indicating that patients in the

high-score group were sensitive to EGER-targeted therapy and

radiotherapy (Figure 6E).
To verify the role of pyroptosis risk
score in Xiangya cohort, GSE32894,
and GSE48075

The role of the pyroptosis risk score in predicting immune-

related phenotypes, molecular subtypes, and treatment regimen

efficacy was further validated in the Xiangya cohort. The

pyroptosis risk score was positively correlated with the

enrichment scores for most steps of the anticancer immune

cycle (Figure 7A). Consistently, the pyroptosis risk score was

positively correlated with the corresponding degree of TIIC

infiltration by CD8 + T cells, NK cells, and dendritic cells

(Figure 7E). Enrichment scores for signaling pathways

positively correlated with immune checkpoint, TIS, and ICB

responses were also positively correlated with the pyroptosis risk

scores (Figures 7B−D). Therefore, in the Xiangya cohort, tumors

with high-risk scores also belonged to the inflammatory

phenotype. In addition, in the Xiangya cohort, the pyroptosis

risk score was accurate for the molecular subtypes (Figure 7F). In

these seven independent systems, the AUC ranged from 0.83 to

0.97 (Figure 7G). As expected, in the Xiangya cohort, the

pyroptosis risk score could also accurately predict the effects of

radiotherapy and several targeted therapies, and patients in the

high score group were more sensitive to EGFR-targeted therapy

and radiotherapy; targeted therapy such as blockade of the

FGFR3 network, WNT-b-catenin network, and PPRAG

network were more sensitive to low-score patients

(Figure 7H). All the above results were effectively validated in

GSE32894 and GSE48075 (Figures 8A−F and 9A–F). Finally, we

correlated the 14 pyroptotic DEGs with the sensitivity to many

different drugs, and found that HMGB1, CASP3, CHMP7, and

most drugs were negatively correlated, whereas IL-6, CHMP4C,

CHMP4B, and large drug sensitivities were positively correlated

(Figures 10A, B).
Discussion

An increasing number of studies have shown that pyroptosis

plays an important regulatory role in tumors; however, current

research on the role of pyroptosis in bladder cancer remains

unclear. This study screened 14 pyroptotic DEGs from

cancerous and paracancerous tissues of BLCA. We found that

imbalances in the expression of pyroptotic molecules might be

related to the regulation of genomic variation. To develop new

ideas and effective treatment targets for BLCA, it is necessary to

formulate an efficient predictive model. At present, the
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pyroptosis risk scores have been developed to predict the

prognosis and TME characteristics of cancer (2, 29). However,

there is still a lack of research to systematically explore the

correlation between pyroptosis-related features, TME features,

and the molecular types of BLCA. This study developed and

validated a novel pyroptosis risk score by using a combination of

multiple independent BLCA datasets and the Xiangya cohort.

The pyroptosis risk score can predict clinical outcomes,

molecular subtypes, and TME characteristics and the

therapeutic effect of chemotherapy, radiotherapy, ICB, and

targeted therapy in BLCA.

Pyroptosis affects tumor proliferation, invasion, and

metastasis (30). Some studies have found that high expression

of GSDME in esophageal cancer causes cells to undergo

pyroptosis (31). The pyroptosis risk score reflects the actual

pyroptosis in the TME from different aspects. First, the

pyroptosis risk score can be used to predict the prognostic and

clinical features of BLCA. The higher the score, the worse the OS

and the higher the tumor grade and stage. Second, we analyzed

the differences in the enrichment scores of 50 landmark

signaling pathways between the pyroptosis risk score groups

and found that EPITHELIAL MESENCHYMAL TRANSITION

and INFLAMMATORY RESPONSE were most abundant in the

high-risk group, whereas PEROXISOME and ESTROGEN

RESPONSE_EARLY were the most abundant signals in the

low-risk groups. Chemotherapy is an important treatment

option for metastatic bladder cancer (MBC). There is an

urgent need to develop accurate chemotherapy predictors that

can provide patients with precise treatment options. Our study

found that the six most commonly used chemotherapeutic drugs

in BLCA were the most sensitive in the high-risk group,

indicating that patients with high-risk scores were more

effectively treated with chemotherapeutic drugs.

Chen et al. found 28 genes related to cell death in BLCA (32).

They found that patients in the high PyroScore group had better

prognosis. Conversely, our study found that patients in the high-

risk score group had worse prognosis. However, we consistently

found that patients in the high scoring group were more

sensitive to chemotherapy. However, our study and that of

Chen et al. have several different focuses. First, the sets of

pyroptotic genes selected were different between the two

studies. Chen et al. summarized 28 genes related to pyroptosis

in previous studies (33–35). In our study, we developed a

pyroptosis risk score based on hallmark pyroptosis signatures

with more robust enrichment analysis results than other

published pyroptosis genomes. Second, Chen et al. A scoring

system was constructed using the orthogonal rotation (PCA)

method and named PyroScore (32). Therefore, we generated a

pyroptosis risk score by integrating differential expression

analysis, Cox analysis, and the LASSO algorithm. Third, Chen

et al. did not analyze the relationship between the pyroptosis risk

score and clinical outcomes, radiotherapy, or immune markers

without systematic analysis. However, in our study, our system
frontiersin.org

https://doi.org/10.3389/fimmu.2022.965469
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Deng et al. 10.3389/fimmu.2022.965469
correlated the pyroptosis risk score with several TME immune

signatures, such as TIICs, immune checkpoints, and TIS.

An increasing number of studies have focused on the tumor

immune microenvironment (36, 37). Pyroptosis regulates the
Frontiers in Immunology 13
tumor immune microenvironment through various

mechanisms. Pyroptosis regulates the expression of several

immune-enhancing molecules, thereby forming the immune-

promoting TME. For example, studies have found that GZM-B
A B
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FIGURE 7

Validation of the pyroptosis risk score in the Xiangya cohort. (A) Relationships between the pyroptosis risk score and activities of the cancer
immunity cycles. (B) Relationships between the pyroptosis risk score and immunotherapy-predicted pathways. (C) Correlations between the
pyroptosis risk score and several immune checkpoints. (D) Relationships between the pyroptosis risk score and T cell inflammation score (TIS).
(E) Relationship between the pyroptosis risk score and infiltration levels of five tumor-infiltrating immune cells. (F) The pyroptosis risk score
accurately stratified the molecular subtypes in seven different algorithms. (G) Accuracy of the pyroptosis risk score in predicting molecular
subtypes in seven different algorithms. (H) Relationships between the pyroptosis risk score and the enrichment scores of several therapeutic
signatures. NS, P value > 0.05, no significant difference.
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can also increase the number of macrophages, NK cells, and

CD8+ T lymphocytes by cleaving GSDME, thereby activating

antitumor immunity, activating caspase-3 in target cells, and

inducing pyroptosis (38, 39). Two recent studies found that

granzymes released by CD8+ T cells and NK cells can cleave
Frontiers in Immunology 14
GSDMB/E, thereby triggering tumor cell pyroptosis, and

pyroptosis may be an important effector in anti-tumor

immunity (38, 40). The study found that PD-L1 converts

tumor necrosis factor a-induced apoptosis of cancer cells into

pyroptosis, resulting in tumor necrosis (41). Studies have shown
A B
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FIGURE 8

Validation of the pyroptosis risk score in the GSE32894 cohort. (A) Relationships between pyroptosis risk score and the activities of the cancer
immunity cycles. (B) Relationships between the pyroptosis risk score and immunotherapy-predicted pathways. (C) Correlations between the
pyroptosis risk score and several immune checkpoints. (D) The pyroptosis risk score accurately stratified the molecular subtypes in seven
different algorithms. (E) Accuracy of the pyroptosis risk score in predicting molecular subtypes in seven different algorithms. (F) Relationships
between the pyroptosis risk score and enrichment scores of several therapeutic signatures.
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that pyroptotic cell death of cancer cells promotes dendritic cell

activation and T cell infiltration and enhances anti-tumor

immune responses by releasing high mobility group protein

B1 (42). Further studies have shown that overexpression of

GSDME results in enhanced drug sensitivity in vivo and in

vitro (43). All the above data are helpful for exploring the role of
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t h e p y r o p t o s i s r i s k s c o r e i n p r e d i c t i n g TME

immune characteristics.

This study found that the pyroptosis risk score correlated

with immune checkpoints (such as CD274, CTLA4, and

PDCD1), TIS score, and anticancer immune cycle enrichment

score (such as release of cancer cell antigens, T cell recruitment,
A B
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C

FIGURE 9

Validation of the pyroptosis risk score in the GSE48075 cohort. (A) Relationships between the pyroptosis risk score and activities of the cancer
immunity cycles. (B) Relationships between the pyroptosis risk score and immunotherapy-predicted pathways. (C) Correlations between the
pyroptosis risk score and several immune checkpoints. (D) The pyroptosis risk score accurately stratified the molecular subtypes in seven
different algorithms. (E) Accuracy of the pyroptosis risk score in predicting molecular subtypes in seven different algorithms. (F) Relationships
between the pyroptosis risk score and enrichment scores of several therapeutic signatures.
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CD8 T cell recruiting, Th1 cell recruiting, NK cell recruiting),

and TIICs (such as CD8 T cells, NK cells, Th1 cells, and

dendritic cells) were positively correlated, suggesting that there

is higher anticancer immunity in the TME of patients in the

high-risk score group. However, some tumor tissues have large

numbers of immune cells (endothelial cells, mast cells, M2

macrophages, and quiescent T4 memory cells), which cannot
Frontiers in Immunology 16
penetrate the tumor and are forced to stay in the surrounding

stroma. Anticancer immunity in the tumor microenvironment is

considered an immunosuppressive state (44). This was because

the pyroptosis risk score positively correlated with M2

macrophages (Figure 5B), which suppressed anticancer

immunity, and the degree of infiltration was positively

regulated by pyroptosis. It is well known that immune
A B

FIGURE 10

Correlation analysis between pyroptosis-related genes and drug sensitivity. (A, B) Bubble chart shows the correlation analysis between these
pyroptotic genes and drug susceptibility. Red indicates positive correlation and blue indicates negative correlation. The darker the color, the
higher the correlation index. Bubble size indicates the FDR.
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checkpoint inhibitors (ICIS) have achieved good results in

tumor immunotherapy (10–12). Our study found that the

pyroptosis risk score was positively correlated with the

expression of many immune checkpoints such as CD274,

CTLA4, and PDCD1. Therefore, anticancer immunotherapy

such as ICB is more effective in patients with high-risk scores.

In contrast, patients in the low-risk score group had significantly

fewer TIS and immune checkpoints, which were negatively

co r r e l a t ed , i nd i c a t i ng th a t t h e TME had f ewe r

immunotherapeutic targets. Therefore, the effect of ICB in

patients in the low-risk score group was unsatisfactory.

This study had certain limitations. First, this study was

conducted using a bioinformatics analysis. Although we have

repeatedly validated these results in several public cohorts, we

need to perform studies on the relevant mechanisms of

pyroptosis in vivo or in vitro. Second, the clinical value of our

pyroptosis risk score requires further validation through

prospective clinical trials. Third, we did not determine the

optimal cut-off value for the pyroptosis risk score.

In conclusion, we developed and validated a novel

pyroptosis risk score that can effectively predict clinical

outcomes and TME characteristics in BLCA. Pyroptosis risk

score may contribute to the choice of BLCA treatment and

enable patients to receive precise treatment. For patients in the

high-risk score group, they may respond better to

immunotherapy, chemotherapy, radiotherapy, and EGFR-

targeted therapy. In contrast, patients in the low-risk score

group may benefit from several targeted treatments, such as

blockade of the PPARG, WNT-b-catenin, and FGFR3 networks.
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SUPPLEMENTARY FIGURE 1

Expression patterns of these DEGs in the BLCA microenvironment from
the single cell level.

SUPPLEMENTARY FIGURE 2

Expression patterns of these DEGs in the BLCA microenvironment from

the single cell level.

SUPPLEMENTARY FIGURE 3

Expression patterns of these DEGs in the BLCA microenvironment from

the single cell level.

SUPPLEMENTARY FIGURE 4

Expression patterns of these DEGs in the BLCA microenvironment from
the single cell level.

SUPPLEMENTARY FIGURE 5

Expression patterns of these DEGs in the BLCA microenvironment from
the single cell level.

SUPPLEMENTARY FIGURE 6

Expression variation of pyroptotic genes. (A) Fourteen pyroptosis genes had

high mutation frequencies in UCEC, HNSC, STAD, COAD, and BLCA. Among
them, the mutation frequency of the CASP8 gene was the highest, reaching

55%, particularly in UCEC. The darker the color, the higher is the mutation
frequency, and vice versa. (B)Bubble chart shows the differential expression of

these pyroptotic genes in the cancerous and paracancerous tissues of various

tumors. Red indicates a positive correlation, and blue indicates a negative
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correlation. The darker the color, the higher is the correlation index. Bubble
size indicates FDR. (C) Copy number variation pie chart distribution shows the

types of copy number variation for these genes. Corresponding colors have
annotations at the bottom, which indicate different types of copy number

variation. (D) Bubble chart shows the correlation between the methylation of
pyroptosis-related molecules and mRNA expression, with blue representing

negative correlations and red representing positive correlations. Darker colors
indicate a larger correlation index. The bubble size indicates the FDR. (E)
Bubble chart showing the correlation between CNV and mRNA expression

levels. Red indicates a positive correlation and blue indicates a negative
correlation. The darker the color, the higher is the correlation index. The

bubble size indicates the FDR.
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SUPPLEMENTARY FIGURE 7

Correlation analysis of pyroptosis risk score with muscle invasive status
and metastasis. (A-C) Relationship between the pyroptosis risk score and

muscle invasive status in the TCGA-BLCA 、GSE32894 and Xiangya
cohort. (D-E) Relationship between the pyroptosis risk score and

metastasis in the TCGA-BLCA and Xiangya cohort. (F) Relationship
between the pyroptosis risk score and histological type in the

TCGA-BLCA.

SUPPLEMENTARY TABLE 1

Pyroptosis-related genes and detailed clinical information of four BLCA
cohorts applied in our analysis.
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