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Abstract 

Background: Observational studies have reported maternal short/long sleep duration to be associated with adverse 
pregnancy and perinatal outcomes. However, it remains unclear whether there are nonlinear causal effects. Our aim 
was to use Mendelian randomization (MR) and multivariable regression to examine nonlinear effects of sleep dura-
tion on stillbirth (MR only), miscarriage (MR only), gestational diabetes, hypertensive disorders of pregnancy, perinatal 
depression, preterm birth and low/high offspring birthweight.

Methods: We used data from European women in UK Biobank (N=176,897), FinnGen (N=~123,579), Avon Longitu-
dinal Study of Parents and Children (N=6826), Born in Bradford (N=2940) and Norwegian Mother, Father and Child 
Cohort Study (MoBa, N=14,584). We used 78 previously identified genetic variants as instruments for sleep duration 
and investigated its effects using two-sample, and one-sample nonlinear (UK Biobank only), MR. We compared MR 
findings with multivariable regression in MoBa (N=76,669), where maternal sleep duration was measured at 30 weeks.

Results: In UK Biobank, MR provided evidence of nonlinear effects of sleep duration on stillbirth, perinatal depres-
sion and low offspring birthweight. Shorter and longer duration increased stillbirth and low offspring birthweight; 
shorter duration increased perinatal depression. For example, longer sleep duration was related to lower risk of low 
offspring birthweight (odds ratio 0.79 per 1 h/day (95% confidence interval: 0.67, 0.93)) in the shortest duration 
group and higher risk (odds ratio 1.40 (95% confidence interval: 1.06, 1.84)) in the longest duration group, suggesting 
shorter and longer duration increased the risk. These were supported by the lack of evidence of a linear effect of sleep 
duration on any outcome using two-sample MR. In multivariable regression, risks of all outcomes were higher in the 
women reporting <5 and ≥10 h/day sleep compared with the reference category of 8–9 h/day, despite some wide 
confidence intervals. Nonlinear models fitted the data better than linear models for most outcomes (likelihood ratio 
P-value=0.02 to 3.2×10−52), except for gestational diabetes.
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Background
Sleep occupies up to one third of the human life span. For 
adults, the minimum and maximum sleep durations are 
recommended as 7 and 9 h/day (h/d), respectively [1]. 
Habitual sleep duration is regulated by genetic factors 
[2] and can be influenced by a person’s daily routine and 
lifestyle factors [1]. Pregnancy is associated with altera-
tions in sleep duration: both total and nocturnal sleep 
duration tend to be longer around the end of the first tri-
mester declining by the third trimester due to pregnancy-
induced changes, e.g. uterine contractions, heartburn, 
orthopnoea, leg cramps, pelvic girdle pain and uncom-
fortable sleeping position [3–5].

A systematic review of observational studies published 
up to 15 January 2018, which explored associations of 
prenatal sleep duration with psychological outcomes, 
reported a linear association of longer sleep duration 
with a lower risk of perinatal depression [6]. Other sys-
tematic reviews indicate that both short (<6 or <7 h/d) 
and/or long (>9 h/d) duration are associated with higher 
risks of adverse perinatal events (see Additional file  1: 
Table  S1) [6–13]. In particular, short sleep duration is 
associated with higher risks of gestational diabetes [7, 8], 
preeclampsia [8] and preterm birth [8–10], while long 
sleep duration is associated with higher risks of stillbirth 
[8, 11] and gestational diabetes [8, 12]. These observa-
tional studies may be vulnerable to residual confounding, 
with demonstrated between-study heterogeneity likely 
influenced by variation in confounder control [14]. Few 
studies have examined several outcomes together, which 
is important for trying to identify a range of duration that 
minimizes any adverse outcomes. Studies to date have 
mostly examined binary variables of short and long sleep 
duration rather than trying to explore different patterns 
across sleep duration.

In the absence of large, well-conducted randomized 
controlled trials of interventions targeting on sleep dura-
tion during pregnancy [15], Mendelian randomization 
(MR) provides an alternative means of probing the effect 
of sleep duration on adverse pregnancy and perinatal 
outcomes. MR uses single nucleotide polymorphisms 
(SNPs) that are robustly associated with potential risk 
factors, e.g. sleep duration, as instrumental variables 
(IVs) to explore causal effects of these factors on out-
comes [16, 17]. MR is less prone to confounding than 
observational studies, as SNPs being randomly allocated 

at meiosis cannot be influenced by the wide range of 
socio-demographic or behavioural factors convention-
ally confounding observational studies, nor can they be 
influenced by health status [16, 17]. Under key assump-
tions (see the “Discussion” section), MR can be used to 
estimate a causal effect from SNPs-risk factor and SNPs-
outcome associations, and to estimate nonlinear relation-
ships [18, 19]. SNPs robustly associated with self-report 
sleep duration have recently been identified in the most 
updated genome-wide association study (GWAS) using 
UK Biobank (UKB) [2]. These SNPs have been used as 
IVs in MR studies to investigate linear and nonlinear 
effects of sleep duration on cancer [20], cardiometabolic 
health [21, 22] and mental health [23, 24]. To the best of 
our knowledge, MR has not been used to explore effects 
of sleep duration on pregnancy and perinatal outcomes.

Our aims are to use MR to explore and compare lin-
ear and nonlinear effects of lifelong sleep duration on 
partum-related (stillbirth, miscarriage and preterm 
birth), pregnancy-related (gestational diabetes, hyper-
tensive disorders of pregnancy and perinatal depression) 
and offspring-related (low birthweight, high birthweight 
and variation in birthweight) outcomes in up to 324,826 
women. We also conducted confounder-adjusted lin-
ear and nonlinear multivariable regression (MVreg) of 
maternal sleep duration reported during pregnancy with 
outcomes, except stillbirth and miscarriage, in 76,669 
women.

Methods
Participants
This study was undertaken using data from the MR-
PREG collaboration, which aims to explore causes and 
consequences of different pregnancy and perinatal 
events [25]. We include women of European descent 
from (1) UKB (176,897 women recruited at age 40–60 
years between 2006 and 2010 and providing retrospec-
tive reports of pregnancy and perinatal outcomes (Addi-
tional file 2: Fig S1A) [26]); (2) FinnGen (the nation-wide 
network of Finnish biobank with up to 123,579 women 
recruited at 54 years (interquartile range=25) with out-
comes obtained via health record linkage), and three 
birth cohorts (women recruited during pregnancy with 
most outcomes collected prospectively); (3) Avon Lon-
gitudinal Study of Parents and Children (ALSPAC, 6826 
women recruited between 1991 and 1992 (Additional 

Conclusions: Our results show shorter and longer sleep duration potentially causing higher risks of stillbirth, perina-
tal depression and low offspring birthweight. Larger studies with more cases are needed to detect potential nonlinear 
effects on hypertensive disorders of pregnancy, preterm birth and high offspring birthweight.
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file 2: Fig S1B)); (4) Born in Bradford (BiB, 2940 women 
recruited between 2007 and 2010 (Additional file  2: 
Fig S1C)); and (5) the Norwegian Mother, Father and 
Child Cohort Study (MoBa, 76,669 women in MVreg, of 
whom 14,585 women had genome wide data and were 
included in two-sample MR; recruited between 1999 and 
2009 (Additional file  2: Fig S1D)). All studies had ethi-
cal approval from relevant national or local bodies and 
participants provided written informed consent. Details 
of their recruitment procedures, information on genetic 
data and measurements of baseline characteristics are 
described in Additional file 2: Text S1 [23, 25–41].

Self‑report sleep duration
Information on sleep duration was obtained from UKB 
and MoBa. In UKB, sleep duration was measured via a 
self-administered question—“About how many hours 
sleep do you get in every 24 hours? (please include naps)” 
at the initial assessment centre, which recruited mostly 
non-pregnant participants. Women reported their sleep 
duration in integer values ranging from 1 to 23. Follow-
ing the methods of a previous MR study [23], 1448 (0.8%) 
women with sleep duration shorter than 2 h or longer 
than 12 h were treated like those who had not responded 
to this question. UKB contributed to two-sample (linear) 
and one-sample (nonlinear) MR (Fig. 1).

In MoBa, sleep duration was assessed via a self-admin-
istered question—“How many hours a day do you usually 
sleep now when you are pregnant?” at 30 weeks of gesta-
tion. Women reported their sleep duration in five catego-
ries, which were “over 10 h”, “8–9 h”, “6–7 h”, “4–5 h” and 
“less than 4 h”. The questionnaire did not specify whether 
to include naps so it is unclear whether the women would 
have reported duration only for night sleep or across 24 h 
(as in UKB). Due to small numbers, we combined the last 
two categories into “≤5 h”. MoBa contributed to analyses 
of the relevance of genetic IVs in pregnancy, two-sample 
MR and linear/nonlinear associations in MVreg (Fig. 1).

Sleep duration data were not available in ALSPAC, BiB 
or FinnGen, which all contributed to two-sample MR 
only (Fig. 1).

Selection of genetic IVs for self‑report sleep duration
Currently, nine GWAS of self-report sleep duration are 
available, with details in Additional file  1: Table  S2 [2, 
42–51]. All GWAS combined women and men (mainly 
of White European descent) with no sex specific analyses; 
the four largest GWAS (N >100,000) all included UKB. 
The largest and most updated GWAS identified 78 SNPs 
genome-wide significantly (P-value<5×10−8) associated 
with sleep duration in its discovery cohort—UKB men 
and women (N=446,118), with 55 of them being direc-
tionally consistent in the replication cohort—the Cohorts 

Fig. 1 Summary of methods and data contributing to this study. aAmong 176,897 women, 99.2% of them with sleep duration ranging from 2 to 12 
h were included. bIn one-sample MR, the three and five groups of different duration lengths are based on thresholds from existing literature [1, 8]. 
We also split UKB women into thirds (N=58,483) as a sensitivity analysis to increase instrument strength and power in the longest duration group. 
cTwo-sample MR methods include: inverse variance weighted, MR-Egger, weighted median and leave-one-out analysis. dMultivariable regression 
analysis adjusted for maternal age at time of delivery, parity, education, smoking status in pregnancy, alcohol intake in pregnancy, body mass index 
before pregnancy and average household income. Abbreviations: ALSPAC, Avon Longitudinal Study of Parents and Children; BiB, Born in Bradford; 
MoBa, Norwegian Mother, Father and Child Cohort Study; MR, Mendelian randomization; SNP, single nucleotide polymorphism; UKB, UK Biobank
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for Heart and Aging Research in Genomic Epidemiology 
(CHARGE, N=47,180) [2]. To maximize statistical power 
and IV strength in our main analyses, we considered the 
78 discovery SNPs from this largest GWAS. Additional 
file 1: Table S3 lists the characteristics of these 78 SNPs, 
as well as summary data for their association with sleep 
duration in UKB women used in this study. The 78 SNPs 
explained 0.69% of the variance in sleep duration in UKB 
[2]. We used the “clumping” function from the TwoSam-
ple MR R package [52], to check that the 78 SNPs were 
independent (i.e. linkage equilibrium) based on a thresh-
old of R2≤0.01 and all European samples from the 1000 
genome project as the reference population; the 78 SNPs 
are all independent of each other. For two-sample MR, 
we used these 78 SNPs as IVs with their effect alleles 
identified from the GWAS discovery results. For one-
sample MR, we combined these 78 SNPs with the same 
effect alleles into an unweighted genetic risk score [53]. 
It was not possible to obtain external (to UKB) weights 
from genetic association estimates generated in the 
GWAS discovery analyses (due to sample overlap with 
our analyses sample) or replication stage (due to the trait 
increasing allele being inconsistent between discovery 
and replication stages for some SNPs).

The same GWAS has also reported results for short 
(defined as ≤6 h/d) and long (defined as ≥9 h/d) sleep 
duration, identifying 27 and 9 independent genome-wide 
significant SNPs, respectively [2]. We decided a priori not 
to use these in the one-sample MR in order to explore 
other possible nonlinear association or different thresh-
olds of “healthy” sleep duration to these and for different 
outcomes. There were further technical considerations 
that are described in more detail in Additional file 2: Text 
S2 [2, 24, 54–56].

Pregnancy and perinatal outcomes
We examined associations with nine outcomes. Partum-
related outcomes included stillbirth, miscarriage and 
preterm birth (gestational age <37 completed weeks). 
Pregnancy-related outcomes included gestational dia-
betes, hypertensive disorders of pregnancy and perina-
tal depression (occurring during pregnancy or within a 
year after delivery). Offspring-related outcomes included 
low birthweight (birthweight <2500 g), high birthweight 
(birthweight >4500 g) and birthweight (grams) as a con-
tinuous outcome. Definitions of these outcomes in UKB, 
ALSPAC, BiB, MoBa and FinnGen, and harmonization 
of their definitions across cohorts are provided in Addi-
tional file  1: Table  S4. In UKB, women who reported 
both never experiencing a pregnancy loss and giving 
birth to zero child were defined as never pregnant and 
thus removed from the analyses. If multiple pregnancies 
were enrolled in the birth cohorts, we randomly selected 

one pregnancy per woman. In FinnGen, it was only 
possible to include miscarriage (N=9113 cases/89,340 
controls), gestational diabetes (N=5687 cases/117,892 
controls), hypertensive disorders of pregnancy (N=4255 
cases/114,735 controls) and preterm birth (N=5480 
cases/98,626 controls), and those outcomes were defined 
based on ICD codes [39].

We combined pre-eclampsia and gestational hyper-
tension as hypertensive disorders of pregnancy since we 
would not have sufficient statistical power to consider 
pre-eclampsia separately. In UKB, gestational age was 
only available for a subset of women (N=7280) who were 
young enough to have had a child born during or after 
1989, the earliest date for which linked hospital labour 
and perinatal data are available. As a result, numbers 
with data on preterm birth are smaller than for any other 
outcome, and we decided a priori to examine associa-
tions with low/high birthweight rather than small-/large-
for-gestational age. In the three birth cohorts, stillbirth 
and miscarriage were retrospectively obtained (from self-
report or clinical records) at the time of the index preg-
nancy. In ALSPAC and MoBa, women were asked if they 
had ever experienced a (previous) stillbirth or miscar-
riage, but numbers of pregnancy loss at the index preg-
nancy were too small for reliable results. Additionally, for 
miscarriage, we were concerned about misclassification 
or selection bias due to women who had experienced a 
miscarriage prior to recruitment.

Confounders in MoBa for MVreg
We considered maternal age at time of delivery, parity, 
education, smoking status in pregnancy, alcohol intake in 
pregnancy, body mass index before pregnancy and aver-
age household income as potential confounders based on 
their known or plausible effects on maternal sleep dura-
tion and on pregnancy and perinatal outcomes. Details of 
how these variables were measured are provided in Addi-
tional file 2: Text S1.

Statistical analyses
One‑sample MR exploring whether data support nonlinear 
over linear effects
One-sample MR requires individual level data for estima-
tion, and thus, we used data from UKB women (Fig. 1). 
Nonlinear MR involves generating subgroups of differ-
ent sleep duration length within the study sample and 
undertaking (linear) MR within each of those subgroups 
and then comparing effects across subgroups. We could 
split the women into subgroups based on their reported 
sleep duration, but doing that could introduce a type of 
selection bias known as collider bias in the subsequent 
MR, because of the role of the genetic IV on sleep dura-
tion [19]. To avoid that, we generated “residual” sleep 
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duration by regressing self-reported sleep duration on 
the genetic risk score, adjusting for genetic array, wom-
en’s age and top 40 PCs (to adjust for residual population 
stratification [57]). Residual sleep duration was then cal-
culated as each woman’s observed sleep duration minus 
the mean centred genetic contribution to sleep duration 
from the IV [19, 55]. Therefore, the residual measure has 
a mean of 7.18 with a range from 1.77 to 12.33 h/d (Addi-
tional file 2: Fig S2) [55]. We then stratified UKB women 
into three and five groups based on the residual duration 
(details shown in Additional file 1: Table S5). We present 
results for three and five groups and compared effects of 
increasing sleep duration (measured in 1-h units) from 
MR analyses across the groups. Three groups would 
enable comparing results between analyses with greater 
power and IV strength, while five groups provide finer 
gradation for more detailed exploration of nonlinearity.

Within each subgroup of residual sleep duration, 
we followed the approach used in a previous MR study 
[55] to calculate linear MR estimates for sleep duration 
on pregnancy and perinatal outcomes using the Wald 
ratio method [56]. Technical details of this method 
are described in Additional file  2: Text 2. Finally, we 
tested differences in MR estimates across groups using 
Cochran’s Q-statistic, with P-value <0.05 suggesting het-
erogeneity [19, 55]. We performed meta-regression of 
MR estimates against the mean of sleep duration in each 
group to test nonlinearity [19, 55]. A low P-value for 
the regression coefficient of sleep duration mean across 
groups provides evidence against the null hypothesis of 
a linear or null association, and we used the conventional 
P-value <0.05 as evidence to support nonlinearity. Simi-
lar non-null effects across the group (e.g. if there was evi-
dence of a similar magnitude positive effect in all groups) 
would support a linear effect. Table 1 illustrates how the 
pattern of a nonlinear effect is identified by comparing 
the magnitudes and directions of linear associations in 
each group and synthesizing results from one-sample 
and further two-sample MR.

Two‑sample MR exploring linear effects
We further undertook two-sample MR to explore 
potential linear effects (Fig.  1). Details about obtaining 
SNP-sleep duration and SNP-outcome associations are 
described in Additional file  2: Text S1. In UKB women, 
we generated summary statistics from the individual par-
ticipant data in a split cross-over samples design [23]. 
This involved randomly splitting the sample in half and 
generating summary data for SNP-sleep duration and 
SNP-outcome associations in both datasets and then con-
ducting MR with SNP-sleep duration associations from 
dataset A and SNP-outcome associations from dataset 
B, and vice versa [23]. This was because the GWAS of 

sleep duration was conducted in UKB [2], and this split 
cross-over design enabled us to have the advantages (e.g. 
weak instrument bias towards the null and minimizing 
over-prediction or winners curse) of MR using two inde-
pendent samples [30, 58]. We then meta-analysed the 
MR estimates from the two together for each sleep dura-
tion-outcome pair using fixed-effects (with inverse vari-
ance weights). We also conducted two-sample MR using 
SNP-sleep duration associations from UKB women, and 
SNP-outcome associations meta-analysing ALSPAC, 
BiB, MoBa and FinnGen using fixed effects with inverse 
variance weights. For each outcome, we combined MR 
estimates from all five cohorts using fixed effects (with 
inverse variance weights). The degree of between-study 
heterogeneity was assessed using Cochran’s Q-statistic.

We used the MR inverse variance weighted (IVW) 
method as the main analysis to explore the presence of 
linear effects of sleep duration on pregnancy and peri-
natal outcomes. IVW is a weighted regression of SNP-
outcome associations on SNP-sleep duration associations 
with the intercept of the regression line forced through 
zero [59].

Sensitivity and additional analyses
The strength of the IVs was evaluated by the F-statistic 
of IV-sleep duration associations [17]. We selected the 
78 SNPs robustly related to sleep duration in general 
population rather than pregnant women [2]. Therefore, 
we used linear regression to test whether our IV was also 
related to sleep duration during pregnancy in MoBa [16, 
17]. The one-sample MR assumes the genetic IV-sleep 
duration association is consistent across groups [19, 
55]. We explored this by using Cochran’s Q-statistic and 
meta-regression of these associations against the mean of 
observed sleep duration in each stratum [19, 55].

As with previous two-sample MR studies testing effects 
of sleep duration on different outcomes [20–24], we used 
the 78 genome-wide significant SNPs from the discovery 
sample in the original GWAS to maximize power and 
IV strength. To explore whether our results were sensi-
tive to IV selection, we repeated IVW analyses with the 
55 SNPs that were directionally consistent in the replica-
tion sample and the 43 SNPs of those that also reached 
genome-wide significance. To explore potential unbal-
anced horizontal pleiotropy, our sensitivity analyses for 
two-sample MR included (I) assessing between-SNP 
heterogeneity (which if present may be due to one or 
more SNPs having horizontal pleiotropic effects on the 
outcome) using Cochran’s Q-statistic and leave-one-out 
analysis [59] and (II) conducting weighted median [60] 
and MR-Egger [61], which are more likely to be more 
robust in the presence of horizontal pleiotropy [62]. 
Technical details of these MR methods were summarized 
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Table 1 Possible patterns of effects identified by one-sample nonlinear MR and two-sample MR

CI confidence interval, MR Mendelian randomization, OR odds ratio



Page 7 of 16Yang et al. BMC Medicine          (2022) 20:295  

in our previous study [63]. A consistent finding across 
multiple MR methods would strengthen causal inference. 
When using MR to assess maternal exposures in preg-
nancy on perinatal outcomes, results might be biased via 
a path from maternal genotype to the outcome via fetal 
genotype [64]. To explore this, we compared maternal 
SNP-outcome associations with and without adjustments 
for fetal SNPs in the birth cohorts.

MVreg in MoBa exploring linear/nonlinear associations 
and whether data supported nonlinear over linear 
associations
We explored observational associations of maternal sleep 
duration at 30 weeks of gestation with each outcome, 
except stillbirth and miscarriage, using logistic regres-
sion (linear regression for birthweight). To explore a pos-
sible nonlinear association, we entered the categories as 
indicator variables and obtained estimates comparing 
each of ≤5 h/d, 6–7 h/d and ≥10 h/d to our chosen refer-
ence category of 8-9 h/d. We also explored possible lin-
ear associations by recoding ≤5, 6–7, 8–9 and ≥10 h/d 
categories using their mid-points (i.e. 3.5, 6.5, 8.5, 11 h/d, 
respectively), assuming MoBa had the same minimum 
and maximum sleep duration as UKB. Statistical evi-
dence for a nonlinear association across categories was 
obtained from a likelihood ratio test comparing the two 
models above.

Amongst the 76,669 MoBa women eligible for inclu-
sion in MVreg (defined as having returned both preg-
nancy questionnaires [65]), there were varying amounts 
of missing data for sleep duration, outcomes and covari-
ates. This was lowest for parity (0.2% missing), and high-
est for preterm birth (8.4% missing). Additional file  1: 
Table  S6 provides full details of the proportion missing 
for each variable. Therefore, we undertook both com-
plete records and multiple imputation analyses. Com-
plete records analyses only included women with sleep 
duration, an outcome and seven confounders (N=42,001 
(for stillbirth) to 62,929 (for birthweight)), assuming that 
missingness is not associated with the outcome. MI was 
conducted on all 76,669 eligible women, and assumes 
data are missing at random (i.e. conditional on variables 
included in multiple imputation, the outcome would not 
differ between those with missing data and those with-
out) [66, 67].

Multiple imputation used chained equations [66] and 
was conducted for each outcome separately. As shown 
in Additional file  1: Table  S6, each imputation model 
included one outcome, the exposure (sleep duration), 
the seven confounders (same as those used in complete 
records analyses) and three auxiliary variables (paternal 
education, paternal smoking status in pregnancy and 
maternal usage of other kinds of nicotine in pregnancy). 

These auxiliary variables were selected on the basis that 
they were likely to be important predictors of miss-
ing data. For each outcome, 100 imputed datasets were 
generated and results were pooled across these datasets 
using Robin’s Rules [68].

All multiple imputation and MVreg after imputation 
were conducted in Stata 16 (StataCorp LLC, College 
Station, TX), because we were using code provided in 
the STRengthening Analytical Thinking for Observa-
tional Studies (STRATOS) framework for dealing with 
missing data and this is only provided in Stata [66]. All 
other analyses (including one- and two-sample MR, and 
complete records MVreg analyses) were conducted in R 
version 3.5.1 (R Foundation for Statistical Computing, 
Vienna, Austria), with “TwoSampleMR” package for two-
sample MR [52].

Results
Table  2 summarizes the characteristics of included 
women for MR analyses, and the proportion of cases 
for pregnancy and perinatal disorders across the four 
cohorts, which differ substantially for some outcomes. 
Additional file 1: Table S6 summarizes the characteristics 
of MoBa women for MVreg analyses.

One sample MR in UKB exploring whether data supported 
nonlinear over linear effects
The F-statistic for our genetic risk score in 175,499 UKB 
ever pregnant women was 1219, and within each group 
across all three ways in which they were stratified were 
between 55 and 646 (Additional file 1: Table S5). For each 
stratification approach, we also identified statistical evi-
dence for between-group differences in associations of 
genetic risk score with sleep duration (Additional file 1: 
Table S5).

Figures  2, 3 and 4 show the MR linear effects within 
five sleep duration groups; the differences in directions 
and magnitudes of the results between groups can be 
used to describe the pattern of nonlinear effects of sleep 
duration. There was evidence of nonlinear effects of sleep 
duration on stillbirth, perinatal depression and low birth-
weight, with a pattern suggesting that both shorter and 
longer sleep duration increased risks of stillbirth and low 
birthweight, with shorter sleep duration increasing peri-
natal depression (Figs.  2, 3 and 4). The nonlinear effect 
with mean birthweight was broadly consistent with low 
birthweight as expected (Fig.  4). For other outcomes, 
there was no strong evidence of nonlinearity, though we 
acknowledge that several of the within-group results are 
imprecise with wide, and hence overlapping confidence 
intervals. Patterns were generally similar for the analyses 
with three groups (Additional file 2: Fig S3) [1, 8].
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Two‑sample MR exploring linear effects
In two-sample MR, the mean F-statistic for 78 sleep 
duration-IVs in 175,449 women was 15. In MoBa, 0.42% 
variation of sleep duration in pregnancy was explained by 
its IV, and one effect allele increase in the IV was asso-
ciated with 0.008 h/d longer sleep duration (95% confi-
dence interval: 0.003, 0.013, P-value = 0.0009, F-statistic 
= 31). Additional file  1: Tables S3 & 7 show summary 
results for SNP-sleep duration and SNP-outcome asso-
ciations used in two-sample MR. After adjusting for fetal 
genotype (only possible in the birth cohorts), SNP-out-
come associations with stillbirth, hypertensive disorders 
of pregnancy, perinatal depression, preterm birth and 
low birthweight were slightly attenuated; the associations 
with miscarriage, gestational diabetes, high birthweight 
and birthweight moved slightly away from the null (Addi-
tional file 2: Fig S4).

The main IVW analyses combining UKB with other 
cohorts find no strong evidence to support a linear effect 

across the whole distribution of reported sleep duration 
of lifetime predisposition to longer average duration on 
the pregnancy and perinatal outcomes (Fig. 5). However, 
95% confidence intervals were wide for most outcomes 
(Fig.  5). Sensitivity analyses using weighted median and 
MR-Egger for these outcomes were largely direction-
ally consistent (Fig.  5). Between-SNP heterogeneity 
for MR analyses was observed for preterm birth, gesta-
tional diabetes, hypertensive disorders of pregnancy, 
perinatal depression, high birthweight and birthweight 
(Additional file  1: Table  S8), but leave-one-out analyses 
suggested little evidence for a single SNP driving the MR 
IVW results (Additional file 2: Fig S5-S7). The MR-Egger 
intercept P-values provided little evidence of unbalanced 
horizontal pleiotropy for any outcome (Additional file 1: 
Table S8). Across all outcomes, there was little evidence 
of between-study heterogeneity (all Cochran’s P-val-
ues >0.1, Fig.  5). IVW analyses using 55 SNPs and 43 
SNPs (i.e. those with some evidence of replication) were 

Table 2 Characteristics of the women in UK Biobank, ALSPAC, BiB and MoBa included in Mendelian randomization

a In UKB, these variables were measured at the recruitment that is typically many years after pregnancy
b We report maternal ages at giving their first live birth. UK Biobank women were recruited with an average age of 56.9 (standard deviation 7.8) years
c Gestational age was available only in a small subset of UK Biobank women (N=7280)
d These were maternal ever smoking/drinking in pregnancy

ALSPAC Avon Longitudinal Study of Parents and Children, BiB Born in Bradford, MoBa Norwegian Mother and Child Cohort Study

Variable a UK Biobank (N=176,897) ALSPAC (N=6826) BiB (N=2940) MoBa (N=14,584)

Mean (standard deviation)

Maternal age (years) 25.5 (4.6) b 28.7(4.7) 26.8 (6.0) 30.0 (4.5)

Maternal height (cm) 162.5 (6.2) 164.3 (6.7) 164.4 (6.1) 168.4 (5.7)

Maternal body mass index (kg/m2) 27.0 (5.1) 22.9 (3.7) 26.7 (6.0) 24.0 (4.2)

Parity 2.2 (1.0) 0.8 (0.9) 0.8 (1.1) 0.7 (0.8)

Gestational age (weeks) 38.9 (3.8) c 39.6 (1.7) 39.7 (1.9) 39.6 (1.7)

Offspring birthweight (grams) 3186.7 (547.6) 3441.5 (523.0) 3357.9 (571.2) 3640.8 (513.4)

N (%)

Maternal education

 O levels/GCSEs or equivalent and below 81,113 (46.4) 4043 (59.5) 1400 (47.6) 252 (1.7)

 A levels/AS levels or equivalent 40,817 (23.3) 1719 (25.3) 485 (16.5) 4378 (30.0)

 College or university degree 53,062 (30.3) 1035 (15.2) 551 (18.7) 9100 (62.4)

Maternal ever smoking 74,308 (42.2) 1450 (21.6) d 911 (31.0) d 1106 (7.6) d

Maternal ever drinking 162,436 (92.0) 4580 (70.2) d 1793 (61.0) d 3644 (25.0) d

Offspring sex, male Not available 3430 (50.2) 1504 (51.2) 7456 (51.1)

Number with fetal genotype data 0 4625 (67.8) 1855 (63.1) 12,183 (83.5)

N cases / N controls (Proportion, %)

Stillbirth 4907/107,791 (4.4) 48/4546 (1.0) 31/2588 (1.2) 51/9998 (0.5)

Miscarriage 42,717/107,791 (28.4) 1378/4546 (23.3) 14/2588 (0.5) 2677/9998 (21.1)

Gestational diabetes mellitus 726/170,308 (0.4) 34/6283 (0.5) 136/2657 (4.9) 113/14,375 (0.8)

Hypertensive disorders of pregnancy 2128/174,769 (1.2) 1099/5698 (16.2) 347/2159 (13.8) 1892/12,652 (13.0)

Perinatal depression 5168/20,860 (19.9) 423/5896 (6.2) 312/2245 (12.2) 579/13,865 (4.0)

Preterm birth 551/4811 (10.3) c 285/4931 (5.5) 172/2706 (6.0) 495/12,846 (3.7)

Low offspring birthweight 13,429/149,084 (8.3) 337/6376 (5.0) 167/2725 (5.8) 245/13,690 (1.8)

High offspring birthweight 2716/149,084 (1.8) 113/6376 (1.7) 42/2725 (1.5) 621/13,690 (4.3)
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broadly consistent with those from our main analyses 
with 78 SNPs (Additional file 2: Fig S8) [2].

MVreg in MoBa exploring and comparing linear 
and nonlinear associations
Nonlinear models fitted data better than linear models 
across most outcomes (likelihood ratio P-values com-
paring the linear versus nonlinear models = 0.02 to 
3.2×10−52). The one exception, based on the conven-
tional threshold of <0.05, was gestational diabetes (0.06). 
Odds of gestational diabetes, hypertensive disorders 
of pregnancy, perinatal depression, preterm birth, low 
birthweight and high birthweight were higher in women 
reporting ≤5 h/d and ≥10 h/d sleep compared with the 
reference category of 8–9 h, despite some wide confi-
dence intervals including the null (Fig. 6). Amongst them, 
perinatal depression showed a reverse “J-shaped” nonlin-
ear association with considerably stronger magnitudes 
of associations than other outcomes (Fig. 6), which is in 
line with the result in one-sample nonlinear MR in UKB 
(Fig.  3). Differences in mean offspring birthweight were 
lower for those reporting ≤5 h/d, 6–7 h/d and ≥10 h/d 
compared to 8-9 h/d (Fig.  6). Broadly consistent results 
were observed for low and high birthweight when all eli-
gible participants were included in MVreg (Additional 

file 2: Fig S9), and for complete records analyses (Addi-
tional file 1: Table S9).

Discussion
In this study, we find MR analyses support nonlinear 
effects of sleep duration on stillbirth, perinatal depression 
and low birthweight. With the exception of gestational 
diabetes, we find statistical evidence for nonlinear associ-
ations with all outcomes in MVreg. We have interpreted 
the MR results as reflecting genetically predicted life-
time sleep duration [18]. We interpreted MVreg results 
as reflecting associations of sleep duration in pregnancy, 
though this exposure is likely to correlate strongly with 
sleep duration before and after pregnancy as demon-
strated in a study of 1480 women showing sleep duration 
2 years after pregnancy associated with sleep duration at 
32 weeks of gestation and 2 months after birth, and with 
chronic sleep duration [69]. The association between 
our genetic risk score and sleep duration at 30 weeks of 
gestation in MoBa indicated that genetic susceptibility 
to lifetime longer sleep duration is correlated with sleep 
duration during pregnancy.

Previous observational studies have tended to assume 
nonlinearity and explored associations of short and 
long sleep duration with most pregnancy and perinatal 

Fig. 2 One-sample MR estimates of effects of sleep duration on partum-related outcomes in five groups in UK Biobank women. We present MR 
estimates of a linear effect of increasing duration on the outcome across the length of residual duration (h/day) covered in each group. Further 
details about identifying the pattern of nonlinear effects are illustrated in Table 1. P-value for Cochran’s Q-statistic testing statistical evidence for 
between-group heterogeneity. P-value for nonlinearity testing statistical evidence whether the MR estimates are changed as the self-reported sleep 
duration mean increases. Abbreviation: CI, confidence interval; MR, Mendelian randomization; OR, odds ratio
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outcomes, reporting unfavourable associations of both 
short and long duration with gestational diabetes, and 
of short duration with pre-eclampsia and preterm birth 
[7–10, 12]. Our MVreg analyses in one of the largest 
studies to date were broadly consistent with these find-
ings. In MVreg, we found evidence of increased risks 
of perinatal depression with short and long duration, 
whereas a previous systematic review reported an asso-
ciation with shorter sleep duration only, which is consist-
ent with our one-sample MR analyses [6]. MR analyses 
also supported increased risks of stillbirth and low birth-
weight with shorter and longer duration. MR evidence 
for other outcomes was too imprecise to make reliable 
conclusions. Furthermore, differences between what have 
been estimated (linear lifelong effects within groups of 
residual duration in one-sample MR versus odds of out-
comes comparing for self-reported duration categories 
to a reference category in pregnancy in MVreg) make 
direct comparisons between our MR results versus our, 
and other published, MVreg associations difficult. As the 
sources of bias in two methods (MR and MVreg) differ, 
where we have consistency between them, this increases 
our confidence in those consistent results being the causal 
association [33, 38, 70–72]. The broad consistencies of 

nonlinear associations of sleep duration with a range of 
pregnancy and perinatal outcomes between our MVreg 
and existing literature highlight the need for further MR 
analyses of potential nonlinear effects in much larger 
sample sizes with sleep duration measured in pregnancy. 
The MoBa sample size of >14,000 is too small for nonlin-
ear MR but with further GWAS in that study this might 
become possible in the future.

The associations of shorter and longer sleep duration 
with pregnancy and perinatal outcomes may be related 
to sleep fragmentation, circadian dysrhythmia, insulin 
resistance and chronic inflammatory [7, 8]. MR analy-
ses support a causal effect of chronic inflammation on 
depression and anxiety outside of pregnancy [73], and 
therefore, this is a plausible mechanisms for perinatal 
depression. Multiple lines of evidence (including MR) 
demonstrate the positive linear effect of higher maternal 
glucose on higher birthweight [74, 75]. Therefore, insulin 
resistance is unlikely to mediate the effect we observe on 
low birthweight, but it is possible that inflammation has a 
role here [76].

Fig. 3 One-sample MR estimates of effects of sleep duration on pregnancy-related outcomes in five groups in UK Biobank women. We present 
MR estimates of a linear effect of increasing duration on the outcome across the length of residual duration (h/day) covered in each group. Further 
details about identifying the pattern of nonlinear effects are illustrated in Table 1. P-value for Cochran’s Q-statistic testing statistical evidence for 
between-group heterogeneity. P-value for nonlinearity testing statistical evidence whether the MR estimates are changed as the self-reported sleep 
duration mean increases. Abbreviation: CI, confidence interval; HDP, hypertensive disorders of pregnancy; MR, Mendelian randomization; OR, odds 
ratio
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Fig. 4 One-sample MR estimates of effects of sleep duration on offspring-related outcomes in five groups in UK Biobank women. We present MR 
estimates of a linear effect of increasing duration on the outcome across the length of residual duration (h/day) covered in each group. Further 
details about identifying the pattern of nonlinear effects are illustrated in Table 1. P-value for Cochran’s Q-statistic testing statistical evidence for 
between-group heterogeneity. P-value for nonlinearity testing statistical evidence whether the MR estimates are changed as the self-reported sleep 
duration mean increases. Abbreviation: CI, confidence interval; MR, Mendelian randomization; OR, odds ratio

Fig. 5 Two-sample MR estimates for linear effects of sleep duration on partum-, pregnancy- and offspring-related outcomes, meta-analysing all 
cohorts. aP-values for Cochran’s Q-statistic testing statistical evidence for between-cohort heterogeneity, in inverse variance weighted, weighted 
median and MR-Egger, respectively. bResults are ORs for binary outcomes (mean difference in birthweight) per lifetime genetic tendency to 1 h 
longer during the 24-h duration, with numeric estimates listed in Additional file 1: Table S8. Abbreviations: CI, confidence interval; HDP, hypertensive 
disorders of pregnancy; MR, Mendelian randomization; OR, odds ratio
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Strengths and limitations
The main strengths of our study include that (1) as far as 
we are aware it is the first time that MR has been used to 
explore potential linear and nonlinear effects of lifetime 
sleep duration on pregnancy and perinatal outcomes; (2) 
we conducted confounder-adjusted MVreg of sleep dura-
tion in pregnancy in MoBa, with a larger sample size than 
most previous studies; and (3) we explored a range of 
pregnancy and perinatal outcomes.

Our MR analyses may be vulnerable to weak instru-
ment bias, especially within some sleep duration 
groups in one-sample nonlinear MR which is expected 
to be biased towards the confounded MVreg result [58]. 
We used a genetic risk score to minimize the contribu-
tion of weak IVs in one-sample MR (with the lowest 
F-statistic=64). Weak instrument bias in our two-sam-
ple MR analysis would bias the results towards the null 
[58]. Our MR analyses may be biased by horizontal 
pleiotropy, particularly because IVs for sleep duration 
have also been strongly linked to other sleep traits [2], 
as well as lifestyle factors such as obesity and alcohol 
consumption [77]. We explored the potential presence 
of bias by horizontal pleiotropy with sensitivity analy-
ses for two-sample MR, which are more robust to such 
bias than IVW [62], but one-sample MR estimates in 
each stratum could still be prone to horizontal plei-
otropy, as methods available for exploring horizontal 

pleiotropy in one-sample MR would be underpowered 
in each stratum [63]. We were able to demonstrate that 
results were not biased by a path via fetal genotype to 
the outcome, showing similar maternal SNP-outcome 
associations with and without adjustment for fetal 
genotype. The MR monotonicity assumption requires 
that the proposed genetic IVs for longer sleep dura-
tion cannot increase sleep duration in some women 
while decreasing it in others—i.e. women are “compli-
ers” [78]. In nonlinear MR, constant IV-duration effects 
across all groups is a stronger version of the monoto-
nicity assumption [19]. As we found slightly different 
genetic risk score-duration associations across groups, 
our nonlinear MR results should be interpreted cau-
tiously as tests for causal directions rather than as pre-
cise estimations of causal effects [78].

Both our MR and MVreg estimates could be vulnerable 
to selection bias as discussed in detail in other papers 
[79–81]. UKB participants are better educated and 
healthier than the general UK adult population [82], and 
perinatal depression and preterm birth may not be miss-
ing at random [28, 83]. Our target population consisted 
of women who have had at least one pregnancy. In UKB 
and birth cohorts, we were able to restrict the analyses 
to ever pregnant women. In FinnGen, the comparison 
group is all women without the outcome (i.e. includ-
ing women who have never been pregnant). These are 

Fig. 6 Multivariable regression associations of self-reported sleep duration categories with partum-, pregnancy- and offspring-related outcomes in 
MoBa. Estimates are from multiple imputation, with numeric results listed in Additional file 1: Table S9. Abbreviations: CI, confidence interval; HDP, 
hypertensive disorders of pregnancy; MoBa, Norwegian Mother, Father and Child Cohort Study; OR, odds ratio
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publicly available data that we cannot reanalyse. How-
ever, any potential bias resulting from this is unlikely to 
be substantial given we obtained near-identical results 
from UKB when we included never pregnant women to 
those presented here, and results did not substantially 
differ if we removed FinnGen from our analyses.

Sleep duration was measured via one self-adminis-
trated question in UKB and MoBa. Its measurement error 
in UKB may not bias our MR estimates, as sleep duration 
is a continuous variable in 1-h units [84]. However, non-
differential misclassification of sleep duration categories 
in MoBa would be expected to bias MVreg towards the 
null [85]. Further studies using large, actigraphy-based 
sleep duration data would be required to explore opti-
mal cut-off points for our suggestive nonlinear asso-
ciations [19]. Moreover, it was ambiguous whether the 
variable in MoBa represented nocturnal sleep duration 
or included daytime naps. For our outcomes, there may 
be misclassification because of the absence of universal 
testing, assessment via self-report questionnaires, and 
differences between studies in definitions. Our MVreg 
analyses for pregnancy outcomes (including gestational 
diabetes, hypertensive disorders of pregnancy and peri-
natal depression) in MoBa could be vulnerable to reverse 
causality, as they were defined based on some informa-
tion earlier than 30 weeks of the index pregnancy. Fur-
thermore, our MVreg analyses in MoBa could be biased 
by residual and unmeasured confounding.

Conclusions
Our study shows that shorter and longer sleep duration 
increase risks of stillbirth, perinatal depression and low 
birthweight. Our MVreg analyses support nonlinear 
over linear effects of sleep duration on all pregnancy and 
perinatal outcomes, except gestational diabetes. Taken 
together these findings highlight the need for further MR 
studies based on larger numbers, particularly of cases for 
pregnancy and perinatal outcomes. Studies in women 
from non-White European ethnic background are neces-
sary for understanding the extent to which results gener-
alize to other groups.
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