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Antibodies against foreign antigens are a critical component of the overall immune

response and can facilitate pathogen clearance during a primary infection and also

protect against subsequent infections. Dysregulation of the antibody response can lead

to an autoimmune disease, malignancy, or enhanced infection. Since the experimental

delineation of a distinct B cell lineage in 1965, various methods have been developed

to understand antigen-specific B cell responses in the context of autoimmune diseases,

primary immunodeficiencies, infection, and vaccination. In this review, we summarize

the established techniques and discuss new and emerging technologies for probing

the B cell response in vitro and in vivo by taking advantage of the specificity of

B cell receptor (BCR)-associated and secreted antibodies. These include ELISPOT,

flow cytometry, mass cytometry, and fluorescence microscopy to identify and/or

isolate primary antigen-specific B cells. We also present our approach to identify rare

antigen-specific B cells using magnetic enrichment followed by flow cytometry. Once

these cells are isolated, in vitro proliferation assays and adoptive transfer experiments in

mice can be used to further characterize antigen-specific B cell activation, function, and

fate. Transgenic mouse models of B cells targeting model antigens and of B cell signaling

have also significantly advanced our understanding of antigen-specific B cell responses

in vivo.
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INTRODUCTION

In his Nobel lecture in 1908, Paul Ehrlich likened the antibody-antigen interaction to a lock
and key. He reasoned that antitoxins (antibodies) contained in a solution in the serum of
immunized animals must be identical to a cellular receptor “for a really well-made key will not
open different locks at the same time” (1). It took almost five decades before immunofluorescence
microscopy was used to confirm the cellular origin of antibodies (2). Major strides in the B
cell and antibody field followed in the 1970s with the development of hybridoma technology
to produce monoclonal antibodies and the discovery that somatic rearrangement during B cell
differentiation was responsible for antibody diversification (3, 4). The subsequent explosion of
available monoclonal antibodies led to revolutionary diagnostic, therapeutic, and research reagents
to distinguish different types of immune cells (5). Together, these discoveries have allowed us to
probe humoral immunity at the level of the antigen-specific B cell.
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WHY STUDY B CELL RESPONSES?
OPPORTUNITIES FOR APPLYING
TECHNIQUES TO STUDY
ANTIGEN-SPECIFIC B CELLS

Methods to probe the antigen-specific B cell response have
advanced our understanding of how to harness the remarkable
breadth of the B cell repertoire and the exquisite specificity of
the individual B cell in developing (1) vaccine candidates that
elicit protective antibodies; (2) antibodies that prevent disease
when given prophylactically; and (3) antibodies that can be
given as therapy after the onset of disease. Many of the vaccines
currently available were originally developed empirically either
by inactivating, attenuating, or administering a subunit of the
pathogen. However, vaccine development against pathogens that
are traditionally difficult to vaccinate against may rely on a deeper
investigation of the B cell response to the antigens exposed on the
surface of these pathogens.

For HIV-1, the discovery of broadly neutralizing antibodies
(bnAbs) that protect against infection across diverse viral isolates
has intensified efforts to understand the developmental pathway
of the rare B cells that produce these antibodies (6–9). Insights
into the ontogeny of these rare B cells could allow the design
of a step-wise vaccine regimen that stimulates the germ-line
precursor to expand and mature to produce circulating bnAbs
which could protect against HIV acquisition (10, 11). For RSV,
stabilized versions of the fusion (F) protein in the pre-fusion
conformation have led to insights in the B cell’s response to
infection and has generated potentially safer andmore efficacious
vaccine candidates (12, 13). Influenza also performs fusion
through the stem region of the hemagglutinin protein, and the
identification of B cells that target this relatively conserved site
has spurred research on the development of a universal influenza
vaccine (14–16). Like RSV, HIV, and influenza, the fusion
proteins of EBV and CMV exist in a pre-fusion conformation,
and stabilization in their pre-fusion states could greatly accelerate
vaccine development against these pathogens (17–19). Rare
memory B cells producing antibodies specific for the EBV fusion
machinery have been isolated; these can neutralize both B cell and
epithelial cell infection (20). A new paradigm in malaria vaccine
development is also emerging with the discovery of IgM+ and
IgD+ memory B cells targeting the Merozoite Surface Protein 1,
that rapidly respond to malaria re-infection (21). Further, highly
potent neutralizing antibodies targeting a novel and conserved
site on the Circumsporozoite Protein have been isolated from B
cells (22). Together, these examples demonstrate the importance
of studying antigen-specific humoral responses to infectious
diseases. The solutions to the crystal structures of surface proteins
for a variety of pathogens, the conformational stabilization of
these antigens, and the application of the methods summarized
in this review, to probe antigen-specific B cell responses, have
created new opportunities for systematic and rational vaccine
design for HIV, RSV, EBV, malaria, and many other pathogens.

The study of B cell responses has not only informed vaccine
design but has also advanced our understanding of antibody-
mediated autoimmune diseases, such as rheumatoid arthritis and

systemic lupus erythematosus (23, 24). Up to 20% of mature,
naïve B cells have receptors with the capacity to bind self-antigens
(25). Although these cells are potentially pathogenic, the deletion
of B cells with high affinity to self-antigen through apoptosis,
anergy of B cells with low affinity to self-antigen, and the absence
of T cell help combine together to protect against autoimmune
disease in mice (26). The study of autoantigen-specific B cells and
a detailed analysis of B cell subsets with pathogenic potential in
humans could lead to a better understanding of how to prevent
and treat autoimmune diseases.

Although the term antigen-specific B cell is used throughout
this mini-review to denote the analysis of B cells based on binding
between the B cell receptor (BCR) and a specific antigen used
as bait, it is important to keep in mind that BCRs within the
polyclonal B cell repertoire exhibit a spectrum of polyreactivity.
On one end of the spectrum, a highly polyreactive BCR is able to
bindmultiple structurally unrelated antigens with physiologically
relevant affinities. The frequency of polyreactivity in the normal
adult human B cell repertoire has been estimated to be 4%
of naïve B cells, 23% of IgG+ memory B cells, and 26% of
intestinal IgA+ and IgG+ plasmablasts (27–29). On the other
end of the spectrum, a mono reactive BCR is activated only
when it encounters a single cognate antigen. Although there are
exceptions, the accumulation of somatic hypermutations within
the variable regions of the BCR during the process of affinity
maturation is generally thought to lead to increased affinity and
specificity for the cognate antigen (30, 31).

EX VIVO METHODS TO IDENTIFY
ANTIGEN-SPECIFIC PRIMARY B CELLS

Several general techniques are commonly used to identify
antigen-specific B cells (Table 1). The B cell enzyme linked
immunospot (ELISPOT) technique relies on the principle of
capturing the secreted antibody in the vicinity of each cell. In the
B cell ELISPOT, antibody secreting B cells (ASCs) present in a
sample or differentiated in vitro are added to plates coated with
the antigen of interest. Antigen-specific antibodies will bind in
close proximity to the location of the individual B cells producing
those antibodies. Enzyme or fluorescent labeled secondary
antibodies are then used to visualize spots of antibody secretion
and binding to plate-bound antigen at the location of the ASCs.
Each spot corresponds to antibody produced from a single
antigen-specific B cell and therefore the technique is extremely
sensitive. Secondary antibodies conjugated to combinatorial
colored beads can also be used to detect the antibodies secreted
from individual B cells with the advantage of multiplexing the
assay (32). One limitation of the assay is its requirement for
antibody secretion by B cells thereby limiting the assay to only
a subset of B cells in the repertoire, namely ASCs (33). Memory
B cells can be stimulated in vitro to differentiate into ASCs prior
to addition to the antigen-coated plate (34). Further, the antigen-
specific B cells identified by ELISPOT are generally not available
for downstream analysis.

Limiting dilution is another technique that has been used to
isolate antigen-specific B cells. In this approach, primary cells
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TABLE 1 | Summary of techniques for studying antigen-specific B cells.

Technique Advantages Potential limitations References*

EX VIVO METHODS

ELISPOT Sensitive; quantitative (1) Requires antibody secretion; (2) cells generally not

available for downstream analysis

(32–35)

Limiting dilution Allows functional screening of monoclonal antibodies for

binding and neutralization

(1) Laborious; (2) requires antibody secretion; (3)

transcriptional profiling of original cell not possible if in

vitro expansion is used to screen the supernatant for

antigen specificity

(36–41)

Flow cytometry (1) Detection of low affinity antigen-specific B cells; (2)

characterization and downstream analysis of cells is

possible; (3) magnetic enrichment can improve sensitivity

(1) Over-biotinylation can lead to aggregation; (2)

potential for confounding by cells that bind the

fluorochrome, streptavidin, or linkers; (3) antigens must

be soluble, stable, and readily labeled

(12, 21, 26, 39,

42–61)

IN VIVO METHODS

Adoptive

transfer

Allows fate mapping of cells in the context of antigen

presenting cells and T cells

Laborious and often limited to monoclonal populations (26, 62–64)

Microscopy (1) Localizes cells in tissue; (2) laser capture allows

downstream analysis; (3) real-time imaging in living tissue

is possible with multiphoton microscopy

Relies on antigens that can be readily labeled (2, 62, 63, 65–70)

BCR transgenic

mice

Useful for analyzing B cell development and responses

and T/B cell interactions

Laborious and costly to develop; monoclonal B cells may

not represent diverse polyclonal populations

(71, 72) See also

Table 2

EMERGING METHODS

Mass cytometry (1) High dimensional analysis with minimal spillover

across parameters; (2) magnetic enrichment can

improve sensitivity

Cells are unavailable for downstream analysis (73, 74)

DNA barcoding Simultaneous analysis of multiple antigen specificities

with transcriptional profiling

Cost and computational complexity (75, 76)

BCR, B cell receptor. *Selected examples of each technique can be found in the listed references.

can be diluted serially until individual B cells are separated in
microwell plates (36). The B cells can then be cultured and
expanded ex vivo and/or immortalized using EBV such that each
well contains a monoclonal antibody (3, 37, 38). Antigen-specific
B cells can be selected by screening the culture supernatants for
monoclonal antibodies that bind an antigen of interest. Although
antibodies can be sequenced and cloned, the requirement for an
ex vivo culture prior to selection precludes determination of the
transcriptional profile of the original B cell in this approach. This
technique can potentially be time-consuming and laborious, but
the use of microfluidics and robotics has greatly improved the
throughput for selecting antigen-specific B cells (39). Advances
in single cell next generation sequencing technology have allowed
high throughput transcriptional profiling and sequencing of
paired immunoglobulin heavy and light chains (40). In this
approach, antigen specificity can be tested after monoclonal
antibodies are cloned and produced using the sequencing data.
This method can be useful in identifying antigen-specific B cells
that have undergone clonal expansion after vaccination or acute
infection (41).

Flow cytometry is the most common method used for
single cell analysis and isolation (39). Flow cytometry-based
analysis of antigen-specific B cells is dependent on labeling
antigen with a fluorescent tag to allow detection. Fluorochromes
can either be attached covalently via chemical conjugation
to the antigen, expressed as a recombinant fusion protein,
or attached non-covalently by biotinylating the antigen. After

biotinylation, fluorochrome-conjugated streptavidin is added to
generate a labeled tetramer of the antigen. Biotinylation of
the antigen at a ratio ≤1 biotin to 1 antigen is important,
since each streptavidin has the potential to bind four biotins.
If the ratio of biotin to antigen is >1:1, then clumping and
precipitation of the antigen out of solution can occur as soon
as streptavidin is added. Alternatively, site directed biotinylation
can be accomplished by adding either an AviTag or BioEase tag
to the recombinant antigen prior to expression (77, 78). When
site-specific biotinylation is utilized, researchers must keep in
mind that the tag may occlude an epitope from recognition by
B cells which can be problematic for vaccine antigens. Further,
for proteins that oligomerize, multiple tags may be incorporated,
possibly resulting in aggregation.

Another important consideration is the potential for
confounding by B cells in the repertoire that bind to the
fluorochrome, streptavidin, or any linkers rather than to the
antigen of interest. Binding between fluorochromes, linkers,
or streptavidin and BCRs from humans and mice never
exposed to these antigens are generally of low affinity, and
these BCRs are generally expressed by naïve and potentially
polyreactive B cells (62, 79, 80). Dual labeling, in which the same
antigen is separately labeled with two different fluorochromes,
can be used to identify double positive B cells and remove
confounding by B cells that bind the fluorochrome (12, 42).
However, even when tetramers are utilized for dual labeling,
streptavidin-specific B cells will contaminate the double
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positive population. To fully remove confounding from the
fluorochrome, streptavidin, and linkers, a “decoy” tetramer
can be used to identify these contaminating B cells (21, 26).
In this approach, the same fluorochrome used to identify
antigen-specific B cells is conjugated to a different fluorochrome
such that the emission spectrum is altered by fluorescence
resonance energy transfer (FRET) (26). Decoy-binding B cells
can therefore be excluded from the true antigen-specific B cells.
Notably, it is critical to use the same source of fluorochrome
conjugated streptavidin in the tetramer and decoy reagent,
because conjugation methods, recombinant streptavidin, and
protein fluorochromes like R-phycoerythrin vary enough from
company to company to alter some of the epitopes available for
B cells to bind.

One weakness of the flow cytometric approach is the
reliance on antigens that can be readily conjugated to a
fluorochrome or biotinylated. In addition to recombinant
proteins and synthesized peptides, labeled polysaccharides,
lipids, haptens, virus-like particles, and pseudo viruses have
also been used to identify antigen-specific cells by flow
cytometry (33, 43–59). Further, epitope-specific B cells have been
identified by screening bacteriophage-displays or microarray
peptide libraries with polyclonal antibodies targeting the native
antigen to select conformational epitopes that can be fused
to fluorescent proteins for use in flow cytometry (47, 60).

With technologic advancements increasing the number of
simultaneously measurable parameters, antigen-specific B cells
can be further characterized by cell surface markers and
intracellular staining. Additionally, the immunoglobulin capture
assay is a flow cytometry-based adaptation of the ELISPOT
assay in which a streptavidin-conjugated anti-CD45 antibody
carrying four biotinylated anti-IgG antibodies is used to
simultaneously bind plasmablasts and capture secreted antibody
followed by fluorescent-labeled antigen to detect antigen-
specific plasmablasts (61). The mean fluorescence intensity
measured by flow cytometry and normalized to the level
of BCR expression also provides a measure of the relative
amount of antigen binding to a B cell and can be used
as a rough surrogate for binding affinity (79, 81, 82). Pre-
incubation of B cells with increasing concentrations of a
monomeric antigen prior to labeling with tetrameric antigen
can also be used to further quantify binding affinity. Cells
expressing high affinity BCRs will bind monomeric antigen
at low concentrations, whereas low affinity BCRs will require
higher concentrations of monomeric antigen to compete with
and inhibit tetramer binding (26). Individual cells can also
be isolated by fluorescence activated cell sorting (FACS)
for downstream analysis, including BCR sequencing and
cloning, BCR affinity measurement, in vitro proliferation, and
transcriptional profiling.

FIGURE 1 | Rare antigen (Ag)-specific B cells can be identified using tetramers conjugated to a fluorochrome, followed by magnetic (Fe) nanoparticles that bind the

fluorochrome, magnetic enrichment, and flow cytometry. B cells are shown in dark gray with a B cell receptor on the surface. PE, phycoerythrin; DL650, DyLight 650;

FACS, fluorescent activated cell sorting.
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METHODS FOR RARE ANTIGEN-SPECIFIC
B CELLS

Methods have recently been developed to further improve
the sensitivity for detecting rare antigen-specific B cells.
Magnetic nanoparticles conjugated to antibodies targeting the
fluorochrome on the antigen of interest, allow for the enrichment
of antigen-specific B cells prior to flow cytometry (20, 26, 80, 83).
This approach is particularly useful for detecting rare antigen-
specific naïve B cells, autoreactive B cells, memory B cells, and
plasmablasts (21, 26, 47, 50). The magnetic enrichment strategy
allows for the analysis of significantly more cells in a shorter
period of time by concentrating the cells of interest prior to
flow cytometry (Figure 1). Notably, as with any method that
seeks to identify a population of cells at a very low frequency,
the background and noise inherent in the detection system is
magnified with respect to the signal of interest, especially when
that signal is weak. Therefore, to detect the antigen-specific
population of interest, the following considerations are critical:
(1) Using decoys to exclude B cells of unwanted specificities;
(2) careful design of flow cytometry panels to avoid emission
spillover into the channel for the antigen of interest; and
(3) choosing the brightest fluorochromes, like R-phycoerythrin
or allophycocyanin.

IN VIVO ASSAYS FOR STUDYING
ANTIGEN-SPECIFIC PRIMARY B CELL
RESPONSES

In vivo methods to probe antigen-specific B cell responses
in the presence of other antigen-presenting cells and T cell
helpers, have increased our mechanistic understanding of
the humoral immune response during vaccination, infection,
and autoimmunity. Adoptively transferred B cells can be
distinguished from recipient lymphocytes by taking advantage of
mouse strains with allelic variations in CD45 or mice devoid of
B cells. The adoptively transferred B cells can come from wild-
type mice or from mice expressing transgenic BCRs (Table 2),
and antigen-specific B cells can be analyzed using the techniques
described above.

Microscopy is another general technique that has been used
to identify antigen-specific cells in vivo and offers the advantage
of direct visualization. In the first reported application of this
technique to demonstrate the cellular origin of antibodies in
1955, fluorescein-conjugated antibodies against ovalbumin and
human immunoglobulin were used to stain tissue sections of the
spleen from hyperimmune rabbits (2). Since then, other groups
have fluorescently labeled antigens to localize antigen-specific B
cells by microscopy (62, 65). Advances in laser capture dissection
microscopy, already used in the T cell field, also provide an
opportunity for isolating individual antigen-specific B cells for
downstream analysis, including sequencing and cloning of the
BCR or transcriptional profiling (66). However, antigen staining
of BCRs in situ can be challenging depending on the binding
of antigens from pathogens to other cellular receptors or an
alteration of BCR specificity during tissue fixation or processing.

TABLE 2 | Examples of B cell receptor transgenic mice.

Antigen Disease or model References

MODEL ANTIGENS

Hen egg lysozyme B cell selection (84)

4-hydroxy-3-

nitrophenylacetyl

B cell selection (85, 86)

Trinitrophenyl B cell selection (87)

Ovalbumin B cell selection (88)

Phosphocholine B cell selection (89, 90)

H-2K (MHCI) B cell selection (91)

Chicken gamma

globulin

B cell selection (92)

AUTOIMMUNE DISEASES

Red blood cells Autoimmune hemolytic anemia (93)

Single stranded DNA Systemic lupus erythematosus (94)

Double stranded DNA Systemic lupus erythematosus (95)

Rheumatoid factor Systemic lupus erythematosus (96, 97)

Myelin oligodendrocyte

glycoprotein

Multiple sclerosis (98)

Insulin Type I diabetes (82, 99)

INFECTIOUS DISEASES

Envelope HIV (72, 100–103)

Two-photon ormultiphotonmicroscopy has the ability to resolve
images at greater depths and with less photobleaching than
confocal microscopy (67, 68). As a result, this technology has
allowed real-time imaging in living, intact lymphoid tissues
of mice, permitting the direct in vivo observation of immune
cell interactions. The dynamic movements and interactions of
antigen-specific B cells can be studied in vivo by combining
an adoptive transfer of individual B cells (isolated by limiting
dilution or FACS) with two-photon microscopy (63, 69, 70).

EMERGING TECHNIQUES FOR STUDYING
ANTIGEN-SPECIFIC PRIMARY B CELL
RESPONSES

Humanized mouse models are powerful tools for translating
experiments in mice to applications in humans. Transgenic mice
that produce humanized cytokines by knock-in replacement
can be used to support human hematopoietic stem cells
(104). Transgenic mice with complete humanization of the
mouse immunoglobulin loci provide an opportunity for
recapitulating the breadth of the human B cell repertoire
and serve as a valuable tool for therapeutic antibody
discovery (71). However, one caveat is that the allele
frequencies found in the B cell repertoires of these mouse
models may not necessarily recapitulate those found in
humans (72).

Mass cytometry has the potential to provide further
high-dimensional analysis of antigen-specific B cells. In this
method, heavy metal ion tags rather than fluorochromes
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are used to label cells. Since data is collected as time-of-
flight mass spectrometry, up to 42 unique parameters can
be simultaneously measured from a single sample without
significant spillover between channels or the need for
compensation. Mass cytometry with heavy metal-labeled
tetramers can be constructed using streptavidin (73). Mass
cytometry with metal-labeled peptide-MHC tetramers has been
used successfully to identify and characterize antigen-specific
T cells, but to our knowledge has not yet been applied to
antigen-specific B cells (73, 74). One limitation of this approach
is that cells are unavailable for downstream analysis since
they are vaporized by a plasma torch to atomize the ion tags.
However, by simultaneously detecting many more surface
markers and intracellular cytokines, transcription factors, and
detecting more signaling molecules from individual cells than
previously possible with traditional fluorescent labels, the
application of mass cytometry with dimensionality reduction
algorithms could help dissect the complexity of the B cell
compartment, provide a higher resolution view of B cell
development, and reveal novel subsets of antigen-specific B
cells involved in mediating autoimmune diseases or protection
against infection.

On the horizon, single cell RNA-sequencing (RNA-seq)
technologies have the potential to revolutionize the study
of antigen-specific immune cells (75, 76). The ability to
generate a library of tetramers with unique barcodes could
allow the simultaneous examination of gene expression
profiles from a large number of cells with different antigen
specificities in a single experiment. Combining barcoded
tetramers with oligonucleotide-conjugated antibodies and
RNA-seq to simultaneously measure the protein and gene
expression of antigen-specific cells could further increase the
amount of unbiased multi-omic information about individual

antigen-specific cells in normal and disease states and aid the
rational design of vaccines and therapeutics (105–107).

CONCLUSIONS AND HORIZONS

The ongoing analysis of antigen-specific B cell responses has
led to the development of new diagnostic, therapeutic, and
research reagents. Methods for studying antigen-specific B cell
responses are being increasingly applied to tackle diseases like
HIV, RSV, and autoimmune diseases, in which the immune
response either fails to protect or clear disease, or where
it enhances disease or is responsible for the disease itself.
Considerable opportunities exist on the horizon for applying
these methods to a myriad of diseases in which B cells play an
active role.
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