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The teeth of limpets exploit distinctive composite nanostructures consisting

of high volume fractions of reinforcing goethite nanofibres within a softer

protein phase to provide mechanical integrity when rasping over rock sur-

faces during feeding. The tensile strength of discrete volumes of limpet

tooth material measured using in situ atomic force microscopy was found

to range from 3.0 to 6.5 GPa and was independent of sample size. These

observations highlight an absolute material tensile strength that is the high-

est recorded for a biological material, outperforming the high strength of

spider silk currently considered to be the strongest natural material, and

approaching values comparable to those of the strongest man-made fibres.

This considerable tensile strength of limpet teeth is attributed to a high min-

eral volume fraction of reinforcing goethite nanofibres with diameters below

a defect-controlled critical size, suggesting that natural design in limpet teeth

is optimized towards theoretical strength limits.
1. Introduction
Composite structures are widespread in nature and are ubiquitous in minera-

lized tissue where protein-based polymer frameworks are reinforced with a

stronger and stiffer mineral phase [1,2]. These composite structures often

have a distinct mechanical function and have led to a number of engineering

principles being applied to explain resultant structure–function behaviour in

biological organisms [1–4]. More recent concepts have examined the potential

of biology in controlling the size of constituents in natural composite structures

particularly for enhanced mechanical properties at small length scales. Specifi-

cally, the reinforcing mineral phase in many organisms approaches nanometre

length scales, at least in one-dimension, which has been proposed as promoting

flaw insensitivity to increase the tensile strength of mineralized tissue [5]. The

enhancement of material tensile strength owing to size effects has additionally

been shown historically, including Griffith’s observations of increased glass

fibre failure stress as their diameters decreased [6], to more recent quantized

fracture mechanics (QFM) extensions [7] from statistical descriptions of material

strength by Weibull [8]. However, the insensitivity of materials to flaws has

been shown to operate at length scales of many tens of nanometres [5], so

that material failure is governed by the theoretical strength of the material

and not by stress concentrations around flaws as first considered by Griffith

[6]. Discrete examples of exceptional strength in natural materials are perhaps

most prevalent in the silk of spiders [9,10], with tensile strength values of up

to 4.5 GPa recorded in the literature [11]. Limpet teeth shown in figure 1 are

an example of a material produced biologically that is optimized for strength,

especially as these teeth need to be extremely strong and hard to avoid

catastrophic failure when rasping over rock surfaces during feeding.

Recent work has shown that the teeth of limpets approximate to an almost

ideal model natural composite material where high aspect ratio mineral
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Figure 1. Structure of the common limpet tooth (Patella vulgata). (a) Optical
image of the tongue-like radula containing bands of teeth along a length of
many centimetres. (b) Scanning electron micrograph of the teeth groupings
with each tooth length approximately 100 mm. High-magnification electron
microscopy images of the tooth cusp show (c) the changing orientation of
the nanofibrous goethite in the chitin matrix and (d ) the high anisotropy
of the composite at the anterior and posterior edges owing to alignment
of the goethite, note the mineral fibre length of approx. 3 mm, with
(e) close-up of the tooth indicating the distinct phases of the goethite ‘rein-
forcing fibre’ and the chitin ‘matrix’ highlighting the structural resemblance to
a fibre-reinforced composite material with an average fibre diameter of
approx. 20 nm. Adapted from reference [12]. (Online version in colour.)
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nanofibres of goethite reinforce a protein matrix [13]. Limpet

teeth are also notable by displaying a lack of structural hier-

archy present in many other mineralized tissue structures.

As structural hierarchy has been shown to dictate resultant

natural composite material strength [14], limpet teeth are

particularly relevant for the examination of size-dependent

tensile strength in natural materials without the influence

of additional structural features across a range of length

scales. The composition of limpet teeth consists primarily of

mineral nanofibres typically many micrometres in length

but only a few tens of nanometres in diameter, thus below

the critical size defined as promoting flaw insensitivity [5],

and occupy a significant volume fraction of approximately

80% in mature teeth [13]. The strength of the limpet tooth

must therefore be critically dependent on the strength of

the mineral nanofibres within the composite structure.

Indeed, the density of flaws in the reinforcement phase has

been previously shown to define the tensile strength of engin-

eered composite materials containing fibres with diameters

that are over two orders of magnitude larger than the nano-

fibres found in limpet teeth [15,16]. Limpet teeth therefore

present a natural structure with the potential to optimize

composite strength towards a theoretical maximum by the

incorporation of nanofibre constituents below a critical size

that defines tolerance to flaws [5].
Considerable challenges exist in measuring the tensile

strength of limpet teeth, and indeed, any mineralized tissue,

owing to difficulties in separating the influence of this material

behaviour from structural organization. Such challenges have

led to strategies where discrete volumes of material are first iso-

lated from the parent sample and subsequently mechanically

tested. The selection of a discrete material volume is driven

by the need to simplify the structure such as the removal of struc-

tural hierarchy or examination of a specific structural orientation

when evaluating mechanical properties. Focused ion beam (FIB)

microscopy has been demonstrated as a powerful technique in

isolating discrete material volumes for mechanical testing

in mineralized tissue, including teeth and bone [13,17,18], as

well as examining the fracture toughness at interfaces in

metals and alloys [19,20]. Previous work from our group has

highlighted the effectiveness of isolating rectangular beams

with widths approaching 1 mm using FIB methods, so that the

resultant sample approximates towards a uniaxially aligned

short fibre composite [13]. Corresponding mechanical testing

of mineralized tissue at small length scales is measured by

atomic force microscopy (AFM) and has been proved to be

effective for the measurement of the elastic properties of

limpet teeth [13] and bone [18] as well as the failure strength

of human teeth [17]. However, tensile testing along the principal

structural axis of discrete material volumes such as defined by

the orientation of the reinforcing mineral nanofibres in limpet

teeth is yet to be achieved. AFM has been applied to uniaxial test-

ing of individual nanofibrous materials, including mineralized

collagen fibrils [21], polymer nanofibres [22] and nanotubes

[23,24], and relies on integration of AFM with scanning electron

microscopy (SEM) in order to manipulate and observe relatively

small material volumes for tensile testing. Therefore, AFM tech-

niques show suitability in assessing the strength of limpet teeth

in terms of their material behaviour and are applied in this work

as a novel experimental technique to determine the tensile

strength of discrete limpet teeth volumes.
2. Material and methods
2.1. Sample preparation
Samples of the limpet Patella vulgata were harvested in South-

ampton, UK and fixed in seawater prior to transportation to

the laboratory. The limpets were immediately rinsed in running

tap water in the laboratory and sacrificed during storage in a

refrigerator held at 2158C. Teeth were isolated by first removing

the limpet from storage and holding at room temperature for 3 h,

thus allowing thawing of the organism. The tongue-like radula

appendage containing limpet teeth was dissected from the visc-

eral mass of the limpet under an optical microscope and stored in

80% ethanol. The radula end containing the first 5–10 rows of

teeth showed evidence of wear from rasping over rock surfaces

during feeding and was removed using dissection. The remain-

ing radula length was cut into sections with approximate

lengths ranging from 3 to 7 mm and mounted onto a standard

electron microscope aluminium stub using carbon tape. The

radula was then placed on the stub in a drop of water and

manipulated, so that the radula length was extended and did

not curve or roll up using fine needles while observing under

an optical microscope. The radula was allowed to dry on the sur-

face of the carbon tape fixed onto the aluminium stub. Silver

paint was further applied to the base of the tooth to suppress

charge accumulation during the electron and ion beam

microscopy. Small dimension limpet tooth samples were pre-

pared using FIB techniques previously applied to mineralized
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Figure 2. Failure of the limpet teeth structure was achieved by (a) embedded teeth in an epoxy resin and tensile testing to failure. Backscattered SEM images
clearly indicated the nanofibrous structure. (b) Plot of the average length of the nanofibres during straining of the teeth embedded in epoxy resin, indicating failure
of the nanofibre reinforcement that cause a fragmentation of the nanofibres to smaller lengths. (Online version in colour.)
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tissue of bone [18]. Fabrication of small limpet tooth samples was

achieved using an experimental system containing AFM (atto-

cube, Germany) integrated within a dual-beam instrument

(Quanta 3D, FEI, USA/EU) to provide patterning, manipulation

and in situ observation. A FIB-flattened AFM probe (Veeco, USA,

spring constant of 200 N m21) was first translated into glue

(Poxipol, Arg.) contained within the SEM chamber to allow

glue pick-up at the end of the probe. The AFM tip containing

the glue was subsequently moved towards the cusp apex of

the limpet tooth while monitoring using the secondary electron

imaging of the SEM as shown in figure 3a. After subsequent

curing of the glue after 1 h, FIB was used to section the limpet

tooth as indicated in figure 3b using gallium ions accelerated

at 30 kV and an ion current of 1 nA. Sample ‘dog-bone’ geo-

metries were achieved using further FIB sectioning to remove

limpet tooth material.
2.2. Mechanical fragmentation testing
Limpet teeth were dissected from the radula and mixed with

epoxy resin (Poxipol, Arg.) and allowed to stand for 1 h to

allow the glue to fully cure. Examination of the epoxy resin in

SEM showed a number of individual teeth partially exposed at

the top surface of the resin. The cured specimens were cut to a

thickness of 2 mm, length of 10 mm and width of 4 mm using

a diamond saw. The epoxy resin top surface containing the

limpet teeth was mechanically polished opposite to the surface

containing limpet teeth. FIB was used to further polish the sur-

face of the limpet tooth, so that goethite nanofibre minerals

were easily detectable at this surface as shown in figure 2b
using SEM in backscattered imaging mode to give high contrast

between the nanofibres and chitin matrix. Samples were sub-

merged in seawater for 24 h and immediately transferred to a

tensile testing machine (Instron, USA) with a 1 kN load cell.
Mechanical testing of the epoxy resin containing limpet teeth

was carried out to failure at a displacement rate of 0.1 mm per

minute to produce fragmentation of the mineral nanofibres.

Samples were removed from the tensile tester at various strain

values and the anterior edge of limpet tooth imaged using low

vacuum SEM. Analysis of the average nanofibre length was car-

ried out using IMAGEJ (NIH, USA), with the average nanofibre

length at the tooth’s anterior edge shown to decrease with

applied strain as shown in figure 2b.
2.3. Nanomechanical testing
Mechanical testing of the FIB-fabricated limpet tooth samples was

achieved using a custom-built AFM–SEM set-up [18,21,22]. We

note that this set-up provides a hydrated environment to a range

of materials within a 2 h window of opportunity. Tensile testing

was achieved by translating the free end of the FIB-prepared

‘dog-bone’ limpet tooth sample attached to the AFM into a

second droplet of wet glue introduced to the AFM sample stage

within the SEM chamber. The glue was allowed to fully cure after

1 h in the SEM chamber to produce a tensile test configuration as

shown in figure 3. Tensile testing was achieved by translating the

AFM tip away from the second glue droplet surface at a rate of

1 mm s21 using the piezo positioners of the AFM, which caused

deformation of the sample until failure. In situ SEM imaging

allowed observation of glue displacement, and none was observed

in successful mechanical tests. The stress and strain of the sample

was calculated using a fibre optic situated behind the AFM cantile-

ver in order to determine the cantilever deflection during sample

deformation. The sample displacement d was calculated using

d ¼ Z 2 d, where Z is the piezo displacement and d is the AFM can-

tilever deflection measured from the fibre optic. Strain in the sample

1 was therefore calculated using 1 ¼ d/L, where L was the initial

sample length measured from SEM imaging. The stress in the
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Figure 3. Scanning electron micrographs showing (a) the limpet tooth prior to FIB milling, (b) FIB sectioning and attachment of the limpet tooth cusp to an AFM
probe and (c) further FIB milling to thin the sample towards a ‘dog-bone’ geometry.
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attached to the AFM cantilever set-up and partially embedded within gripping

rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20141326

4

sample s was calculated from s ¼ F/A, where A was the cross-

sectional area of the sample and F was the force applied to the

sample. This area A was measured from SEM imaging, and the

error is lower than 5%. Similarly, the force F was determined by

recording the AFM cantilever deflection during sample defor-

mation and knowing the spring constant of the AFM cantilever,

calibrated using the thermal noise method [25]. The error in force

measurements using this calibration method has been shown to

be lower than 5% [26]. Thus, the error in the strength cannot be

larger than 11%. Sample drift during curing of the glue prior to

the tensile test was found to cause misalignment or premature

sample failure, resulting in approximately one in every 10 samples

prepared being successfully tensile tested to failure in this work.
glue and (b) failure at the sample free length mid-point after tensile testing.
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Figure 5. Plot of the stress – strain behaviour of individual limpet tooth
samples, with a variety of lengths, tensile tested to failure using AFM.
3. Results
Failure of limpet tooth was first evaluated using a macroscopic

fragmentation test to establish the failure behaviour of the

material and qualitatively justify failure of the reinforcing min-

eral phase in the tooth. Limpet teeth embedded within a solid

epoxy resin were prepared, as shown in figure 2, for tensile test-

ing. A polished sample surface clearly exhibited the nanofibrous

goethite as observed under backscattered electron imaging.

Tensile testing of hydrated samples caused a progressive failure

of the nanofibres, defined as a fragmentation of the nanofibres,

resulting in a reduction in the average nanofibre length with

applied tensile strain as shown in figure 2b. Fragmentation of

the reinforcing phase is established in composites evaluations,

with the progressive reduction in reinforcing fibre lengths

until a plateaux region indicative of a stress ‘saturation’ [27].

This fragmentation of the reinforcing mineral phase therefore

confirms that stress transfer within the tooth material is suffi-

cient to fail the goethite nanofibres, as opposed to potential

interfacial failure and pull-out of the nanofibrous phase com-

monly encountered in tough biological materials [21]. Thus,

the failure of mineral phase defines the limpet tooth as a poten-

tially strong material. Evaluating the failure of limpet teeth then

progressed to mechanical testing of discrete material volumes.

Isolation of discrete volumes of limpet tooth from the

cusp region of the tooth, using FIB to produce the sample,

as well as manipulation to attach the sample to an AFM

probe, is shown in figure 3. FIB was particularly effective in

producing a sample approaching conventional larger scale

‘dog-bone’ type geometries where the sample volume of

interest is relatively long and narrow, whereas a larger

amount of material at either end of the sample enhances grip-

ping during mechanical deformation. The dog-bone sample
was tensile tested to failure using AFM while observing

with SEM as shown in figure 4. The stress–strain behaviour

of the limpet tooth samples was recorded during tensile test-

ing until failure. Figure 5 shows a plot of the variation in

limpet tooth stress as the sample was strained to failure. All

samples showed a pronounced linear elastic behaviour until

failure, with evidence of nonlinearity when the sample

strain exceeded approx. 2%. Variability in the stress–strain

curves is observed, because the distribution of the reinforcing

phase within the limpet tooth is not particularly highly

ordered as shown in figure 1d. For example, a higher elastic

modulus can be expected owing to the discrete volume

tested containing a relatively large amount of mineral phase

compared with other samples. The deformation of the tooth
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can be explained by consideration of the corresponding struc-

ture tested. Limpet teeth contain a high volume fraction of

mineral phase, with the stress–strain response expected to

be dominated by the mechanical properties of the reinforcing

mineral. The softer protein matrix will potentially contribute

to the nonlinear stress–strain behaviour, especially as the

goethite phase present in the tooth has been shown to be

linear elastic [28]. However, the linear elastic modulus of

the tensile tested limpet tooth samples taken from the plot

in figure 5 is 120+30 GPa, which is beyond an expected

polymeric value and approaches elastic moduli values of

around 180 GPa measured for the pure mineral phase [28].

Thus, the deformation behaviour of the limpet teeth is

justified as being dominated by the mineral phase. The maxi-

mum tensile stress at failure of the limpet tooth samples in

figure 5 shows variability within the dataset. Variability

in the strength of the limpet tooth material is defined by

either the length of the sample tested, as described by evalu-

ations of stress concentrations around flaws [6–8,11,13], or

governed by flaw insensitivity of the mineral nanofibres [5].

A plot of the tensile strength of the limpet tooth samples is

shown in figure 6 as the length of specimen tested is varied.

The strength of the limpet tooth samples, defined by the min-

eral phase, lies within a range from 3.0 to 6.5 GPa and again

confirms that the tensile strength of a limpet tooth is potentially

the highest ever recorded in nature, exceeding the strength of

spider silk fibres [11]. A simple mean line fitted through the

experimental data in figure 6 indicates a lack of size-dependent

strength. Specifically, flaw density considerations dictate that

the strength of a material will decrease as the gauge length

of the material increases [6–8], whereas flaw tolerance is

suggested as being active below a critical size [5]. The results

in figure 6 therefore show that limpet teeth material shows

tolerance to flaws as proposed by previous work [5].
4. Discussion
The tensile strength of limpet tooth samples shown in figure 6,

and the corresponding elastic modulus taken from figure 4 are

4.90+1.90 and 120+30 GPa, respectively. The mechanical

properties of limpet tooth samples are governed by deformation
and breaking of chemical bonds within the goethite mineral

nanofibres, and therefore can be defined from structural infor-

mation on goethite. Crystallographic studies of goethite have

been carried out both theoretically [28] and experimentally

[29], with deformation and failure owing to the external loading

axis in tensile tests predominantly aligned with the long c-axis of

the mineral crystal. This considerable strength of limpet teeth

defined from the crystal structure of goethite is potentially out-

standing. As a biological comparison, the tensile strength and

elastic modulus of spider silk, the material currently consider

to be the strongest in nature, can reach values of up to 4.5 and

10 GPa, respectively [11], which is considerably lower than the

mechanical performance of the limpet tooth. We note that

limpet teeth are hybrid materials consisting of an organic and

inorganic phase, whereas spider silk is exclusively organic.

More recent work has used atomistic simulations to evaluate ten-

sile mechanical properties of cellulose nanocrystals [30], with a

recorded strength of just over 4 GPa still below the values of

limpet tooth strength in this work. Indeed, the mechanical

strength of the limpet tooth is comparable to that of the strongest

man-made fibres, e.g. high-performance Toray T1000G carbon

fibres have a tensile strength of 6.5 GPa. Additional compari-

sons could be made by consideration of high volume fraction

reinforcement composites using layer-by-layer [31,32] and

freeze-casting techniques [33,34]. In these cases, the composite

material strengths are hundreds of MPa, highlighting the order

of magnitude enhancement in tensile strength and general

extreme mechanical performance of the limpet tooth samples.

The lack of a significant change in the tensile strength of limpet

tooth samples in figure 6, despite a fourfold increase in the

length of the sample, suggest the mineral phase within the

limpet tooth is below a flaw tolerant critical size of approximately

30 nm, as reported in previous literature [5]. The mineral phase

may therefore operate towards a theoretical maximum limit, as

suggested by the classical estimation of the theoretical strength

of the composite, of the order of elastic modulus E/(10–30)

approximately 4–12 GPa, that is compatible with our obser-

vations and is indeed suggested in materials ranging from

polymeric fibres [35] to the nacreous layer in shells [36].
5. Conclusion
We show that the tensile strength of limpet teeth can reach

values higher than spider silk, considered currently to be

the strongest biological material, and only comparable to

the strongest commercial carbon fibres. We have also

proved that the strengths, in our investigated range, are rela-

tively size-independent using small-scale in situ tensile

testing. Limpet teeth structures therefore highlight the effi-

ciency of biological control in assembling a composite

structure of nanofibrous goethite for optimal strength behav-

iour. The goethite nanofibres are expected to dictate the flaw

tolerance of the resultant composite owing to their diameters

being below a critical threshold value of the order of tens of

nanometres. This work demonstrates a high-strength compo-

site found in nature and highlights a design strategy towards

strong, engineered composites reinforced with a high volume

fraction of nanofibrous material. As the limpet tooth is effec-

tive at resisting failure owing to abrasion, as demonstrating

during rasping of the tooth over rock surfaces, corresponding

structural design features are expected to be significant for
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novel biomaterials with extreme strength and hardness, such

as next-generation dental restorations.
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