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Objective: To explore a new predictive model of lymphatic vascular infiltration (LVI) in

rectal cancer based on magnetic resonance (MR) and computed tomography (CT).

Methods: A retrospective study was conducted on 94 patients with histologically

confirmed rectal cancer, they were randomly divided into training cohort (n = 65) and

validation cohort (n = 29). All patients underwent MR and CT examination within 2

weeks before treatment. On each slice of the tumor, we delineated the volume of

interest on T2-weighted imaging, diffusion weighted imaging, and enhanced CT images,

respectively. A total of 1,188 radiological features were extracted from each patient. Then,

we used the student t-test or Mann–Whitney U-test, Spearman’s rank correlation and

least absolute shrinkage and selection operator (LASSO) algorithm to select the strongest

features to establish a single and multimodal logic model for predicting LVI. Receiver

operating characteristic (ROC) curves and calibration curves were plotted to determine

how well they explored LVI prediction performance in the training and validation cohorts.

Results: An optimal multi-mode radiology nomogram for LVI estimation was established,

which had significant predictive power in training (AUC, 0.884; 95% CI, 0.803–0.964)

and validation (AUC, 0.876; 95% CI, 0.721–1.000). Calibration curve and decision curve

analysis showed that the multimodal radiomics model provides greater clinical benefits.

Conclusion: Multimodal (MR/CT) radiomics models can serve as an effective visual

prognostic tool for predicting LVI in rectal cancer. It demonstrated great potential of

preoperative prediction to improve treatment decisions.

Keywords: lymphovascular invasion, rectal cancer, multimodal imaging, computed tomography, MRI, radiomics,

nomogram

INTRODUCTION

Colorectal cancer is the third most common cancer in the world, and by 2030 there will be about
2.2 million cases worldwide (1). Lymphovascular invasion (LVI) is defined as the presence of tumor
cells within the endothelia-lined luminal space or the destruction of the lymphovascular wall by
tumor cells (2). The dissemination of cancer cells through lymphatic channels or venules may be
a crucial step in the early stages of lymph node metastasis (3). LVI, which is associated with poor
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prognosis and is a high-risk factor for recurrence after
endoscopic surgery, has been recognized as an important
prognostic determinant that is independent of stage in colorectal
cancer (4–6). The National Comprehensive Cancer Network
Clinical Practice Guidelines recommend preoperative chemo
radiotherapy for patients with T3N0M0 disease (7), which may
also be necessary in the presence of LVI (8). Although MRI is a
reproducible and accurate method for preoperatively identifying
vessels larger than 3mm, due to its moderate sensitivity, imaging
assessment of LVI is difficult and smaller vein invasion may
be overlooked (9, 10). Also, preoperative biopsy assessment,
depending on tumor size, may suffer from a considerable
sampling error, thus contributing to an unknown rate of missed
diagnoses. Hence, the evaluation of new imaging biomarkers
for predicting LVI preoperatively may contribute to improved
patient care.

Multimodal machine learning (MMML) aims to attain the
ability of processing and understanding multimodal information
by machine learning. Multimodal fusion is used for combining
information of multiple modalities and performing target
prediction (classification or regression) (11–13).Medical imaging
contains data in different modalities such as CT, MRI, PET,
ultrasound, and X-ray. T2WI and DWI are accepted as
routine examinations for defining the locoregional clinical
stage of rectal cancer (14, 15). DWI can better reflect the
volume of tumor and distinguish fibrosis. Compared with
other single phase imaging, the portal venous phase of
contrast enhanced CT (CE-CT) protocol performs satisfactory
preoperative evaluation of TNM staging in patients with
colorectal cancer preoperatively (16). Although there have been
advances in new medical imaging technologies, highly trained
experts are still required to interpret these modalities for
diagnosis (12). Multimodal fusion techniques can be divided
into pixel, feature, and decision levels, which are used to
fuse original data and abstract features and decision results,
respectively (11–13).

FIGURE 1 | Flow diagram of patient selection.

Meanwhile, radiomics is a new method of medical
image analysis that further characterizes the phenotype of
tumor by transforming conventional medical images into
quantitative, high-dimensional, and exploitable radiology
data (17–20). Currently, many studies have applied radiomics
characteristics to predict lymph node metastasis and perineural
invasion (PNI) in colorectal cancer (21, 22), evaluate the
response to neoadjuvant therapy (23), determine preoperative
synchronous distant metastasis (24), and predict staging
of rectal cancer (25). However, its use in LVI prediction
is still rare.

In this study, we combined two new imaging technologies and
explored the advantage of a multimodal radiomics model from
MR and CT images for individualized preoperative prediction of
LVI in rectal cancer.

MATERIALS AND METHODS

Patients
The study was approved by the Ethics Committee of the First
Hospital of Jilin University. From June 2016 to October 2018,
241 primary rectal cancer patients were enrolled based on
the following inclusion standard: (1) patients diagnosed with
pathologically proven rectal cancer as documented in themedical
records of our institution and (2) had received preoperative
CT and MR within 2 weeks, as documented in PACS and
medical records. The exclusion criteria included: (1) anti-tumor
treatments (n = 33); (2) incomplete clinic-pathological reports
(n = 60); (3) lack of thick slices of venous phase CT (n = 47);
(4) poor image quality (n = 7). Finally, the study population
consisted of 94 patients. Figure 1 demonstrates a flow diagram
of patient selection. The entire cohort was divided into a training
cohort (n = 65) and validation cohort (n = 29) randomly
at a 7:3 ratio. The training cohort was used to build single
and multimodal radiomics models that were evaluated by the
validation cohort.
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Image Acquisition
All MR images were acquired on a 3.0-T MRI scanner (Ingenia,
PhilipsMedical Systems, Netherlands). The scan parameters were
as follows: High-resolution axial T2WI was performed using fast
recovery fast spin echo, repetition time (TR) = 3,500ms, echo
time (TE) = 100ms, slice thickness = 3.0mm, gap = 0.3mm,
matrix = 288 × 256, echo train length = 24, and field of view
(FOV)= 18× 18 cm; DWIwas performedwith b= 1,000 s/mm2,
TR = 2,800ms, TE =70ms, slice thickness = 4.0mm, matrix =
256× 256, FOV= 34× 34 cm, and gap= 1.0mm.

CE-CT was performed either on a 256-detector row
(Brilliance, PhilipsMedical Systems, Netherlands) or on a 64 slice
dual source CT scanner (Definition, Siemens Medical Systems,
Germany). Both machines’ protocol parameters were the same:
tube current= 250mA; tube voltage= 120 kV; slice thickness=
5mm. 1.5 mL/kg of iodinated contrast media was injected into
vein via a pump injector at a rate of 2.0−3.0 mL/s after a routine
unenhanced scan. Venous phase CT images were obtained at 60 s.
Figure 2 depicts a flowchart of this study.

Tumor Segmentation
Tumor segmentation was conducted by using an open source
software package (ITK-SNAP, version 3.4.0, www.itksnap.org).
Two independent radiologists (reader 1 with 3 years of
experience in abdominal imaging, and reader 2 with 5 years)
outlined the volumes of interest (VOIs) manually which around
the lesion avoiding normal signal regions from T2WI, DWI,
and CE-CT images on each tumor slice, respectively. Neither

radiologist was aware of the clinicopathological results or the
imaging interpretations of other readers.

The VOI was defined as follows: (1) the whole primary tumor
on T2WI was defined by outlining the contour of the tumor on
slightly high signal; (2) the VOI on DWI (b = 1,000 s/mm2)
was covered on the high signal intensity region; and (3) on CE-
CT imaging, the whole primary tumor was drawn along the
abnormal region which enhanced heterogeneously in the venous
phase. All VOIs were segmented on each slice manually, which
contained the chords and burrs surrounding lesions and excluded
the fluid in the intestinal lumen. VOI in each sequence showed
the tumor segmentation in Figure 2.

Radiomics Features Extraction
On each modality, 396 radiomics features were extracted from
the VOIs using the A.K. software (Artificial Intelligence Kit,
AK, version V3.0.0.R, GE Healthcare, China), including 42 first
order histogram features, 9 morphological features, 10 Haralick
features, 11 gray-level zone size matrix (GLZSM), 144 gray-
level co-occurrence matrix (GLCM) with an offset of 1/4/7,
and 180 gray-level run-length matrix (RLM) with an offset of
1/4/7. Finally, 1,188 radiomics features were generated from
each patient. Detailed information about the extracted features
is provided in Supplementary Figure 1.

We used intra- and inter-class correlation coefficients (ICCs)
to assess the intra-observer and inter-observer reproducibility of
feature extraction.We initially chose 30 VOIs from eachmodality
randomly. The intra-observer ICC was calculated by comparing

FIGURE 2 | Framework of this study. A flowchart describing the radiomics method for LVI of rectal cancer prediction.
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reader 2 twice segmentation (repeated at 7-day intervals). The
inter-observer ICC was calculated by comparing the extraction
of reader 1 and those of reader 2 (first time). When the ICC
exceeded 0.75, it was considered as good agreement.

Feature Selection and Model Building
Features selection and model building were performed on
RStudio-1.1.463. To explore the strongest features which were
correlated best with histopathology, we used student t-test or
Mann–Whitney U-test, and least absolute shrinkage selection
operator (LASSO) regression to reduce over-fitting or selection
bias in our radiomics model. To reduce the redundancy of
the features, Spearman’s rank correlation was used to remove
features with high correlation (here we chose coefficient |r|
≥ 0.9). The radiomics score, which included the CT_Score,
DWI_Score, and T2_Score, respectively, were generated by
using the selected features according to the linear combination
weighted by their respective coefficients from each patient. The
multimodal radiomics was constructed by two different methods:
Model A, which named Rad-score_A, was based on CT_Score,
DWI_Score, and T2_Score. Model B, which named Rad-score_B,
was based on 396∗3 radiomics features. The details of LASSO
regression are shown in the Supplementary. Delong tests were
used to compare the differences between the two multimodal
radiomics models, and the better model was chosen to generate
the radiomics nomogram.

Validation and Nomogram Construction
Accuracy, specificity, sensitivity, and the area under the receiver
operating characteristic curve (AUC) were used to estimate the
predictive performance of the radiomics models. The calibration
curve depicted the performance characteristics of the multimodal
radiomics models graphically. A radiomics nomogram from
the best model was constructed depending on the multivariate
logistic regression model. We use the Hosmer-Lemeshow test
to assess the goodness-of-fit of the nomogram and use a
decision curve analysis to evaluate the clinical usefulness of the
multimodal radiomics via calculating the net benefit at different
threshold probabilities. Moreover, we carried out stratification
analysis based on different CT protocols.

Statistical Analysis
All statistical analyses were performed with RStudio Server
(Version 1.1.463; RStudio, Inc, Boston, MA, USA). The
student t-test and Mann–Whitney U-tests were performed when
appropriate to compare continuous variables. A chi-squared
test was used for classified variables between groups. The
radiomics scores were expressed as median (25 quantile, 75
quantile), and the continuous variables were expressed as mean
± standard deviation (SD). Intra- and inter-class correlation
coefficients (ICC) were performed to evaluate the effects of
variations between intra- and inter-readers in the extracted
radiomics features. All statistical tests were two-sided, and
P-values of <0.05 presented statistically significant statistical
analysis. LASSO regression analysis was performed using the
“glmnet” package. Multivariate logistic regression, nomogram
and calibration curves were generated using the “rms” package.

ROC curves were plotted with the “pROC” package. Decision
curve analysis was done using the function of “dca. R.”

RESULTS

Patients Characteristics
Table 1 shows the clinical characteristics of the patients. Our
study included 46 (48.9%) patients with LVI and 48 (51.1%)
patients without LVI. Clinical characteristics of LVI-positive and
LVI-negative groups were not statistically different in training
and validation cohorts (p = 0.329–0.718), except for the Rad-
score (p < 0.05). The pathological staging (T, N stage) of
LVI-positive and LVI-negative groups were statistically different
in training and validation cohorts. However, our model was
established preoperatively, the relevant postoperative clinical
characteristics were not included in our model.

The intra-observer reproducibility of feature extraction
based on twice-extracted features of reader 2 was satisfactory.
Therefore, the remaining image segmentation was performed by
reader 2. After analysis of reproducibility to avoid the effect of
intra/inter observer variation, 110 radiomic features on tumor
regions remained for T2WI; 146 tumor features for DWI; and
102 tumor features for CE-CT. We used volume MM, which is
volume (unite: mm3) of the VOI, in the radiomics feature that
belongs to the form factor features, to represent tumor size. The
smallest tumor included in the study was 246.533 mm3on T2WI,
which is 187 voxels in size (voxel size: 0.625 × 0.703 × 3mm3),
with maximal dimensions of 0.4 cm in the axial level, and 2.6 cm
in the sagittal plane.

Single Radiomics Model and Evaluation
The selected features for single radiomics signatures were
calculated from each modality. Single radiomics signatures from
T2WI, DWI, and CE-CT were verified with AUC (Figure 3). The
radiomics signature by singlemodality was established with a Rad
score calculated as follows:

CT_score = −3.62+(−4.75×10−14 × ClusterProminence_
AllDirection_offset1_SD

−5.40 × 10−5 × ClusterShade_angle45_offset7 −6.45 × 103

× Correlation_angle135_offset7
+2.85 × 10−9 × HaralickCorrelation_angle90_offset7 + 1.53
× 10−3 × Inertia_angle45_offset7
−7.41× 10× InverseDifferenceMoment_angle45_offset7
−1.49× 105× ShortRunEmphasis_AllDirection_offset7_SD
+5.60× SmallAreaEmphasis)

T2WI_score=−77.9+ (−5.92× 10−3

×HighGreyLevelRunEmphasis_AllDirection_offset4_SD
+8.01 × 10−4 × HighGreyLevelRunEmphasis_AllDirection_
offset7_SD
+2.35× 10−1× LongRunEmphasis_angle45_offset7
+8.12× 10× ShortRunEmphasis_angle45_offset4
+1.20 ×10−4 ×ShortRunHighGreyLevelEmphasis_
AllDirection_offset7_SD
−4.20× Sphericity)
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TABLE 1 | Clinical characteristics and radiomics score of the training and validation cohort for lymphovascular invasion of rectal cancer.

Variables Training (n = 65) Validation (n = 29)

LVI(+) (n = 32) LVI(–) (n = 33) P-value LVI(+) (n = 14) LVI(–) (n = 15) P-value

Age (Mean ± SD) 59.56 ± 10.96 60.61 ± 13.18 0.541 55.57 ± 14.12 58.73 ± 12.62 0.718

Gender (No., %) Male 22 (68.75) 25 (75.76) 0.535 12 (85.71) 12 (80.00) 0.697

Female 10 (31.25) 8 (24.24) 2 (15.29) 3 (20.00)

CEA (ng/ml, %) Normal 19 (59.38) 16 (48.48) 0.386 6 (42.86) 8 (53.33) 0.589

Abnormal 13 (40.62) 17 (51.52) 8 (57.14) 7 (46.67)

CA-199 (ng/ml, %) Normal 24 (75.00) 28 (84.85) 0.329 12 (85.71) 12 (80.00) 0.697

Abnormal 8 (25.00) 5 (15.15) 2 (14.29) 3 (20.00)

CT_Score [Median (25, 75%)] 1.222 (−0.158,

2.918)

−0.911 (−2.456,

0.599)

<0.001* 1.530 (0.835,

2.170)

−1.684 (−4.073,

−0.145)

0.002*

DWI_Score [Median (25, 75%)] 0.468 (−0.005,

1.259)

0.070 (−0.593,

0.500)

0.012* 0.232 (−0.037,

0.509)

−0.354 (−1.826,

−0.176)

0.002*

T2_Score [Median (25, 75%)] 0.331 (−0.057,

0.724)

−0.268 (−1.106,

0.184)

0.002* 0.528 (0.193,

0.808)

−0.374 (−0.780,

0.223)

0.063

Rad-score A [Median (25, 75%)] 1.678 (0.232,

2.380)

−1.411 (−2.391,

−0.628)

<0.001* 0.657 (0.583,

1.565)

−2.510 (−3.41,

−1.38)

<0.001*

Rad-score B [Median (25, 75%)] 0.529 (−0.215,

0.753)

−0.485 (−1.096,

0.035)

<0.001* 0.488 (−0.088,

0.780)

−0.291 (−1.164,

0.277)

0.018*

pT stage T1-2 3 (9.38) 19 (57.58) <0.001* 1 (7.14) 0 (0.00) 0.168

T3-4 29 (90.62) 14 (42.42) 13 (92.86) 15 (100.00)

pN stage N0 0 (0.00) 32 (96.97) <0.001* 0 (0.00) 14 (93.33) <0.001*

N1-2 32 (100.00) 1 (3.03) 14 (100.00) 1 (6.67)

Tumor length (Mean ± SD) 5.57 ± 2.36 5.89 ± 2.26 0.447 5.32 ± 1.59 5.32 ± 1.95 0.856

Tumor thickness (Mean ± SD) 1.56 ± 0.79 1.50 ± 0.78 0.419 1.30 ± 0.37 1.45 ± 0.55 0.493

T2WI_volume (mm3 ) [Median (25, 75%)] 7558.770

(4257.333,

11021.175)

5934.650

(3059.595,

11771.650)

0.550 6097.545

(2727.905,

7122.2125)

7244.400

(3876.030,

10126.800)

0.346

DWI_volume (mm3 ) [Median (25, 75%)] 7492.685

(4209.595,

9908.308)

6503.910

(2510.985,

13763.400)

0.659 4833.990

(3279.730,

7781.370)

7009.280

(4028.330,

10527.300)

0.167

CT_volume (mm3 ) [Median (25, 75%)] 9748.935

(6104.673,

5280.300)

12227.700

(4606.160,

16144.450)

0.959 8004.380

(3894.278,

10866.125)

11366.800

(7116.990,

17447.800)

0.181

LVI, lymphovascular invasion; CEA, Carcinoembryonic antigen; CA-199, Carbohydrate antigen 199; Rad-score, Radiomic score; pT stage, pathological tumor stage; pN stage,

pathological limph node stage.

*p < 0.05 indicated significant differences.

DWI_score = −213.1 + (21.8 × GLCMEnergy_angle45_
offset7

+122.4× ShortRunEmphasis_angle135_offset4
+ 92.1× ShortRunEmphasis_angle45_offset4).

Multimodal Radiomics Model and
Evaluation
The Rad-score A was constructed from integration formulas for
single radiomics signatures derived from each modality (T2WI,
DWI and CE-CT) using the formula:

The Rad-score A=−0.360+ (−0.897×T2WI_score+0.6267
× DWI_score+0.609× CT_score)

The Rad-score B was three radiomics features with non-
zero coefficients (one feature from T2-weighted images and two
features from CE-CT images) selected from a total 1,188 features
simultaneously using the formula:

The Rad-score B = 73.55 + (−7.48 × T2WI_Sphericity-
3854.49 × CT_Correlation_angle135_offset7 + 78.75
× CT_ShortRunEmphasis_angle135_offset4)

The optimum cut-off value of each radiomics models as
per the Youden index, as shown in Table 2. Patients were
divided into either positive or negative predictions for LVI based
on Rad-scores.

Performance Comparison and Calibration
We tried our best to build a stable model, thus 10-fold cross
validation was repeated 50 times in the training cohort when
applying the LASSOmethod so as to generate the optimal lambda
that can construct a robust model in the logistic regression
analysis. Meanwhile, delong test was used to explore if the model
was robust not only in the training cohort but also in the
validation cohort. Delong test P-value exceeded a value of 0.05
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FIGURE 3 | Area under the ROC curves of each radiomics model.

TABLE 2 | The performance of each models in the train and validation cohorts.

Model AUC (95% CI lower-upper) Specificity Sensitivity Accuracy Cutoff P-value

Train Validation Train Validation Train Validation Train Validation

CT 0.804

(0.697–0.911)

0.824

(0.643–1.000)

0.545 0.600 0.969 0.857 0.754 0.724 0.336 0.854

DWI 0.681

(0.551–0.811)

0.824

(0.667–0.981)

0.939 1.000 0.375 0.143 0.662 0.586 0.594 0.174

T2WI 0.719

(0.591–0.846)

0.705

(0.501–0.909)

0.697 0.600 0.750 0.786 0.723 0.690 0.502 0.910

A 0.884

(0.803–0.964)

0.876

(0.721–1.000)

0.727 0.800 0.938 0.929 0.831 0.862 0.313 0.935

B 0.774

(0.654–0.894)

0.757

(0.576–0.938)

0.788 0.533 0.781 0.786 0.785 0.655 0.477 0.942

P value was derived from Delong test between the train and validation cohorts.

when comparing the performance of the model in training and
validation cohort.

We measured AUC values of each model including single
model, model A and model B (Figure 3). The AUC of the CT
model in the training cohort was 0.804 (95%CI, 0.697–0.911) and
in the validation cohort was 0.824 (95% CI, 0.643–1.000), with
no statistically significant difference between the two cohorts
(P = 0.854). The T2WI model yielded an AUC of 0.719 (95%
CI, 0.591–0.846) and 0.705 (95% CI, 0.501–0.909), also with no
significant difference between each cohort (P= 0.910). The AUC
of the training cohort of DWI model was 0.681 (95% CI, 0.551–
0.811), and the AUC of the validation cohort was 0.824 (95%
CI, 0.667–0.981), with no significant difference between groups

(P = 0.174). Accuracy, sensitivity, specificity, and AUC of each
radiomics model are shown in Table 2. And the box plots are
shown in Supplementary Figure 2.

Model A achieved the highest AUC of all models (AUC
= 0.884 and 0.876, respectively), with a high sensitivity and
specificity in the training and validation cohorts (sensitivity
= 0.938 and 0.929, specificity = 0.727 and 0.800). The AUC
of model B was 0.774 in the training cohort and 0.757 in
the validation cohort, with sensitivity and specificity in the
training and validation cohorts (sensitivity = 0.781 and 0.786,
specificity = 0.788 and 0.533). The calibration curves depicted
that the predicted risks were consistent with the observed
outcomes of LVI. The closer fit of the diagonal curved line
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FIGURE 4 | Calibration curves of the nomogram in the validation cohort. The closer fit of the diagonal curved line to the ideal straight line indicates the predictive

accuracy of the nomogram from the best model. Radiomics nomogram was developed in the training cohort.

to the ideal straight line indicates the predictive accuracy of
the nomogram from the best model (Figure 4). The DCA
indicated that model A was the best method across the full
range of reasonable threshold probabilities (Figure 5). The
stratified analysis showed that the performance of model A
was not affected by the CT version (Supplementary Figure 3).
The AUC of models derived from images acquired on
the PHILIPS scanner was 0.880 (95% CI, 0.797–0.963) and
the AUC of models derived from images acquired on the
Siemens scanner was 0.833 (95% CI, 0.631–1.00, Delong
test P > 0.05).

Discussion
To the best of our knowledge, this is the first study to develop
a multimodal radiomics model, using radiomics features from
MR and CT to predict LVI in rectal cancer. The challenges of
multimodal fusion mainly include how to judge the confidence
level of each modality and the correlation between modalities,
how to reduce the dimension of multimodal characteristic
information, and how to register the multimodal data collected
asynchronously (11–13). We compared the advantages of two
multimodal radiomics models for CT and MRI integration.
The model A was superior to the single model and the model
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FIGURE 5 | Decision curves analysis of multimodal A and B performed in the validation cohort. The net benefit is represented on the y-axis. The threshold probability

is represented on the x-axis. The net benefit of model A was higher than model B across the full range of reasonable threshold probabilities.

B, indicating that the multimodal radiomics model approach
may have a greater value in preoperative LVI prediction. The
multimodal model can provide more abundant information than
either modality alone.

In a prior study, Kim et al. (10) reported an excellent
specificity but limited sensitivity of 93.2 and 68.2% of MRI for
detecting LVI in rectal cancer. Later, Chen et al. (26) performed
DWI- and T2-weighted MRI–based gross tumor volume (GTV)
tomeasure LVI in 50 patients. The sensitivity of DWI-based GTV
was similar to that of T2-weighted MRI–based GTV (91.7 vs.
91.7%), whereas the specificity of DWI-based GTV was higher
than T2-weightedMRI–basedGTV (82.6 vs. 79.3%). Their results
are similar to our study, but in our finalmodel, the volume feature
was not retained after feature selection, possibly because volume
feature is biased by subjective assessment of the observer. Jiang
et al. (27) combined clinical factor and radiomic score to build
a model for predicting pathological stage. The aim of our study,
however, was to investigate the influence of multimodal fusion on
radiomics models using different methods, and therefore clinical
factors had not been included into the model. Moreover, as
shown in Table 1, clinical characteristics were not statistically
different in training and validation cohorts.

There have been no studies on lymphovascular invasion of
rectal cancer using radiomics. Lymphovascular invasion has been
studied in breast (28); colorectal (29); and endometrial cancers
(30); and urinary tract urothelial carcinoma (31). However,
radiomics was only used in the lymphovascular invasion of
breast cancer (32). Radiomics mainly improves the prediction
performance of medical images by improving medical image
analysis and using computer algorithms to extract thousands
of quantitative features (19). Although these characteristics
can reflect tumor biology behavior from various aspects
(33), the correlation is also difficult to comprehend between
single radiomics features and biological behaviors. Moreover,
constructing multi-feature panels is a more common evaluation
method (34, 35). We integrated the remaining features of feature
selection into a single radiomics score to reflect information
more effectively.

We considered that the performance of the multimodal
radiomics model was deeply influenced by the process of the
feature selection, although we used 10-fold cross validation. In
method B, a total of 1,188 features were mixed for the feature
selection, in which the features derived from CT images, DWI,
and T2WI were treated equally without discrimination. Thus,
there was an inevitable bias, which could be eliminated by using
a larger patient data base including thousands of cases in a big-
data-approach. Meanwhile, we established another fusion model
usingmethod A, which combined the radiomics scores calculated
based on CT image, DWI, and T2WI, respectively. Model A is
superior to B because the model B can only judge the features
from different modalities separately, ignoring the correlation
between modalities, and excluding those with small contribution
value. Hence, model B only includes the features from T2WI
and CT, without DWI. As model A preserves the important
information of each model, it should be superior to model B
and indeed performed better than model B and visual assessment
alone. This could indicate a clinically relevant potential of the
proposed radiomics nomogram for preoperative assessment and
image guided therapy. Interestingly, features such as Short Run
Emphasis and Small Area Emphasis, which could be attributed to
second-order texture features, seem to predict vascular invasion
more reliably.

Multimodal fusion techniques include pixel, feature, and
decision levels (11–13). In our study, we didn’t choose pixel
but feature level because the two medical examinations could
not be performed simultaneously during routine diagnostic
procedures. Also, feature level based multimodal fusion offers
a very flexible and convenient way to utilize multimodal
information. Due to the inevitable gastrointestinal motion,
even for simultaneous multimodal imaging, accuracy in image
registration for the gastrointestinal tract still poses challenges
even for the most sophisticated, existing hybrid imaging
modalities. The approach presented in our study, in contrast,
is not prone to misregistration errors and can be even more
generalized to combine information of different modalities. In
contrast to pixel level fusion, feature level fusion using radiomic
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features simplifies comprehensive integration of multimodal
information which, given its numerical derivation, could allow
to include any other data source such as ultrasound data, lab test
results or genomic data.

By comparing AUC values, the AUC of T2WI and CT
are higher. However, combining DWI makes the model more
efficient but cannot provide more texture features. Hence DWI
has critical but limited value. Moreover, the calibration curve of
the predictive model demonstrated good agreement between the
predictive and actual probabilities. In our study, the calibration
curve depicted that the model A better predicted actual LVI in
rectal cancer in the validation cohort than other models. DCA
showed that the model A adds more benefit to predicting LVI
than model B at any given threshold probability. It seems to
be obvious that assessing tumorous disease with single modal
radiomics information will not be comprehensive. However,
development of methods and strategies for the integration of
information of different dimensions is still in its early stages, and
combining prediction models, as performed in the current study,
might increase their precision and could be extended to other
diagnostic indicators. Further research following this scheme
is warranted.

This study has several limitations: First, our research was
conducted at a single institution. Although all MR images were
obtained from a uniform MRI scanner with a standardized
imaging acquisition sequence to reduce the bias and variance
of our results. Further confirmation from other agencies is
needed to improve the robustness of the model. Second,
our images were not normalized preprocessing. Currently,
there is still no universal criterion for the standardization
of imaging, and the results will be influenced by factors
including equipment, parameters, and radiomics research
methods and so on. We selected images from the same MRI
equipment as a normalization strategy. About 78% of CT
images were from the same CT version (Brilliance, Philips
Medical Systems). The CT voltage value was the same, which
is the only factor affecting the radiomics texture characteristics
(36). Moreover, the thickness/gap of slices are similar to
avoid image preprocessing. The stratified analysis showed that
the performance by the different versions of CT was also
acceptable. Third, this study is a retrospective study with
inevitable deviation. If containing external validation would
be better. A prospective study is also needed for further
verification. Finally, our study is a single center study, mainly
including the patients who performed with CT and MR,
so the sample size is small. We will cooperate with other
hospitals to explore the robustness of multimodal model
in future.

CONCLUSIONS

In conclusion, this study presents a multimodal radiomics
model with good discriminative ability in predicting preoperative
LVI in rectal cancer. The multimodal model A based on
modalities is better than the model B based on features. Such
preoperative models of LVI may potentially be useful to modified
individualized and accurate treatment strategies.
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