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Abstract

Estimation of time depends heavily on both global and local statistical context. Durations that are short relative to the global
distribution are systematically overestimated; durations that are locally preceded by long durations are also overestimated.
Context effects are prominent in duration discrimination tasks, where a standard duration and a comparison duration are
presented on each trial. In this study, we compare and test two models that posit a dynamically updating internal reference that
biases time estimation on global and local scales in duration discrimination tasks. The internal reference model suggests that the
internal reference operates during postperceptual stages and only interacts with the first presented duration. In contrast, a
Bayesian account of time estimation implies that any perceived duration updates the internal reference and therefore interacts
with both the first and second presented duration. We implemented both models and tested their predictions in a duration
discrimination task where the standard duration varied from trial to trial. Our results are in line with a Bayesian perspective on
time estimation. First, the standard systematically biased estimation of the comparison, such that shorter standards increased the
likelihood of reporting that the comparison was shorter. Second, both the previous standard and comparison systematically biased
time estimation of subsequent trials in the same direction. Third, more precise observers showed smaller biases. In sum, our
findings suggest a common dynamic prior for time that is updated by each perceived duration and where the relative weighting of

old and new observations is determined by their relative precision.

Keywords Time perception - Bayesian modelling - Duration discrimination - Context effects

Time estimation is something we do naturally on a daily basis;
when we prepare a meal, take turns in a conversation, and in
countless other instances. The estimates we make are not ab-
solute, however, as was first demonstrated by von Vierordt
(1868). Time estimation is heavily influenced by statistical
context. Both the overall distribution of durations (global con-
text) and immediately preceding durations (local context) bias
temporal estimates (e.g., Acerbi, Wolpert, & Vijayakumar,
2012; Jones & Mcauley, 2005; Shi, Church, & Meck, 2013;
Taatgen & van Rijn, 2011; van Rijn, 2016). In the case of
global context effects, temporal estimates show a regression
to the mean of the distribution of durations that were previ-
ously encountered. Local context effects refer to the current
estimate being pulled towards immediately preceding dura-
tions, so-called n—1 effects. While both effects highlight
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context effects at different time scales, they are nevertheless
thought to reflect common underlying processes (Bausenhart,
Bratzke, & Ulrich, 2016).

Many different paradigms have been used to study context
effects in time estimation. We will focus, however, on one
particular psychophysical method: duration discrimination.
In duration discrimination, a participant is presented with
two subsequent durations per trial: a fixed standard duration
(S) and a comparison duration (C), which differs from the
standard. Participants are asked whether the first or second
stimulus was longer. Temporal accuracy can be assessed by
manipulating the difference between S and C and fitting a
psychometric curve. The slope of the resulting curve reflects
temporal precision, whereas the location where the curve
crosses the 50% line (Point-of-Subjective-Equality; PSE) re-
flects biases. Results from duration estimation tasks have
shown that the order in which S and C are presented matters.
Temporal precision is higher for the order <sc> than for <cs>
(Dyjas, Bausenhart, & Ulrich, 2012). This order effect has
been referred to as a Type B effect, where Type A refers to
effects of stimulus order on bias (Lapid, Ulrich, &
Rammsayer, 2008). The Type B effect has been taken to
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suggest that the global context in which durations are embed-
ded influences duration estimation (Bausenhart et al., 2016).
The global distribution of durations for the first duration is
more variable for order <cs>, producing less precise temporal
judgements. Moreover, only when the stimulus order is <cs>
does the comparison on the previous trial (C,—) systematical-
ly bias duration estimates, demonstrating local context effects.

Several models have been proposed to explain context
effects in time estimation, but we will discuss two main
theoretical approaches: The internal reference model
(IRM; Dyjas et al., 2012) and Bayesian models (Jazayeri
& Shadlen, 2010; Shi et al., 2013; Wiener, Thompson, &
Coslett, 2014). Originally proposed to account for Type B
effects in duration discrimination (Lapid et al., 2008),
IRM proposes that an internal reference represents a mov-
ing average of previous durations. IRM assumes that, on
each trial, the internal reference is only updated by the
first presented duration. According to IRM, the fact that
the first duration is incorporated into the internal refer-
ence, whereas the second duration is not, is what causes
Type B effects: With stimulus order <sc>, only the fixed
standard is incorporated into the internal reference, mak-
ing for a less variable internal reference and therefore
higher precision. In contrast, with stimulus order <cs>,
only the variable comparison is incorporated into the in-
ternal reference, making for a more variable reference,
resulting in lower precision. A second major prediction
of IRM is that the local context effect of the previous
comparison (C,—;) depends on the stimulus order. More
specifically, C,—; should have no effect on the position of
the psychometric curve when the stimulus order is <sc>,
since the second stimulus is never incorporated into the
internal reference. However, C,_; should influence the
position of the psychometric curve when the stimulus or-
der is <cs>. Indeed, this is what Dyjas et al. (2012) found:
a significant local context effect was only observed with
stimulus order <sc>. Dyjas et al. (2012) also considered
an alternative version of IRM where both the first and
second stimulus are incorporated in the internal reference.
It was noted that this alternative would account for their
results equally well as IRM proper, but the ‘first-only’
version was preferred, because it was considered less
complex.

Despite their overall similarity with IRM, Bayesian
models provide a different perspective on context effects
in time estimation (Shi et al., 2013). While both IRM and
Bayesian models consider a time estimate to be the prod-
uct of a weighted average of an internal reference (i.e., the
prior) and sensory information (i.e., the likelihood), they
disagree on how these weights are determined. In IRM,
the relative weight (g) is a free parameter that may differ
between experimental conditions (Dyjas, Bausenhart, &
Ulrich, 2014). Also, IRM does not suggest a rigorous
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functional interpretation of this internal reference. After
all, the internal reference may degrade performance, de-
pending on the order of stimuli. In contrast, Bayesian
models weigh the likelihood and prior by their relative
precision on each individual trial, giving more weight to
the more precise source of temporal information. This
results in a statistically optimal time estimate. Thus,
Bayesian accounts of time estimation suggest a functional
explanation for context effects: Time estimates are sys-
tematically biased for the purpose of optimal estimation
under noisy conditions. Shi et al. (2013) point out that the
Bayesian implementation of the updating process of IRM
is referred to as a Kalman filter, a method which has
recently been successfully used to explain a wide variety
of context effects in magnitude estimation (Petzschner,
Glasauer, & Stephan, 2015).

Another important difference between IRM and Bayesian
models is the locus of context effects. IRM strongly implies
that temporal representations are influenced by context during
postperceptual stages, given that the internal reference does
not influence the representation of the second stimulus (which
is perceived nevertheless). As a result, context effects are ex-
plained by the first duration on the previous trial. In contrast,
Bayesian models suggest that temporal representations are
already sculpted by context at perceptual stages. Bayesian
models of magnitude estimation assume that the product of
combining sensory input (i.e., the likelihood) and memory
(i.e., the prior) results in the posterior, which is the percept
(Petzschner et al., 2015). In such a model, the common prior is
dynamically updated by each duration. It follows that in du-
ration discrimination tasks, not only the first but also the sec-
ond duration should systematically bias subsequent time esti-
mates in the same direction. A further consequence of such a
model is that the first duration also systematically biases per-
ception of the second duration.

Here, we implemented both IRM and a Kalman filter and
generated predictions from these models. Subsequently, we
performed a duration estimation experiment to compare and
contrast the IRM and Bayesian models of time estimation with
regard to local and global context effects. Our empirical find-
ings are in line with a Bayesian model where a dynamic prior
is sequentially updated by each duration. In a duration dis-
crimination task with a variable standard on each trial (the
roving-standard task; Allan & Gerhardt, 2001), we observed
three effects. First, we found systematic biases for each stan-
dard, in line with the standard influencing the comparison.
Second, both the first and second duration biased subsequent
time estimates in the same direction. Third, more precise ob-
servers showed smaller biases. These findings suggest that
both global and local context effects result from a common
dynamic prior that is sequentially updated by both the first and
second duration.
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Methods
Participants

A total of 47 students (29 females; mean age 20.6 years) at the
University of Groningen participated in exchange for partial
course credit. Participants gave informed consent before the
experiment. Based on the predefined performance criterion
(see Procedure section), one participant was excluded from
further analysis.

Apparatus and stimuli

Stimulus generation and presentation were controlled by
Psychtoolbox (Brainard, 1997). We used a 19-in. CRT screen,
an liyama Prolite G2773HS-GB1, with a resolution of 1,280 x
1,024 pixels, running at 100 Hz. Participants were seated in a
sound-attenuated room with dimmed lights approximately
60 cm from the screen. A grey background was maintained
during the entire experiment. A black fixation dot was pre-
sented throughout each trial. Feedback sounds were brief (150
ms) pure tones; high (1000 Hz) for correct and low (200 Hz)
for incorrect responses. Stimuli were white circles, presented
in the center of the screen with a diameter of 6.69°.

Procedure

After four practice trials (one for each standard duration, in
random order), participants completed a total of 200 trials of a
duration discrimination task (see Fig. 1). On each trial, the
duration of a standard (S) duration (always presented first)
was compared with a comparison (C) duration. At the start
of each trial, a black fixation dot was presented centered on the

Comparison

Standard

fixation

2000ms:

Fig. 1 Trial structure. A fixation dot was presented for 2 s at the start of
every trial. Then, the standard was presented, which had a duration of 0.3,
0.6, 1.2 or 2.4 s. After a delay of 1s, the comparison was presented, which
was either shorter or longer than the standard. Participants had to indicate
whether the comparison duration was shorter (press ‘c’) or longer (press
‘m’) than the standard

screen, which was present throughout the entire trial. After 2
seconds, the standard was presented, which had a duration of
0.3, 0.6, 1.2, or 2.4 seconds (randomly sampled without re-
placement). Then, after a delay of 1 second, C was presented,
which was either shorter or longer than S. The difference in
duration between S and C is referred to as Ad, which is a
proportion of S. When C was shorter than S, the comparison
duration equaled ﬁ; when it was longer, its duration
equaled S = (1 + Ad). Participants indicated whether C was
shorter (key ‘c’) or longer (key ‘m’) than S. Participants also
received auditory feedback after their response: a brief high
tone for correct, and a brief low tone for incorrect responses.
All combinations of S and longer/shorter C were presented
equally often (50% of the comparisons were longer, 50%
was shorter, across standards) and in randomized order.

The difference in duration between the S and C (Ad, in
proportion to S) was varied with an adaptive staircase proce-
dure throughout the experiment. A transformed-rule up and
down was used. When participants gave three consecutive
correct responses, Ad was decreased, and it was increased
when they made a single error. This rule approximates a per-
formance level of 79.4% correct (Levitt, 1971). The starting
value of Ad was 0.6 with a step size of 0.05 and a minimum of
0.05. When participants reached a Ad of more than 1, they
were excluded from any further analysis (see Participants
section).

Analysis

Generalized linear mixed models (GLMMs) were fitted with
the Ime4 package (Version: 1.1-19; Bates, Michler, Bolker, &
Walker, 2015) using the ‘nlminb’ optimizer from the optimx
package (Version 2018-7.10; Nash & Varadhan, 2011).
Mixed-effect models are more powerful than the traditional
approach of aggregating data on a subject level, since it takes
into account subject-level variability (Moscatelli, Mezzetti, &
Lacquaniti, 2012). The data were fitted to normal cumulative
psychometric functions with the ‘probit’ function. We cen-
tered S around the geometric mean (849 ms) to make the
results more interpretable. Assuming that the geometric mean
represents the center of the duration distribution, this will pro-
duce an overall intercept of zero. In the GLMMs, ‘subject’
was always included as a random intercept. We sequentially
added fixed and their associated random effects to the
GLMM. To quantify evidence for more complex models over
simpler ones, Bayes factors were approximated with the
Bayesian Information Criterion (BIC) values of the GLMMs
(Wagenmakers, 2007):

(1)

2

ABIC
BFy = exp< 10)
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In order to quantify the relationship between bias and pre-
cision, we estimated the effect of standard and the average
slope for each participant individually in a GLM. Then, we
computed to nonparametric Spearman correlation coefficients
and associated 95% confidence intervals, using the z-transfor-
mation method implemented in the psych package (Version
2.0.12; Revelle, 2020).

Modelling

In order to formalize the differences between IRM and the
Kalman filter, we implemented both in R (R Core Team,
2018). We did not perform extensive optimization routines
to fit each model to the data, since we only want to demon-
strate what each model predicts given a reasonable set of fixed
parameters. We wanted to ensure that both models have iden-
tical inputs and similar rules for determining outputs, so that
differences in model predictions can be attributed to the inter-
nal workings of each model. Inputs (x,,) were logarithmically
transformed durations (d), as used in the experiment,
perturbed by gaussian noise (7,,):

Xm = In(d) + ny, (2)

with p(n,,) = N (0, 02,). Here, 02, determines the noisiness of
the sensory input. Put differently, 1/02, is the precision of
sensory input. In order to simulate data for individual subjects
with different precision, we randomly selected values for o,,, ;
from a truncated normal distribution where the mean corre-
sponds to o,,. Importantly, these input parameters were not
free parameters, since they were fixed across different models.
We found that o,, = 0.2 provided a reasonable fit for the
aggregate results. We simulated data from each model for
200 subjects with 840 trials each, matching the random order
of stimulus presentations to the real participants. We did not
run a staircase procedure on simulated subjects, but instead
presented combinations of S and Ad in random order without
replacement.

Outputs of the models (responding ‘longer’ or ‘shorter’)
were determined by comparing the representations of S and
C produced by each model. If C > S, the model responds,
‘comparison longer’; if C < S, ‘comparison shorter.” In the
case of IRM, S and C were the internal references that resulted
from perceiving the standard and comparison. In the case of
the Kalman filter, S and C were the means of the priors that
resulted from perceiving the standard and comparison.

Kalman filter
The Kalman filter is a Bayesian model, which assumes that

subjects maintain and update a prior, which represents the
distribution of previously observed durations. We base our
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implementation of the Kalman filter on Glasauer and Shi
(2018), and Petzschner and Glasauer (2011). Instead of
representing durations with only a single value, the Kalman
filter also represents the uncertainty associated with that rep-
resentation. The prior is modelled as a Gaussian distribution:
N (,up, 012,). When a duration, indexed by n, is sensed, it is

represented by the likelihood function p (X)) ~N (Xp,n, 02%).
When a duration is estimated, the prior is updated through a
weighted average of the previous prior distribution and the
currently sensed likelihood. The weight of the new observa-

tion is called the Kalman gain (k):

P Tpt 4 3
n 2 2 ( )
Opn1 T4 105

As can be seen, the weight of the new observation is
determined by the relative uncertainty of the previous
prior o7, and uncertainty of the current likelihood
o%. When the uncertainty of the current sensory obser-
vation (likelihood) is large relative to the uncertainty of
the prior, £ will be small (for a method to empirically
estimate the Kalman gain over time, see Berniker, Voss,
& Kording, 2010). The Kalman gain is further deter-
mined by process variance g, which reflects that the
observer assumes a prior that fluctuates randomly over
time: (4, ,~tp, »— 1+ N0, g). In other words, there is always a
level of uncertainty involved in representing the non-static
prior, which is determined by process variance g. This is an
important assumption, since the variance of the prior oﬁ is

updated as follows:
0129,)1 = k” *0%1 (4)

We can see from Equations 3 and 4 that, if ¢ =0, and 031 is
constant, k would continually decrease alongside 012,, ensuring
that new observations are unable to change the prior, resulting
in an overly rigid representation of stimulus history. The prior
mean (1,) is updated as follows:

Hpn = (l_kn)*,u‘p,n—l + ku >l<xm,n (5)

In order to use the Kalman filter for duration discrimina-
tion, we assume that subjects use the updated prior for both the
first and second duration and compare their means. For all
simulations, we used ¢ = 0.9. We chose this value because this
produced an average k around 0.85 across simulated subjects.
This, in turn, ensured that the parameters of the Kalman filter
and IRM are comparable, since the Kalman gain determines
weight on new observations, and g determines the weight on
the internal reference (i.e., k=1 — g). It should be noted that,
since the variance of the likelihood function (02, ) varies
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between subjects, & also varies between subjects. When o2, is
high (low), k£ will be low (high), and the prior will have a more
(less) pronounced influence in the form of global and local
context effects. In other words, more precise subjects will
have smaller context effects.

Internal reference model

The internal reference model (IRM; Dyjas et al., 2012) as-
sumes that subjects maintain and update an internal reference,
which represents a geometric moving average of previously
observed durations. When a duration x,, ,, indexed by #, the
internal reference 7, is updated through a weighted average of
the previous internal reference (/,—1) and the currently ob-
served duration x,,,:

Iy = g%+ (g-1) % (6)

where g, 0 <g < 1 is the constant weight on /,,_;. In effect, g
controls a trade-off between having a stable internal reference
(high g) and quickly adapting to new durations (low g). Dyjas
etal. (2012) describe two different versions of IRM that can be
used to explain performance in duration discrimination tasks.
In the first version, which we will refer to as IRM1, only the
first duration updates the internal reference. This internal ref-
erence, in turn, is compared with the observed second dura-
tion, which does not update the internal reference. In the sec-
ond version (IRM2), both durations update the internal refer-
ence and both internal references are compared with generate
a decision about whether the second stimulus was longer or
shorter than the first. For all simulations, we use g=0.15. All
data, materials, code and supplemental materials are available
on the Open Science Framework (osf.io/hu43y).

Results

The overall performance (80.6% correct) suggested that the
staircase procedure was successful. Further, the standard de-
viation of Ad for each participant decreased after approxi-
mately 60 trials and remained relatively stable after, suggest-
ing that the staircase procedure converged. First, a binomial
probit generalized linear model (GLM) was fitted with ‘C
longer response’ as dependent variable and Ad as predictor.
The model significantly improved when first adding random
intercepts (BFy; < 0.001), and then random slopes (BFy; <
0.001) for each subject. This suggested that there was a sig-
nificant amount of interindividual variability in both precision
and the location of the psychometric curves. In all following
GLMMs, random intercept and slope for each subject were
included.

When ‘S’ was added as a fixed effect, the model signifi-
cantly improved (3 = 0.49, BF,; < 0.001), suggesting that,
overall, longer standards had a higher probability of ‘longer
response’ (see Fig. 2a). At first sight, this might resemble a
global context effect, given the regression to the overall dis-
tribution of durations. This would implicitly assume, howev-
er, that only S is affected by global context, whereas C is not.
Alternatively, this result can be interpreted as an influence of
S, on C,,. While the distribution of durations that precedes S,
spans the complete set of durations, the distribution preceding
C, is always biased, since C, is always a multiple (between
0.5 and 2) of S,,. As a consequence of this imbalanced local
context, a short S,, will bias C,,, such that the proportion of ‘C
longer’ responses decreases, and vice versa.

Further, when an interaction between S and Ad was added,
the model significantly improved (3 = 0.42, BF,; < 0.001),
which suggested that longer standards had steeper normalized
slopes, reflecting a lower Weber fraction for higher durations.
This violated the scalar property of time, which assumes that
the standard deviation of time estimates scales linearly with
the mean time estimate. However, we did not explicitly in-
struct participants not to count, which may increase sensitivity
for durations longer than one second (Hinton & Rao, 2004).
Further, when random slopes for ‘standard duration’ and its
interaction with Ad were added, the model significantly im-
proved (BFy; < 0.001), indicating that there was substantial
interindividual variability in violating the scalar property.

Before assessing the role of S,_; and C,_;, we first con-
trolled for any confounding effects of feedback on the previous
trial. Accuracy on the previous trial was coded as follows: —1
(incorrect: actual duration ‘shorter’), O (correct), and 1 (incor-
rect: actual duration ‘longer’). When we added previous accu-
racy, the model significantly improved (3 = 0.151, BFy, =
0.030), suggesting participants incorporated feedback. More
specifically, when the negative feedback indicated that C,—,
was actually longer, this increased the probability of responding
‘C longer’ on the current trial. We cannot conclusively show
that this in fact improved performance, however, this result is
compatible with Bayesian integration, where sources of infor-
mation are used to bias responses and, in turn, improve perfor-
mance. The model improved significantly when we added S,
(3 =-0.197, BFy; < 0.001), suggesting that the previous stan-
dard assimilated time estimates on the current trial. When S,,;
was short, participants tended to respond ‘C longer’ more often,
suggesting the S, was assimilated by S,—; (see Fig. 2b).
Crucially, when adding C,_;, which was coded as Ad,_; to
prevent collinearity, the model further improved (3 = —0.186,
BFg; = 0.026). In line with Bayesian models, this suggests that
both the first and second stimulus on the previous trial biased
time estimates in the same direction (see Fig. 2c). The model
improved when we included durations from S, , (3 =—0.035,
BFy; < 0.001), but not from C,,, (3 = 0.032, BFy; = 71.549),
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Fig. 2 Fitted psychometric curves for empirical data and each model. a
The effect of current standard on bias. Dashed lines and dots represent the
standard durations and geometric mean, which is connected with a
horizontal line to the point-of-subjective-equality (PSE). Density plots
represent the subject-to-subject variability in PSE estimates for each stan-
dard duration. For psychometric curves, the x-axis represents the compar-
ison duration and the y-axis represents probability of ‘C longer’ response.
b Statistical estimates for the effect of S,,—; on PSE, plotted for S,,=1.2s.
¢ Statistical estimates for effect of C,—; on PSE, where ‘—1” indicates that

suggesting that influences from local context extend beyond the
immediately preceding trial. However, the model did not im-
prove when we added S,,_; (3 =—0.027, BFy; = 12.306). Due to
model convergence issues, we refrained from including random
effects for durations and accuracy on previous trials.

Individual differences in precision and bias were also esti-
mated by fitting a GLM with all fixed effects from the best
fitting GLMM for each participant. From these fits, we esti-
mated the precision and bias and computed the nonparametric
Spearman correlation coefficient. In line with a Bayesian
model of temporal estimation, our best fitting model sug-
gested a high negative correlation, (p(44)=0.60, 95 %
CI[-0.76,—0.38], p < 0.001), between individual estimates in
precision (coefficient for Ad) and the bias (coefficient for S).
This suggests that participants with high precision had a weak-
er context effect (see Fig. 2d).
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C,— was twice as short as S, and ‘1’ indicates that it was twice as long.
These values for C,—; were chosen for illustrative purposes, since abso-
lute values of Ad varied between participants, but absolute values of Ad
were constrained to be less than or equal to 1. Also, these values ensure
that these plots are on a similar scale as those for S, ;. d Estimated
subject-to-subject Spearman correlation coefficients (p) from GLMs be-
tween bias (constant error; coefficient for S,)) and precision (psychometric
slope; coefficient for Ad). To demonstrate the functional form of this
relationship, red lines are fitted power functions. (Color figures online)

We also generated data from the Kalman filter,
IRM1, and IRM2 and plot their results alongside the
empirical results. As expected, all models capture global
context effects and the effect of S,_;. In contrast to
IRM2, IRM1 was unable to account for effects of
C,—1, since that duration is not incorporated into the
internal reference. However, neither IRM1, (p(198)=
0.06, 95 % CI[-0.08, 0.20], p=0.40), or IRM2,
(p(198) = —0.05, 95 % CI[-0.19, 0.08], p=0.44), can
account for the inverse relationship between precision
and bias. In contrast, the Kalman filter can account for
all three major empirical findings, (p(198)= —0.89,
95 % CI[-0.92,-0.86], p<0.001). It should be noted
that IRM2 and the Kalman filter overestimate the effect
of C,_;, possibly due to a different actual weighting for
standard and comparison durations.
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Discussion

Time estimation is shaped by statistical context. Systematic
biases in time estimation due to global and local context are
well-documented phenomena (van Rijn, 2016), however, it is
not clear how or why they occur. IRM proposes that global
and local context effects arise from an internal reference that is
continually updated by either both durations or only the first
one. Contrary to intuition, systematic biases in time perception
may not reflect errors, but rather mechanisms that attempt to
minimize error (Shi et al., 2013). In line with a Bayesian
perspective on time estimation, we report three findings.
First, time estimates were influenced by global context: rela-
tively short standards resulted in underestimation of the com-
parison, and vice versa for long durations. This finding im-
plies that the perception of the standard biases the perception
of the comparison. In other words, the posterior that results
from perceiving the standard serves as the prior for perceiving
the comparison. In contrast, IRM1 would suggest that, since
only the first duration is influenced by the global context, this
should result in overestimation of short standards (and there-
fore underestimation of the comparison). Second, time esti-
mates were influenced by local context: both durations in a
discrimination task influenced time estimates on subsequent
trials. This finding strongly suggests that durations are dynam-
ically integrated into a common prior, regardless of their or-
dinal position in a duration discrimination task. Notably, con-
trary to our findings, IRM1 would predict that only the first
duration should determine local context effects. Third, preci-
sion and bias were negatively correlated on a subject-by-
subject basis, suggesting that more precise observers give
more weight to current sensory information than priors. It
should be noted that IRM2, where both stimuli are integrated
into, and influenced by, the internal reference can also account
for global and local context effects. However, it is unable to
account for the relationship between precision and bias, since
it does not take into account the precision of sensory observa-
tions and the internal reference in determining the relative
weight of these sources of information.

One may wonder to what degree IRM is actually a Bayesian
model of perception (or approximates one), given that it weighs
current sensory inputs and prior information in a systematic fash-
ion. Indeed, models that incorporate previous trials in the estima-
tion process may approximate Bayesian inference (e.g., Raviv,
Ahissar, & Loewenstein, 2012). Further, these models account
for the effects of previous trials, which Bayesian models with a
static prior are unable to do. However, as we have shown, IRM
and the Kalman filter make different predictions in some impor-
tant respects. Furthermore, IRM lacks some of the most impor-
tant theoretical commitments that Bayesian models have. For
instance, IRM can be adapted to account for effects of the second
duration or lack thereof, while the Kalman filter is considerably
less flexible. Bayesian models of perception are committed to the

idea that all perceived stimuli are subjected to the influence pre-
vious observations. A similar argument holds for the relationship
between precision and bias. IRM could make several assump-
tions about how precision and g are related in order to explain the
data. In contrast, Bayesian models of perception are inherently
committed to the idea that relative influence of the prior and
likelihood are weighted according to their relative precision.
Therefore, in the context of the current study, IRM could predict
more different patterns of data (i.e., is less falsifiable; Roberts &
Pashler, 2000) than the Kalman filter.

It seems unlikely that the observed effect of the C,_;
was solely due to sequential decision biases or integra-
tion of feedback on performance. Here, unlike effects of
stimulus order on bias (time-order effects), sequential
decision biases refer to the tendency of observers to
give the same response as on the previous trial when
uncertainty is high. Given the relatively constant high
performance of our participants (around 80%), a deci-
sion bias would predict a positive effect of the previous
comparison on the ‘comparison longer’ response; but we
found the opposite. Also, our models corrected for in-
fluences of feedback on previous trials, such that the
coefficient for C,_; reflected context effects when the
previous response was correct. These results are com-
patible with Wiener et al. (2014), who found that both
decision biases and assimilative biases exist in visual
duration estimation. Thus, in our experiment, assimila-
tive biases may have been stronger than any existing
decision biases.

Our findings also point to some important questions and
avenues for future research. The relative contribution of the
first and second stimulus could not be estimated with our
current analysis. Therefore, an extensive modelling effort
would be needed to reliably estimate the magnitude of context
effects. More importantly, these estimates can be used to fur-
ther test some crucial predictions of both IRM and Bayesian
models. For instance, the magnitude of context effects in
Bayesian models are solely due to the uncertainty of the prior
and the observation. In IRM, however, the magnitude of con-
text effects depends on g, which may be influenced by various
cognitive processes, such as attention (Dyjas et al., 2014).
Therefore, a more unifying account of context effects may
predict that attention increases the precision of observations
(likelihood) and therefore decreases the IRM-weight on ob-
servations (1-g). Indeed, integrating models of time estimation
with established models of cognition has produced quantita-
tive predictions that can arbitrate between competing models
(Taatgen, van Rijn, & Anderson, 2007). This would thus seem
a promising avenue for further research.
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