
Fast Customization of Chemical Language Models to Out-of-
Distribution Data Sets
Alessandra Toniato,§ Alain C. Vaucher,§ Marzena Maria Lehmann, Torsten Luksch, Philippe Schwaller,
Marco Stenta, and Teodoro Laino*

Cite This: Chem. Mater. 2023, 35, 8806−8815 Read Online

ACCESS Metrics & More Article Recommendations

ABSTRACT: The world is on the verge of a new industrial
revolution, and language models are poised to play a pivotal role in
this transformative era. Their ability to offer intelligent insights and
forecasts has made them a valuable asset for businesses seeking a
competitive advantage. The chemical industry, in particular, can
benefit significantly from harnessing their power. Since 2016
already, language models have been applied to tasks such as
predicting reaction outcomes or retrosynthetic routes. While such
models have demonstrated impressive abilities, the lack of publicly
available data sets with universal coverage is often the limiting
factor for achieving even higher accuracies. This makes it
imperative for organizations to incorporate proprietary data sets
into their model training processes to improve their performance.
So far, however, these data sets frequently remain untapped as there are no established criteria for model customization. In this work,
we report a successful methodology for retraining language models on reaction outcome prediction and single-step retrosynthesis
tasks, using proprietary, nonpublic data sets. We report a considerable boost in accuracy by combining patent and proprietary data in
a multidomain learning formulation. This exercise, inspired by a real-world use case, enables us to formulate guidelines that can be
adopted in different corporate settings to customize chemical language models easily.

1. INTRODUCTION
Language models have the potential to change business
operations. In recent years, their size has grown exponentially
and, with it, their performance in language tasks such as
question answering, machine translation, or summarization. If
this trend continues, many industries will be redefined and our
society will undergo a major transformation within our
lifetimes, including the manner in which we run data-driven
research operations. This is especially true for the chemical
industry.
Chemistry has already raised broad interest in the field of

artificial intelligence (AI) for some time already. For instance,
data-driven models trained on chemical knowledge have
witnessed increased adoption to accelerate chemical discovery,
by suggesting potential compounds of interest,1,2 predicting
their properties,3 or recommending how to synthesize
them.4−10 Among the different architectures, language models
demonstrated to be the most flexible architectures when
dealing with the continuous flow of new chemical data.5,10−22

Many AI models for chemistry are trained on publicly
available data. Public data sets, however, are frequently biased
toward particular areas of chemical space or reaction classes.
Consequently, they may be of little relevance to the chemistry

of interest to organizations. To improve the accuracy of these
models and increase their scope of applicability within an
organization, one must leverage more specific data sets. Many
large corporate databases offer vast volumes of data that,
despite being considered of little value due to the lack of
quality control, could be valuable for improving AI models’
accuracy and applicability. In fact, despite reasonable concerns
on data quality issues, data-driven architectures demonstrated
the ability to learn from noisy data,21 thus making such
proprietary data sets a very appealing source of chemical
knowledge in the customization of AI models to different areas
of chemistry.
Recently, there have been a few examples from academia and

industry reporting the use of proprietary data sets for exploring
performance improvements of AI systems. For instance,
Stanley et al. presented a few-shot learning data set to build
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machine learning models in the low data regime.23 In a similar
spirit, there have been different efforts to provide unsupervised
pretrained models as a basis for fine-tuning on property
prediction tasks.24,25 In de novo design, Zhavoronkov et al.
combined multiple data sets and machine learning approaches
to identify DDR1 kinase inhibitors.26 It is also worth
mentioning the MELLODDY (machine learning ledger
orchestration for drug discovery) consortium, comprising ten
pharmaceutical companies, and exploring the application of
federated learning to collectively learn from each other’s
proprietary data.27

Adapting the domain of applicability of chemical reaction
models by utilizing out-of-distribution data has challenges of its
own, some of which have been addressed in recent studies. For
instance, Pesciullesi et al. demonstrated that the Molecular
Transformer architecture16 (a language model) can be used to
customize reaction outcome prediction models.18 In that work,
a data set of 25 000 reactions from the field of carbohydrate
chemistry was combined with a data set of patent reactions to
improve the accuracy of predicted carbohydrate products. The
authors showed that a model trained in a transfer learning
setting significantly outperformed both a model trained on
patent data only and a model trained on carbohydrate
reactions only. Similar approaches have been followed for
other classes of reactions.28−31

For organizations working on diverse chemical compounds
and processes, specializing models to a subset of chemical
reaction space is not enough. It is critical for models to be
accurate across the entire breadth of the chemistry of interest.
This is one example in which proprietary data sets have
substantial value. Still, the main barrier for organizations to
exploit their data for retraining chemical reaction models is the
lack of robust guidelines.
In this work, we use language models, specifically the

Molecular Transformer,16 to explore the chemical knowledge
potential of proprietary data sets by retraining reaction
outcome prediction and single-step retrosynthesis models.
We compare models retrained following multidomain and fine-
tuning strategies to baselines trained solely on patent or
proprietary data. We then analyze and discuss the differences
between the predictions of the different models before
providing a list of best practices for retraining. We share this

precompetitive experience to simplify the adoption of chemical
language models across a wide range of industries.

2. RESULTS AND DISCUSSION
2.1. Data. The proprietary data set studied in this work

consists of a random subset of 356,059 reactions from
electronic lab notebooks collected at Syngenta. For the fine-
tuning and multidomain experiments, over 2 million patent
reaction records, obtained from Pistachio,32 were also
incorporated during model training. We represent the
compounds in the simplified molecular-input line-entry system
(SMILES) notation,33,34 and combine them into strings in the
reaction SMILES format to designate chemical transforma-
tions. While chemists often report reactions only in terms of
reactants and products, it is common practice for chemical
language models to consider all the reagents as well5 (see
Appendix A for a discussion of reaction roles). Therefore,
special effort was paid during the collection of the ELN data to
gather this information. To evaluate the effect of the presence
or absence of reagents, we compiled two versions of the ELN
data. The “slim” data set comprises reactants only, while the
“fat” data set also keeps the reagents as precursors. The
interested reader can find more information about the data sets
and their processing in Appendix A.
To illustrate some of the differences between the patent and

proprietary ELN data sets, we report in Figure 1 the chemistry
covered by both data sets using t-SNE35 and UMAP36

projections of the reaction products for a random sample of
1000 records from both data sets. While some reactions from
both sets occupy the same space, it is apparent that the ELN
reactions cover compounds different from the patent data.
In addition to focusing on the reaction products, we

analyzed the chemical transformations present in the data sets.
First, we predicted20 the RXNO37 superclass of all reactions.
Table 1 shows the frequencies of the different reaction
categories in the data sets. The proprietary data set contains
slightly more unrecognized reactions than the patent one. The
proportion of reactions in some reaction categories varies
considerably between the slim and fat data sets. This is caused
in part by the reactions not included in the slim data set due to
validity filters; for instance, reduction, oxidation, or depro-
tection reaction usually have a single precursor in the slim data

Figure 1. t-SNE (left) and UMAP (right) projections of the products for the Pistachio and Syngenta (fat) data sets. The projections were obtained
after randomly sampling 1,000 products from each data set.
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set (since the reagents and solvents are not included), and are
discarded as they do not fulfill the minimum of two precursors
required for model training. As a whole, the class distribution is
similar in the patent and proprietary data sets. The proprietary
data is characterized by fewer protection, deprotection and
reduction reactions, while there is a larger proportion of
acylations, oxidations, and functional group interconversions.
To obtain more insight into the actual transformations of the

different data sets and evaluate the reaction diversity, we
extracted the reaction templates for the train splits of all three
data sets (see Appendix B for details on the procedure). The
number of extracted templates for the different data sets and
their overlap can be seen in Figure 2. While for the patent data
set there are, on average, 14.5 reactions per template, this
number is much lower for the proprietary data set, with 3.3 and
4.4 for the slim and fat data sets, respectively. The overlaps
between the templates obtained from the patent and the
proprietary data sets are relatively small, with 21% and 26% of
the proprietary templates already present in the patent data set.
This indicates that the majority of the proprietary reactions are
not directly accounted for in the patent reactions. Accordingly,
the proprietary data set brings substantial novelty and diversity,
especially when considering the overall sizes of the data sets.

2.2. Models. We trained and compared multiple models for
both data sets (slim and fat) and both tasks (reaction outcome
prediction and single-step retrosynthesis). In the reaction
outcome prediction task (also known as forward reaction
prediction), a model predicts the reaction product for a set of
precursors. The single-step retrosynthesis task addresses the
opposite problem, where a set of precursors is predicted for a

given product. As a baseline, we consider models21 trained on
patent data obtained from the Pistachio database.32 We then
study three types of models that take the proprietary reaction
data into account. First, we trained a model from scratch on
the proprietary reaction data only. Second, we fine-tuned
models on the proprietary reaction data, starting from the
patent model. Different learning rates were applied, leading to
multiple fine-tuned models. Third, we trained models
following a multidomain approach (sometimes also called
“multitask” in this context18), where the patent and proprietary
data sets are used simultaneously to train a model from
scratch.18 We selected different sets of weights for multidomain
training, leading to multiple multidomain models.
Details on the model architecture and training process can

be found in Appendix C.
2.3. Metrics. 2.3.1. Reaction Outcome Prediction. We

analyzed the reaction outcome prediction models in terms of
top-N accuracy (see Appendix D for a formal definition). We
show the results for the validation split of the proprietary data
set for a selection of models in Tables 2 and 3. We also show
the top-1 accuracy on the validation split of the patent data set.
The results for all of the trained models can be found in Tables
9 and 10 in Appendix E.

Table 1. Reaction Class Frequency (in %) in Terms of
RXNO Superclasses37,38 for the Different Data Sets

Reaction category Patent Slim Fat

Heteroatom alkylation and arylation 19.5 21.2 18.4
Acylation and related processes 16.8 26.5 21.1
Carbon−carbon bond formation 8.8 10.4 9.0
Heterocycle forming reactions 3.1 3.5 3.2
Protection reactions 1.4 0.9 1.0
Deprotection reactions 13.7 2.9 7.2
Reductions 5.5 1.7 3.6
Oxidations 2.3 1.8 2.7
Functional group interconversion 7.3 6.5 8.2
Functional group addition 2.3 2.1 2.7
Resolution reactions 0.9 0.1 0.5
Unrecognized 18.3 22.2 22.4

Figure 2. Venn diagrams for the number of reaction templates obtained from the slim (left) and fat (right) proprietary data sets and the patent data
set.

Table 2. Reaction Outcome Prediction Metrics on the
Models Trained with the Slim Data Seta

Accuracy (%)

Model top-1 top-2 top-5 top-1 (patents)

Proprietary data only 79.9 83.8 86.3 29.2
Fine-tuning 84.9 88.8 91.0 66.2
Multidomain 85.1 89.2 91.2 68.6
Patent data only 70.8 75.5 78.2 68.8

aThe results for all of the experiments can be found in Appendix E
(Table 9).

Table 3. Reaction Outcome Prediction Metrics on the
Models Trained with the Fat Data Seta

Accuracy (%)

Model top-1 top-2 top-5 top-1 (patents)

Proprietary data only 80.6 84.9 87.2 35.8
Fine-tuning 85.8 90.1 92.0 65.5
Multidomain 84.7 89.0 91.0 68.6
Patent data only 73.0 77.8 80.5 68.8

aThe results for all the experiments can be found in Appendix E
(Table 10).
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The trends in model performance are similar for models
trained on both data set versions (slim and fat). The patent
model reaches the lowest accuracy, followed by the model
trained on proprietary data only. It is, in all cases, beneficial to
combine patent and proprietary data: the fine-tuning and
multidomain approaches consistently reach higher accuracies.
Both approaches perform equally well on the proprietary data
set but differ when assessed on patent data. With the fine-
tuning approach, the accuracy on patent data is very sensitive
to the learning rate, while multidomain models are
comparatively robust with respect to changes in the weights
of the underlying data sets (see Tables 9 and 10 in Appendix
E). The best multidomain model nearly reaches the same
accuracy on patent data as the model trained exclusively on
patent data. In other words, both strategies lead to similar
performances on the target proprietary data set, but the models
trained in a multidomain setting will generalize better to other
reactions.
In order to grasp the significance of the absolute accuracies,

we contextualize them by comparing them to typical levels of
accuracy reported in the existing literature. In the case of noisy
patent data sets, it is common to achieve top-1 accuracies
ranging from 60% to 70%.16,39 Conversely, when dealing with
cleaner reaction data sets like USPTO-MIT,40 models tend to
achieve higher top-1 accuracies, often reaching around
90%.16,39,40 Consequently, the accuracy results attained by
the models trained in this study align with the anticipated
range of values for both relatively noisy data (patents) and
clean data (proprietary).
2.3.2. Single-Step Retrosynthesis. We analyzed the single-

step retrosynthesis models in terms of top-N and round-trip
accuracy (see Appendix D for the definition of these metrics).
In short, the top-N accuracy relates to the ability of the model
to predict an exact match to the ground truth among the first
N predictions, while the round-trip accuracy assesses whether
the predicted precursors are valid (not necessarily matching
the ground truth) for the target compound. We show the
results for the validation split of the proprietary data set for a
selection of models in Tables 4 and 5. The results for all
models can be found in Tables 11 and 12 in Appendix E.

The round-trip accuracy values rely on the ability to
determine the reaction product for a given set of precursors. As
a proxy for the (unknown) truth, we must rely on a reaction
outcome prediction model to enable the calculation of this
metric. For this purpose, we selected the best-performing
reaction outcome prediction model trained with the multi-
domain approach (one for the slim and one for the fat data set)
and retrained it on a training set comprising the original
training and validation splits.

The trends for the single-step retrosynthesis models are
slightly different from those for the reaction outcome
prediction models. As expected, the model trained on patents
reaches the lowest accuracy of all the models. The model
trained from scratch on the proprietary data set and the best
fine-tuning models reach similar top-N accuracy values, while
the fine-tuned models are better in terms of round-trip
accuracy. The multidomain models reach significantly higher
top-N accuracies than the other models, also when assessed on
patent data. In addition, they are more robust in terms of
changes in the hyperparameters (Tables 11 and 12 in
Appendix E).
In all cases, the accuracy reached by the models trained on

the slim data sets is higher than that for the models trained on
the fat data sets. This is consistent with the fact that the
underlying data set contains fewer precursors. Therefore these
models have a higher chance of predicting an exact match with
the ground truth. In practice, the round-trip accuracy is more
relevant.5 There, we observed very similar values for the slim
and fat versions of the models when assessed on the
proprietary data set. The round-trip accuracy obtained on
the patent data set (Tables 11 and 12) is higher for the fat
models, indicating a better generalization ability for these
models than for the slim models.
We hypothesized that the better generalization ability of the

fat models might be the consequence of underrepresented
reaction classes in the slim data sets caused by the validity
filters applied during data preprocessing (see Appendix A). To
support this hypothesis, we examined the set of reactions that
were discarded in the slim, but not in the fat data set. In Table
13 in Appendix F, we inspect the accuracies of the selected
models on reaction products that are present only in the
validation split of the fat data set. While the far greater top-1
accuracy of the fat models is expected, the round-trip accuracy
is more than 15% smaller for the slim models than for the fat
models. This evidence demonstrates the importance of training
reactivity models on reaction data listing all precursors,
including solvents, reagents, and catalysts.

2.4. Analysis of Errors by the Reaction Outcome
Prediction Models. We analyzed the mistakes (i.e.,
predictions different from the ground truth) made by the
reaction outcome prediction models listed in Section 2.3.
While most of the mistakes cannot be classified easily,
evaluating how many cases fall into specific categories is
helpful. A summary is shown in Tables 6 and 7. There, we
arranged the incorrect predictions into the following
categories: products with invalid SMILES syntax, with
incorrect stereochemistry, with a tautomeric representation
different from the ground truth (as determined from the InChI
representation), with different regiochemistry (approximated

Table 4. Single-Step Retrosynthesis Metrics on the Models
Trained with the Slim Data Seta

Accuracy (%) Round-trip (%)

Model top-1 top-5 top-1 (patents) top-1

Proprietary data only 43.6 59.1 1.3 83.2
Fine-tuning 43.6 60.3 3.2 90.6
Multidomain 48.6 65.5 10.0 91.7
Patent data only 10.3 24.1 10.8 87.7

aThe results for all of the experiments can be found in Appendix E
(Table 11).

Table 5. Single-Step Retrosynthesis Metrics on the Models
Trained with the Fat Data Seta

Accuracy (%) Round-trip (%)

Model top-1 top-5 top-1 (patents) top-1

Proprietary data only 32.2 44.4 0.8 82.9
Fine-tuning 33.9 47.9 2.0 90.7
Multidomain 35.6 50.7 9.2 92.1
Patent data only 5.0 12.1 10.8 86.1

aThe results for all the experiments can be found in Appendix E
(Table 12).
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by comparison of the molecular formula), or with no
transformation (product identical to one of the precursors).
For the best models (fine-tuning and multidomain), very few

predictions contain invalid SMILES, with well under 1% of all
the predictions. Selectivity mistakes (stereochemistry and
regiochemistry) account for over a quarter of the incorrect
predictions. It is noteworthy that considering patent data in
addition to the proprietary data leads to an important decrease
in invalid SMILES or predictions identical to those of the
precursors. This highlights the value of the additional data for
learning the syntax rules of the SMILES notation, as well as an
initial understanding of chemical reactions.
Some of the incorrect predictions refer to predicted products

represented in a tautomeric form different from the ground
truth. These cases account for 0.6% to 1.3% of the predictions,
depending on the model. Given that tautomers are
interconverted into each other in solution, the model
predictions are actually chemically sound in such cases despite
being different from the ground truth.
When the models predict an incorrect product as the top-1

prediction, one can inspect how often the second model
prediction is identical with the ground truth for the error
categories shown above. These values are shown in Tables 14
and 15 in Appendix G. On average, the second model
prediction will be correct in up to 30% of the cases, this value
being higher for models combining patent and proprietary
data. Among the different error categories, the models are
more likely to predict the correct product as the second
suggestion if the error was related to stereochemistry,
tautomery, or regiochemistry.

2.5. Insights and Guidelines. The experiments carried
out in this study provide useful insights into tailoring chemical
language models trained on publicly available data to out-of-
distribution data sets. Importantly, they allow us to formulate
guidelines that can expedite the customization process for new
data sets.
First, whenever possible, one should mix proprietary data

with publicly available data. Combining proprietary and public

data can help models learn the syntax of the chemical language
and the chemical transformations that occur more effectively.
Second, retraining efforts should be concentrated on

multidomain training approaches, as they lead to more robust
models than fine-tuning. While both approaches delivered
similar results when evaluated on the proprietary data set,
multidomain learning is less sensitive to the choice of
hyperparameters. Also, it generalizes better to other reactions,
such as the ones present in the patent data set. We expect the
fine-tuning approach to perform better only in the low-data
regime. In either case, it is advisable to train multiple models
with different hyperparameters.
Third, we recommend collecting and reporting all of the

precursors in the training data sets. This may require special
effort to ensure that reagents, solvents, and catalysts are
included when reporting reactions in ELNs. While doing so
does not lead to major differences for the reaction outcome
prediction model, we observed that models trained on
complete reactions generalize better for the single-step
retrosynthesis domain.
We have made available a GitHub repository41 with code to

facilitate model training based on these recommendations.

3. CONCLUSIONS
In recent years, language models for chemical reactivity have
demonstrated the potential to unlock hidden knowledge in
chemical industries. Their usefulness is beyond discussion,
having been adopted in several academic and industrial
applications. In this work, we studied models for reaction
outcome prediction and single-step retrosynthesis and how
they can be tailored to proprietary data sets. This enabled us to
provide guidelines for the fast domain adaptation of such
models to out-of-distribution data sets.
For instance, we highlighted the usefulness of integrating

public data sets in the training pipeline. This makes the models
more robust and improves their generalization ability, even if
overlap with the reaction space of interest is limited. We also
showed the advantages of multidomain training as compared
to fine-tuning approaches, including, for instance, a lower
sensitivity to the choice of hyperparameters. Last, we
highlighted the importance of capturing the full reaction
specification, even when chemists may deem the indication of
solvents and reagents superfluous or unnecessary.
In summary, the current work and the guidelines derived

therein show that proprietary reaction data sets can easily be
exploited for customizing the reaction models. We are
confident these guidelines will be useful to reach a higher
level of performance with chemical language model custom-
ization while reducing the number of training strategies
experiments and boost the adoption of such models in
academia and industry.

■ APPENDIX A: DATA

Reaction Roles
When working with digitally stored reactions, it is useful to
differentiate between the reactants and the reagents being
used. In this work, we consider reactants to be precursors that
contribute at least one heavy (non-hydrogen) atom to the
product. All other precursors (including solvents and catalysts)
are considered to be reagents. It is also helpful to distinguish
between products, which refer to the desired compound

Table 6. Forward Prediction Mistakes of the Models on the
Slim Data Set (in % of the Full Data Set)

Error
Patent data

only
Proprietary
data only

Fine-
tuning Multidomain

Total incorrect 29.2 20.1 15.1 14.9
Invalid SMILES 1.1 1.3 0.1 0.2
Stereochemistry 5.1 2.4 2.5 2.5
Tautomers 1.1 0.6 0.6 0.7
Regiochemistry 3.1 1.9 1.4 1.3
No
transformation

1.2 1.3 0.2 0.2

Table 7. Forward Prediction Mistakes of the Models on the
Fat Data Set (in % of the Full Data Set)

Error
Patent data

only
Proprietary
data only

Fine-
tuning Multidomain

Total incorrect 27.0 19.4 14.2 15.3
Invalid SMILES 0.8 0.9 0.1 0.3
Stereochemistry 4.6 2.4 2.3 2.5
Tautomers 1.2 0.7 1.0 1.0
Regiochemistry 2.8 1.8 1.1 1.4
No
transformation

0.9 1.2 0.3 0.3
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produced in a reaction, byproducts, such as condensation
water, and side products.
Proprietary Data Set
As a data set, we selected a random subset of 356,059 reactions
from electronic lab notebooks (ELNs) collected at Syngenta.
We extracted the compounds in the simplified molecular-input
line-entry system (SMILES) notation33,34 and combined them
into reaction SMILES strings for processing.
Data Preprocessing
Both proprietary data sets (slim and fat) underwent a series of
transformations and validity filters. The transformations
comprise canonicalization of all the compounds (with
RDKit42), alphabetic sorting of the precursors, removing
duplicate molecules, as well as removing duplicate reaction
SMILES. The validity checks discard reactions that do not
fulfill a set of criteria based on the number of compounds, the
formal charges, or the presence of elements missing from the
precursors (see below for more details). After the correspond-
ing processing, 136,791 and 175,762 were obtained for the slim
and fat data sets, respectively. The difference in size between
the two versions is due to the larger number of slim reactions
failing the validity checks. The reactions were split into
training, validation, and test sets of relative sizes 90%, 5%, and
5%. The splitting procedure ensured that no product SMILES
was present in more than one split.
Filtering of Reactions
During data preprocessing, the series of filters listed in Table 8
was applied to the reaction SMILES present in the data set.

The reactions not passing all the filters were discarded.
Reactions for which the product contains an atom type not
present in the precursors were also discarded.
Patent Data Set
For the fine-tuning and multidomain experiments, reaction
records from patents were incorporated during model training.
These reactions were obtained from Pistachio,32 which
provides reactants, reagents, and products in SMILES format.
The data set was processed according to the procedure
described in ref 21 to provide sets of 1.78M, 0.13M, and 0.13M
reaction SMILES strings for training, validation, and testing,
respectively. Note that the splitting procedure ensured that
reactions (from any of the considered data sets) associated
with the same product SMILES ended up in the same split
(i.e., no information leakage).

■ APPENDIX B: REACTION TEMPLATE EXTRACTION
The reaction templates for both proprietary data sets (slim and
fat) and for the patent data set were extracted with
RDChiral.43 As the template extraction requires knowledge
of the atom-to-atom mapping, we first applied NameRXN44 to

all the reactions. For the reactions for which NameRxn could
not determine the atom-to-atom mapping, we applied
RXNMapper instead.45 The reactions for which RDChiral
could not identify a template were ignored.

■ APPENDIX C: METHODS

Model Architecture
The forward and single-step retrosynthesis models are based
on the Molecular Transformer architecture.5,16 They follow an
encoder−decoder, transformer-based, sequence-to-sequence
formulation. The input and output of the model are tokenized
versions of SMILES strings describing the precursors or
products. Forward models convert precursors SMILES into
products SMILES, while single-step retrosynthesis models
convert products SMILES into precursors SMILES.
The transformer model is implemented with the

OpenNMT-py library.46,47 The standard transformer imple-
mentation is applied with the following changes: the parameter
layers is set to 4, rnn_size to 384, word_vec_size
to 384, max_generator_batches to 32, accum_-
count to 4, and label_smoothing to 0.
Patent-Only Model
The baseline model (trained on patent data from Pistachio)
was obtained from ref 21.
Proprietary-Only Model
For the model trained from scratch on proprietary data, an
initial learning rate of 2.0 is used, with 250,000 training steps.
Fine-Tuning
For the fine-tuning approach, the model weights are initialized
to the ones from the patent-only model. We then train the
model for 100,000 steps on the proprietary data set, varying
the starting learning rates (see Appendix E).
Multidomain Learning
For the models trained in a multidomain fashion, both data
sets are seen during training. The relative frequency at which
the samples from each data set are taken into account is
specified by the respective data set weight (a hyperparameter).
An initial learning rate of 2.0 is used, with 250,000 or 500,000
training steps (see Appendix E).

■ APPENDIX D: METRICS

Top-N Accuracy
The top-N accuracy aN quantifies the fraction of reactions in
the test set for which the ground truth value is included in the
top N predictions of the model. It is given by

a
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where M is the number of reactions in the test set, gti is the
ground truth value for reaction i of the test set, gtij is the jth
prediction (ordered by confidence) for the reaction i of the test

Table 8. Constraints Placed on Reaction SMILES during
Preprocessing

Constraint Value

Minimum number of precursors 2
Maximum number of precursors 10
Maximum number of precursor tokens 300
Minimum number of products 1
Maximum number of products 1
Maximum number of product tokens 200
Maximum absolute formal charge 2
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set, and can(x) is the canonical representation of a SMILES
string x calculated with RDKit.42

The top-N accuracy can be calculated for both forward
prediction and single-step retrosynthesis models.
Round-Trip Accuracy
The round-trip accuracy bN quantifies the percentage of valid
retrosynthetic suggestions when considering the top N
predictions for each molecule. It is given by

b
NM

r1
N

i

M

j

N

ij=
(4)

with

r
1 if can(forward(pred )) can(product )

0 otherwise
ij

ij i
l
mooo
n
ooo=

=

(5)

where M is the number of reactions in the test set, forward(x)
is a function predicting the product for a given set of
precursors x with a previously trained reaction outcome
prediction model, producti is the ground truth product of
reaction i in the test set, and predij represent the precursors for
jth prediction (ordered by confidence) by the retrosynthesis
model to obtain producti.

■ APPENDIX E: RESULTS FOR ALL THE
EXPERIMENTS

Here, we provide the full results for all the trained models. The
results for the reaction outcome prediction models can be
found in Tables 9 (slim) and 10 (fat), and the results for the
single-step retrosynthesis models are presented in Tables 11
(slim) and 12 (fat). The models prepended by an asterisk are
the ones included in the tables of the main text.

■ APPENDIX F: EVALUATION OF SINGLE-STEP
RETROSYNTHESIS MODELS ON THE DIFFERENCE
DATA SET

Table 13 shows the accuracy and round-trip accuracy of the
slim and fat model on the difference data set from the
validation split. The difference data set was obtained by

Table 9. Reaction Outcome Prediction Metrics on the
Models Trained with the Slim Data Seta

Accuracy (%)

Model top-1 top-2 top-5
top-1

(patents)

*Proprietary data only (250k steps) 79.9 83.8 86.3 29.2
Fine-tuning (LR = 0.02) 84.6 88.6 90.7 68.6
*Fine-tuning (LR = 0.06) 84.9 88.8 91.0 66.2
Fine-tuning (LR = 0.2) 84.9 88.9 90.7 63.0
Fine-tuning (LR = 0.6) 84.2 88.1 90.2 57.8
Multidomain (wp = 1, ws = 1, 250k
steps)

84.9 89.0 90.9 67.4

Multidomain (wp = 1, ws = 1, 500k
steps)

85.2 89.0 91.2 68.3

Multidomain (wp = 1, ws = 2, 250k
steps)

84.9 89.0 90.9 66.8

Multidomain (wp = 1, ws = 2, 500k
steps)

85.1 89.1 90.8 67.5

Multidomain (wp = 2, ws = 1, 250k
steps)

85.2 89.3 91.2 68.2

*Multidomain (wp = 2, ws = 1, 500k
steps)

85.1 89.2 91.2 68.6

*Patent data only 70.8 75.5 78.2 68.8

aLR indicates the value of the learning rate for the fine-tuning
experiments. For the multidomain experiments, wp and ws indicate the
weight of the patent and of the proprietary data sets, respectively.

Table 10. Reaction outcome prediction metrics on the
models trained with the fat data seta

Accuracy (%)

Model top-1 top-2 top-5
top-1

(patents)

*Proprietary data only (250k steps) 80.6 84.9 87.2 35.8
Fine-tuning (LR = 0.006) 82.6 87.5 90.1 69.4
Fine-tuning (LR = 0.02) 84.6 89.2 91.4 67.7
*Fine-tuning (LR = 0.06) 85.8 90.1 92.0 65.5
Fine-tuning (LR = 0.2) 85.8 89.7 91.9 62.6
Fine-tuning (LR = 0.6) 84.9 89.3 91.5 58.2
Multidomain (wp = 1, ws = 1, 250k
steps)

85.0 89.1 91.3 67.1

Multidomain (wp = 1, ws = 1, 500k
steps)

85.1 88.9 91.0 68.1

Multidomain (wp = 1, ws = 2, 250k
steps)

84.8 89.0 91.1 65.7

Multidomain (wp = 1, ws = 2, 500k
steps)

84.8 89.2 91.1 67.5

Multidomain (wp = 2, ws = 1, 250k
steps)

85.0 88.8 91.2 67.9

*Multidomain (wp = 2, ws = 1, 500k
steps)

84.7 89.0 91.0 68.6

*Patent data only 73.0 77.8 80.5 68.8
aLR indicates the value of the learning rate for the fine-tuning
experiments. For the multi-domain experiments, wp and ws indicate
the weight of the patent and of the proprietary data sets, respectively.

Table 11. Single-Step Retrosynthesis Metrics on the Models
Trained with the Slim Data Seta

Accuracy (%) Round-trip (%)

Model top-1 top-2 top-5
top-1

(patents) top-1
top-1

(patents)

*Proprietary data only
(250k steps)

43.6 51.8 59.1 1.3 83.2 46.7

Fine-tuning (LR =
0.02)

36.6 46.4 54.9 5.0 90.4 84.0

Fine-tuning (LR =
0.06)

41.5 51.0 58.8 4.2 91.2 80.9

*Fine-tuning (LR =
0.2)

43.6 53.5 60.3 3.2 90.6 76.2

Fine-tuning (LR =
0.6)

43.3 52.0 58.8 2.2 89.3 67.7

Multidomain (wp = 1,
ws = 1, 250k steps)

48.3 58.0 66.2 8.9 92.0 84.5

*Multidomain (wp =
1, ws = 1, 500k
steps)

48.6 57.8 65.5 10.0 91.7 84.9

Multidomain (wp = 1,
ws = 2, 250k steps)

48.3 57.9 64.9 7.7 91.7 86.2

Multidomain (wp = 1,
ws = 2, 500k steps)

48.8 58.1 65.6 8.9 91.6 82.7

Multidomain (wp = 2,
ws = 1, 250k steps)

46.4 56.8 65.6 9.6 92.3 83.8

*Patent data only 10.3 15.9 24.1 10.8 87.7 90.1
aLR indicates the value of the learning rate for the fine-tuning
experiments. For the multidomain experiments, wp and ws indicate the
weight of the patent and of the proprietary data sets, respectively.
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keeping reactions of the validation split of the fat data set that
are not present in the slim data set.

■ APPENDIX G: CORRECT TOP-2 PREDICTIONS
Tables 14 and 15 show, for the incorrectly-predicted reactions,
how frequently the second model prediction is correct, by error
type.
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Switzerland; orcid.org/0000-0002-5218-8653

Alain C. Vaucher − IBM Research Europe, Rüschlikon 8803,
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Table 12. Single-Step Retrosynthesis Metrics on the Models
Trained with the Fat Data Seta

Accuracy (%) Round-trip (%)

Model top-1 top-2 top-5
top-1

(patents) top-1
top-1

(patents)

*Proprietary data only
(250k steps)

32.2 38.6 44.4 0.8 82.9 47.9

Fine-tuning (LR =
0.006)

12.5 18.2 25.7 6.8 89.2 90.1

Fine-tuning (LR =
0.02)

18.2 24.5 32.7 6.0 90.8 89.1

Fine-tuning (LR =
0.06)

24.7 31.8 39.8 4.9 90.8 87.5

Fine-tuning (LR =
0.2)

31.0 38.9 46.4 3.1 91.6 83.6

*Fine-tuning (LR =
0.6)

33.9 41.4 47.9 2.0 90.7 78.2

Multidomain (wp = 1,
ws = 1, 250k steps)

34.7 42.2 49.6 8.3 92.2 86.8

*Multidomain (wp =
1, ws = 1, 500k
steps)

35.6 43.6 50.7 9.2 92.1 87.0

Multidomain (wp = 1,
ws = 2, 250k steps)

34.6 42.4 49.1 7.2 90.8 84.7

Multidomain (wp = 1,
ws = 2, 500k steps)

35.5 42.6 49.4 8.1 90.2 82.8

Multidomain (wp = 2,
ws = 1, 250k steps)

31.8 39.8 47.7 9.4 92.8 87.8

*Patent data only 5.0 7.7 12.1 10.8 86.1 89.9
aLR indicates the value of the learning rate for the fine-tuning
experiments. For the multidomain experiments, wp and ws indicate the
weight of the patent and of the proprietary data sets, respectively.

Table 13. Top-1 Accuracy and Top-1 Round-Trip Accuracy
of the Selected Models (Slim and Fat Versions) Applied to
Products from the Validation Split of the Fat Data Set That
Are Not Present in the Slim Data Set

Accuracy (%) Round-trip (%)

Model
top-1
(slim)

top-1
(fat)

top-1
(slim)

top-1
(fat)

Proprietary data only 1.9 28.4 56.0 75.6
Fine-tuning 3.1 32.3 67.5 86.5
Multidomain 3.7 33.4 71.1 88.1
Patent data only 5.6 5.6 74.5 77.6

Table 14. Percentage of Correct Second Product
Predictions When the First Prediction Is Incorrect, by Error
Type, for the Slim Data Set

Error
Patent

data only
Proprietary
data only

Fine-
tuning Multidomain

All error categories
(average)

16.1 19.4 26.3 27.9

Invalid SMILES 20.5 13.3 16.7 15.4
Stereochemistry 16.6 38.3 55.9 50.9
Tautomers 34.6 23.1 41.5 33.3
Regiochemistry 34.0 31.6 42.6 39.6
No transformation 8.1 4.5 0.0 6.7

Table 15. Percentage of Correct Second Product
Predictions When the First Prediction Is Incorrect, by Error
Type, for the Fat Data Set

Error
Patent

data only
Proprietary
data only

Fine-
tuning Multidomain

All error categories
(average)

17.8 22.2 30.0 27.9

Invalid SMILES 21.9 11.1 0.0 9.7
Stereochemistry 19.6 49.8 52.6 42.7
Tautomers 45.2 28.1 44.6 53.5
Regiochemistry 32.8 43.0 39.6 40.7
No transformation 12.7 13.1 0.0 14.8
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