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Purpose: Stereotactic body radiotherapy (SBRT) is an important treatment modality for
lung cancer patients, however, tumor local recurrence rate remains some challenge and
there is no reliable prediction tool. This study aims to develop a prediction model of local
control for lung cancer patients undergoing SBRT based on radiomics signature
combining with clinical and dosimetric parameters.

Methods: The radiomics model, clinical model and combined model were developed by
radiomics features, incorporating clinical and dosimetric parameters and radiomics
signatures plus clinical and dosimetric parameters, respectively. Three models were
established by logistic regression (LR), decision tree (DT) or support vector machine
(SVM). The performance of models was assessed by receiver operating characteristic
curve (ROC) and DeLong test. Furthermore, a nomogram was built and was assessed by
calibration curve, Hosmer-Lemeshow and decision curve.

Results: The LR method was selected for model establishment. The radiomics model,
clinical model and combined model showed favorite performance and calibration (Area
under the ROC curve (AUC) 0.811, 0.845 and 0.911 in the training group, 0.702, 0.786
and 0.818 in the validation group, respectively). The performance of combined model was
significantly superior than the other two models. In addition, Calibration curve and
Hosmer-Lemeshow (training group: P = 0.898, validation group: P = 0.891) showed
good calibration of combined nomogram and decision curve proved its clinical utility.
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Conclusions: The combined model based on radiomics features plus clinical and
dosimetric parameters can improve the prediction of 1-year local control for lung
cancer patients undergoing SBRT.
Keywords: lung cancer, stereotactic body radiotherapy, local control, radiomics, clinical, dosimetric,
prediction model
INTRODUCTION

Lung cancer is the second most common cancer and the main
cause of cancer-related deaths, more than 2.21 million patients
worldwide are affected every year (1). With the improvement of
radiotherapy technology, stereotactic body radiation therapy
(SBRT) is generally recognized as a standard option for early
stage lung cancer patients who are not fit or healthy enough to be
candidates for surgery or who refuse operation due to various
complications (2). SBRT is also well established in the treatment
of oligometastatic patients, e.g., with pulmonary metastases (3).
This precise modality uses high doses to ablative cancer target
with low doses to protect surrounding tissue. The local control
rate in 5 years after SBRT is about 72%with a median follow-up of
4 years for early stage localized tumors (4). Furthermore, a variety
of studies have reported local control is excellent after SBRT;
however, there are still patients suffering from local recurrence
(5). Therefore, a model for accurately and individually predicting
the local control status for lung cancer patients after SBRT is
highly desirable.

The maximum standardized uptake value (SUVmax) in PET-
CT was used to predict local recurrence after SBRT, but the
results varied from institutions to patient groups, suggesting
that its prognostic value was uncertain (6, 7). Several studies
reported some clinical and dosimetric factors were influential
parameters for local control prediction (8–11) and dose-response
model to calculate local control possibility for lung SBRT
patients employed clinical and dosimetric parameters were
established (12–15). However, their models did not accurately
predict patients’ outcome, while other tumor individual
characteristics were not considered. A comprehensive and
noninvasive approach based on individual heterogeneous to
screen candidate patients with tumor local control status
is necessary.

Radiomics is based on the extraction of tumor features from
traditional medical images to predict treatment effectiveness and
prognosis of different diseases, including lung cancer, esophageal
cancer, and prostate cancer (16–19). Moreover, radiomics has
prognostic value in predicting clinical outcomes of pulmonary
SBRT (20, 21). However, few prediction models considering
radiomic signature combined with clinical and dosimetric
parameters has been proposed to evaluate the tumor local
control for lung cancer patients undergoing SBRT.

Therefore, the aim of our study is to generate a robust
combined model for predicting 1-year tumor local control in
primary and secondary lung cancer patients treated with SBRT
by integrating radiomic signature and clinical and
dosimetric parameters.
2

MATERIALS AND METHODS

The workflow of the study is shown in Figure 1.

Patients’ Population and Treatment
We firstly analyzed retrospectively registered data from July 27,
2011 to December 7, 2018 of patients diagnosed with primary
and secondary lung cancer and treated with lung SBRT in Cancer
Hospital of Shantou (N = 134). Next, some patients with
irradiation sites including chest wall, mediastinum, and
thoracic vertebra (N = 4), who were lost to follow-up (N = 18)
and did not complete the treatment course (N = 1) were excluded
from the analysis. Finally, 119 patients with 18 patients had
repeat lesions and 129 tumors were available for next analysis.
The study was conducted in accordance with the Declaration of
Helsinki and approved by the ethical board; however, patient
written informed consent was waived. Our patients were staged
by using the seventh editions of the AJCC staging system.
Tumors were simulated via four-dimensional computed
tomography (4DCT) or three-dimensional computed
tomography (3DCT). The internal target volume (ITV) with
4DCT was defined by combining gross tumor volumes (GTVs)
contoured at 10 respiratory phases. In addition, some ITV with
3DCT was defined by two GTVs contoured at the peak-exhale
and peak-inhale respiratory phases; other ITV with 3DCT was
defined by observing the tumor motion amplitude obtained from
fluoroscopy. The planning target volume (PTV) was delineated
by adding 5 mm of ITV in all directions. Cone beam computed
tomography (CBCT) was used for image guidance and tumor
localization before each fraction with correction. All patients
were randomly assigned to the training group and validation
group in a ratio of 7:3.

Follow-Up
Patients were evaluated with CT scans repeated every 3 months
after the treatment in the first year, and then every 6 months
thereafter (4). Tumor local control is defined as the absence of
local recurrence of the tumor at the treatment site. Local
recurrence was defined by pathologic confirmation, mass
progression of the primary tumor, and the involved lobe on
two consecutive CT at least 6 months, or the discretion of
oncologists based on clinical symptoms and signs of patients
(14, 22).

Clinical and Dosimetric Parameters
Data Collection
We collected patients’ baseline clinical and dosimetric
parameters and 1-year tumor local status after SBRT. All the
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doses mentioned in this paper were biologically effective doses
(BEDs), the linear-quadratic model with an a/b ratio of 10 Gy
was adopted for calculating BEDs, BED = n × d × [1 + d/(a/b)],
where n is the fraction number and d is the fractional dose (15).
Clinical data included gender, age, smoking status, Karnofsky
performance status (KPS), body mass index (BMI), clinical stage,
location, histology, equivalent diameter, GTV, PTV,
chemotherapy or not, lymphocyte, neutrophil, platelet (PLT),
neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte
ratio (PLR), hemoglobin (Hb), tumor site, immobilization
device, and 4DCT or not. Dosimetric data included the
prescription dose that covers 95% of the target area expressed
as BED (D95) and the maximum dose in the whole plan (Dmax);
the minimum dose of PTV (PTVmin), mean dose of PTV
(PTVmean), and maximum dose of PTV (PTVmax) and dose
inhomogeneity in PTV (PTVmin/PTVmax); and the minimum
dose of GTV (GTVmin), mean dose of GTV (GTVmean), and the
maximum dose of GTV (GTVmax) and dose inhomogeneity in
GTV (GTVmin/GTVmax).

Clinical and Dosimetric
Parameter Selection
The univariate logistic regression (LR) analysis was applied to
evaluate whether parameters were candidate predictors of 1-year
tumor local control and a stepwise multivariate LR was used to
determine the best variables of statistically significant parameters
in univariate analysis.
Frontiers in Oncology | www.frontiersin.org 3
CT Image Acquisition, Region of Interest
Segmentation and Quantitative Radiomics
Features Extraction
All patients underwent CT scanning prior to SBRT treatment
using a Brilliance Big Bore CT (Philips Brilliance CT Big Bore
Oncology Configuration, Cleveland, OH, USA). The detailed
information of the CT scanners was as follows: tube voltage of
120 kVp, tube current of 350 mA, convolution kernel of
standard, and construction matrix of 512 × 512. The scanning
range was from the apex to the bottom of the lung. CT images
were then transferred to an Eclipse treatment planning system
(Version 10.0, Varian Medical System, Inc., Palo Alto, CA, USA)
for the whole tumor delineation, also known as the region of
interest (ROI) segmentation by one radiology doctor with more
than 10 years of work experience (23).

Radiomics features were automatically extracted from each
tumor segmentation using PyRadiomics (https://github.com/
Radiomics/pyradiomics). The images which were used to
extract the radiomics features could be either the original
image or the derivative filtered images including Laplacian of
Gaussian (LoG), Wavelet, Square, SquareRoot, Logarithm.
Collectively, the feature types extracted from each image type
include shape features provided the geometric volume of ROI,
first-order features described the individual voxel value
distribution in the intensity histogram of ROI, texture features
reflected the organization and arrangement of the surface
structure with slow change or periodic change, including gray-
FIGURE 1 | Workflow of the study. ROI, region of interest; ICC, intraclass correlation coefficient; LASSO, least absolute shrinkage and selection operator; LR,
logistic regression; DT, decision tree; SVM, support vector machine. ROC, receiver operating characteristic.
January 2022 | Volume 11 | Article 819047
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level co-occurrence matrix (GLCM), gray-level dependence
matrix (GLDM), gray-level run length matrix (GLRLM), gray-
level size zone matrix (GLSZM), and neighborhood gray-tone
difference matrix (NGTDM) (24). In order to ensure the
repeatability of the results, the images and features were
resampled and z-score normalized respectively.

Radiomics Feature Selection
A large number of radiomic features may result in overfitting of
the model, reducing the predictive performance of the model. To
overcome the dimensional disaster and reduce the bias caused by
many radiomics features, we gradually use four methods of the
intraclass correlation coefficient (ICC), univariant analysis, least
absolute shrinkage and selection operator (LASSO), and stepwise
regression to select the vital features from the training group.
First, in order to minimize the differences between observers and
enhance the robustness of features, two radiology doctors
independently delineated 30 randomly chosen samples drawn
from patients, and then the ICC was calculated from the
extracted features of these 30 cases to assess intraobserver and
interobserver reproducibility. The features with ICC >0.75 were
considered stable for the further analysis. The ICC was
conducted by using the “irr” package in R software (25).
Subsequently, we evaluated remaining radiomics features using
the independent samples t-test or the Mann-Whitney U test to
collect statistically significant features with a p-value of <0.05. In
addition, to deal with the high-dimensional data and enhance the
prediction accuracy, the LASSO regression, as an effective
dimensionality reduction method, was applied to select
potentially important features by regularizing concurrently.
The optimal area under curve and parameter log (l) were
determined through 10-fold cross-validation to control the
complexity of the model and select the most robust and
nonredundant radiomics features (26, 27). The LASSO logistic
regression was conducted by using the “glmnet” package (28).
Finally, stepwise regression is used to eliminate the redundant
features to avoid the multicollinearity. Moreover, the importance
of the most valuable features were analyzed and evaluated by
correlation analysis.

Classifier Selection
We fed the final selected radiomics features into the classifiers to
build the optimal radiomics model. In our study, LR, decision
tree (DT), and support vector machine (SVM) were used to build
and evaluate radiomics model, and the best classification method
was selected for subsequent analysis (29–31). The DT model was
performed using the “rpart” package (32), while the “e1071”
package was employed to develop the SVM model (28), all of
them are carried out by tuning the parameters. To complement
the analyses, the radiomics signature (radiomics score) was
calculated using the radiomics features. The best classifier was
adopted for building clinical model and combined model.

Prediction Model Development
Accordingly, three different prediction models were described
briefly as: the radiomics model composed of radiomics signature,
the clinical model constructed from clinical and dosimetric
Frontiers in Oncology | www.frontiersin.org 4
parameters, and the combined model developed by combining
radiomics signature and clinical and dosimetric parameters.

Model Performance Comparison
Based on receiver operating characteristic (ROC) curve, the
prediction models were compared by calculating the area
under the ROC curve (AUC) values, p-value, accuracy,
sensitivity, specificity, and DeLong test. The ROC curves were
plotted based on the “pROC” package (33).

Nomogram Construction and Validation
In order to visually and individually predict the tumor control
probability (TCP) of lung cancer after SBRT, we created a
nomogram which was developed by the prediction model with
the best performance in the training group. The ability of the
nomogram was conducted by the calibration curve and the
Hosmer-Lemeshow test. The net benefits and the clinical
usefulness of three models for prognosis was measured and
compared by the decision curve analysis. The nomogram and
the DCA were plotted using the “rms” package and the “dca.R.”
package, respectively (33).

Statistical Analysis
Statistical analyses were performed based on SPSS v.23.0 (SPSS
Inc., Chicago, IL, USA) and R software v.4.0.2 (R Project for
Statistical Computing, Vienna, Austria). The Student’s t-test or
Mann-Whitney U test was employed to compare continuous
variables, and the Chi-square test or Fisher’s exact test was
applied for categorical variables. The optimal cutoff point was
assessed by using the Youden’s index on the ROC curve (34). An
AUC comparison of the three prediction models with the best
classifier methods was performed by DeLong test. The tests were
two-sided, and p-values less than 0.05 were considered
statistically significant.
RESULTS

Clinical and Dosimetric Parameters
of Patients
Data for 129 tumors from 111 primary and secondary lung
cancer patients treated with SBRT were available, of which 89
and 40 tumors were divided into the training and validation
group, respectively. Baseline characteristics are presented on
Table S1. Males constituted 93 (72.1%) of the sample. Mean
age was 62 years. Most tumors (82.9%) were at a peripheral
location compared with other location. A minority of tumors
(18.6%) were treated with combined radiotherapy and
concurrent chemotherapy. The median prescription dose was
48 Gy (range 18–70) delivered in a median of 4 fractions (range
1–12), and the median prescription dose in BED95 was 95.2 Gy
(range 28.8–180). The distribution of fractionation schemes and
BED95 used in our study was described in Figure 2; most used
dose-fractionation scheme was 50 Gy in 4 fractions. One year
after SBRT treatment, 91 tumors were local controlled and 38
local failures were observed. The optimal cutoff values of
January 2022 | Volume 11 | Article 819047
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dosimetric parameters based on ROC curve are shown in
Table 1. No significant association was seen with baseline
clinical and dosimetric characteristics in the training group
and validation group of tumors. The balance of the two sets of
data suggests that the patient grouping was reasonable.
Clinical and Dosimetric
Parameter Selection
The relationship between clinical and dosimetric parameters and
the 1-year tumor local status of primary and secondary lung
cancer after SBRT for the training group is summarized in
Table 2. In the univariate analysis, clinical stage status, history,
PLT, PLR, Hb, D95, Dmax, PTVmin, PTVmax, PTVmean, GTVmin,
GTVmax, GTVmean, and PTVmin/PTVmax were found to be
significantly different between the 1-year local control status
and the local failure status (all p < 0.05). Multivariate analysis
indicated that clinical stage status, platelet (PLT), and the
minimum dose of gross tumor volume (BEDGTVmin) were
prognostic parameters for 1-year tumor local status.
Frontiers in Oncology | www.frontiersin.org 5
Radiomics Feature Selection
Radiomics features were extracted and selected using the
procedure shown in Figure 3. In total, 1,502 radiomics features
were successfully extracted from each three-dimensional ROI,
including 14 shape features, 288 first-order features, and 1,200
texture features. For intraobserver agreement, 1,090 features with
ICC ≧0.75 between observers were included in further analyses.
According to the univariate analysis, 46 radiomics features were
collected, and then 10 potential radiomics features were
calculated by the LASSO regression model with a penalty
parameter l = 0.025; we finally performed the stepwise
regression analysis and obtained 4 important radiomics
features, namely wavelet-LLL_glszm_SmallAreaEmphasis,
wavelet-LHH_glcm_JointAverage, wavelet-LHH_ngtdm_
Complexity, and squareroot_glcm_DifferenceEntropy. In the
training group, the visible distributions of these radiomics
features in local control group and local failure group and the
correlation analysis of radiomics features are shown in Figures 4,
5. It indicated that the larger the value of each radiomics
features, the greater the possibility of 1-year tumor local control
FIGURE 2 | The bubble chart of fractionation schemes and BED95. The size of dots indicates the size of fraction; the different color of dots indicates different count
ranges. BED95, the prescription dose covers 95% of the target area expressed as BED.
TABLE 1 | The optimal cut-off values of dosimetric parameters.

Dosimetric parameters BED95 BEDmax BEDPTVmin BEDPTVmax BEDPTVmean BEDGTVmin BEDGTVmax BEDGTVmean

Cutoff values 84.00 110.85 80.43 110.85 101.73 98.79 103.87 97.06
January 20
22 | Volume 11 |
BED95, the prescription dose covers 95% of the target area expressed as BED; BEDmax, the maximum dose in the whole plan; BEDPTVmin, the minimum dose of PTV; BEDPTVmean, mean
dose of PTV; BEDPTVmax, the maximum dose of PTV; BEDGTVmin, the minimum dose of GTV; BEDGTVmean, mean dose of GTV; BEDGTVmax, the maximum dose of GTV.
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and they were statistically supported. There was no significant
correlation between the radiomics features with correlation
coefficient <0.75.

Classifier Selection
The performance of model using difference classifiers are
presented in Table 3. Our result reports that DT approach for
classification were no more valuable than random classification
with the AUC of the model below 0.5. We input these features
into SVM classifier, which received the poor performance and
the low specificity. Compared with the above methods, the LR
was the optimum classifier with the best performance
and accuracy.

Prediction Model Construction
On the basis of 4 radiomics factors, a radiomics model was
created by the following formula:
Frontiers in Oncology | www.frontiersin.org 6
radiomics score = −27:645 + 14:393

�wavelet-LLL_glszm_SmallAreaEmphasis

+8:075� wavelet-LHH_glcm_JointAverage

−3:386� wavelet-LHH_ngtdm_Complexity

+9:196� squareroot_glcm_DifferenceEntropy

The formula and these coefficients were calculated from the LR.
To illustrate the validity of the radiomics score at the nomogram,
the visible distributions of radiomics score for the 1-year tumor
local control and local failure groups in the training group and
validation group are shown in Figure 4. With the quantitative
value of score increased, the tumor can be more possibly locally
controlled in a year. The parameters of clinical stage status, PLT,
and BEDGTVmin were employed to build the clinical model.
Furthermore, the parameters plus radiomics score were brought
into building the combined model.
TABLE 2 | Univariate and multivariate analyses of clinical and dosimetric parameters.

Variable Univariate analyses (logistic) Multivariate analyses (logistic) Multivariate analyses (stepwise)

p-value b p-value b p-value b

Sex (man vs. woman) 0.299 −0.527
Age (years) 0.615 −0.010
Smoking status
Current Reference Reference
Former 0.990 −17.806
Never 0.302 −0.506

KPS (<80 vs. ≥80) 0.080 1.256
BMI (kg/m2) 0.914 0.008
Clinical stage (I~II vs. III~IV) 0.001 −2.132 0.214 −1.284 0.034 −1.543
Location (central vs. peripheral) 0.252 −0.784
Histology
Adenocarcinoma Reference Reference Reference Reference
Squamous cell carcinoma 0.405 −0.597 0.733 −0.425
Unknown 0.020 −1.477 0.931 0.101
Equivalent diameter (cm) 0.197 −0.177

GTV (cm2) 0.184 −0.005
PTV (cm2) 0.140 −0.004
Chemotherapy (yes vs. no) 0.431 0.493
Lymphocyte (109/L) 0.056 0.698
Neutrophil (109/L) 0.176 −0.134
PLT (109/L) 0.006 −0.010 0.115 −0.009 0.038 −0.009
NLR 0.128 −0.135
PLR 0.011 −0.008 0.435 −0.004
Hb (g/L) 0.031 0.037 0.376 0.021
Immobilization device (vacuum bag vs. thermoplastic mask) 0.144 0.693
4DCT (yes vs. no) −0.851 0.109
BED95 (<84.00 vs. ≥ 84.00) (Gy) 0.001 1.723 0.659 0.530
BEDmax (<110.85 vs. ≥110.85) (Gy) <0.0001 2.431 0.992 14.790
BEDPTVmin (<80.43 vs. ≥80.43) (Gy) 0.004 1.484 0.396 1.386
BEDPTVmax (<110.85 vs. ≥110.85) (Gy) <0.0001 2.351 0.992 −14.290
BEDPTVmean (<101.73 vs. ≥101.73) (Gy) <0.0001 2.128 0.727 0.616
BEDGTVmin (<98.79 vs. ≥98.79) (Gy) <0.0001 2.258 0.510 0.848 0.009 1.699
BEDGTVmax (<103.87 vs. ≥103.87) (Gy) <0.0001 1.983 0.891 −0.266
BEDGTVmean (<97.06 vs. ≥97.06) (Gy) <0.0001 1.864 0.433 −1.752
BEDPTVmin/PTVmax 0.004 −11.277 0.062 −13.31 0.071 −7.661
BEDGTVmin/GTVmax 0.075 −12.134
Tumor site (primary vs. secondary) 0.398 −0.399
January
 2022 | Volume 11
KPS, Karnofsky performance status; BMI, body mass index; PTV, planning target volume; GTV, gross tumor volume; PLT, platelet; Hb, hemoglobin; NLR, neutrophil-to-lymphocyte ratio;
PLR, platelet-to-lymphocyte ratio; 4DCT, four-dimensional computed tomography; BED95, the prescription dose covers 95% of the target area expressed as BED; BEDmax, the maximum
dose in the whole plan; BEDPTVmin, the minimum dose of PTV; BEDPTVmean, mean dose of PTV; BEDPTVmax, the maximum dose of PTV; BEDPTVmin/PTVmax, dose inhomogeneity in PTV;
BEDGTVmin, the minimum dose of GTV; BEDGTVmean, mean dose of GTV; BEDGTVmax, the maximum dose of GTV; BEDGTVmin/GTVmax, dose inhomogeneity in GTV.
| Article 819047

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Luo et al. Prediction Model of Local Control
Prediction Model Performance
Comparison
Figure 6 showed that the AUC with its 95% confidence interval
(CI) of the radiomics model, clinical model, and combined
model were 0.811 (95% CI: 0.713–0.910), 0.845 (95% CI:
0.757–0.934), and 0.911 (95% CI: 0.845–0.977) in the training
group and 0.702 (95% CI: 0.507–0.898), 0.786 (95% CI: 0.638–
0.933), and 0.818 (95% CI: 0.659–0.978) in the validation group,
respectively. The accuracy values of the radiomics model, clinical
model, and combined model were 67.4%, 82.0% and 85.4% in the
training group and 92.9%, 77.5%, and 82.5% in the validation
group, respectively. The combined model indicated a significant
better performance than the radiomics model (p = 0.025) and the
clinical model (p = 0.033) in the training group, while the
radiomics model and clinical model displayed a similar
performance (p = 0.613). We can also see the trend that the
effect of the combined model is better than that of the single
model in the validation group. Therefore, the optimal prediction
Frontiers in Oncology | www.frontiersin.org 7
model was based on a multivariable LR and conjoined the
radiomics signature with clinical and dosimetric parameters.
Moreover, the contribution of each selected feature in the
combined model iss displayed in Figure 7.

Nomogram Establishment
A visualization-combined nomogram was constructed from
integrating the radiomics score, clinical stage, PLT, and
BEDGTVmin, as shown in Figure 8A. No significance was
found in the Hosmer-Lemeshow test for the separated training
sets (p = 0.898) and validation group (p = 0.891), indicating the
proposed nomogram with good calibration was acceptable. The
actual tumor control probability is that the patient population
was divided into a few bins of increasing percentage of local
control. The calibration curve of the combined nomogram
confirmed that the probability of predicting 1-year tumor local
control was consistent with the actual observation both in the
training group (Figure 8B) and validation group (Figure 8C).
FIGURE 3 | Radiomics feature extraction and selection process. First, region of interest (ROI) segmentation was performed on CT image. Next, radiomics features
were extracted from ROI. Finally, radiomics features dimension was reduced by intraclass correlation coefficient (ICC), least absolute shrinkage and selection
operator (LASSO). GLCM, gray-level co-occurrence matrix; GLDM, gray-level dependence matrix; GLRLM, gray-level run length matrix; GLSZM, gray-level size zone
matrix; NGTDM, neighborhood gray-tone difference matrix.
January 2022 | Volume 11 | Article 819047
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The decision curve revealed the radiomics model, the clinical
model, and the combined nomogram were beneficial for
predicting 1-year tumor local control probability. The area
under the curve of the combined nomogram was larger than
that of the other two models, indicating that the combined
nomogram had the highest clinical feasibility and utility
(Figures 8D, E).
DISCUSSION

In this study, a quantitative relationship between radiomics
score, clinical and dosimetric features, and tumor local status
was found. Moreover, we first established a new prediction
model to correlate 1-year local control with radiomics score
and clinical and dosimetric parameters for primary and
secondary lung cancer patients undergoing SBRT. We also
constructed and validated a combined nomogram with great
discrimination to conveniently identify the tumor local status.
Frontiers in Oncology | www.frontiersin.org 8
Improving the accuracy of local control prediction is of
positive significance for medical and personal decision-making
in many aspects (2). It is beneficial to find patients who are at
high risk of locoregional failure and explore the treatment
strategy of patients. Moreover, increasing systemic treatment
and/or radiation dose to eradicate lesions and strengthening the
follow-up management of patients can reduce local recurrence
and improve the survival and prognosis. In clinical practice,
some studies have proposed to overcome immune resistance
mechanisms for lung cancer by using immunotherapy combined
with SBRT; therefore, patients have more personalized treatment
options (35, 36). Our nomogram model may provide important
evidence to design future clinical trials, such as predicting
whether these people would benefit from combination
treatment to balance this positive strategic risk. More
importantly, compared with the long-term outcome of overall
survival, local control status avoids long-term follow-up and can
early adjust treatment strategies. Therefore, our study provides a
more effective tool to promptly achieve personalized treatment.
A B C

C D E

FIGURE 4 | The violin plots of radiomics features and radiomics score. The distribution of (A) wavelet-LLL_glszm_SmallAreaEmphasis, (B) wavelet-LHH_glcm_
JointAverage, (C) wavelet-LHH_ngtdm_Complexity, and (D) squareroot_glcm_DifferenceEntropy in the training group. The distribution of radiomics score in the training
group (E) and in the validation group (F). The p-values were obtained by t-test or Wilcoxon rank sum test.
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The correlation between radiomics features and SBRT
outcomes has shown promising results. Lafata et al.
investigated the relationship between pre-SBRT CT radiomics
features and cancer recurrence for nonsmall cell lung cancer
(NSCLC) and concluded that radiomics features may provide
more predictive information in the identification of tumor local
failures (37). Mattonen et al. compared the prognostic value of
physician and radiomics data for local response of NSCLC
treated with SBRT. Their findings similarly indicated that a
radiomics score consisting of five appearance features can early
and correctly predict local recurrence in a noninvasive way (18).
Our results are consistent with these published studies (18, 20,
21, 37), as we found radiomics features were independent
prognostic factors and radiomics score was significantly
associated with tumor local status for primary and secondary
lung cancer undergoing SBRT. These results may explain that
radiomics has the ability to quantify tumor spatial and temporal
Frontiers in Oncology | www.frontiersin.org 9
heterogeneity by mathematically analyzing the spatial
distribution and relationships of gray levels in CT images.

Many studies have focused on the effects of clinical and
dosimetric parameters on local control (9, 10); however, no
consensus has been reached so far and further investigation is
needed. Ohri et al. developed a local TCP model with BED and
tumor diameter for NSCLC patients after SBRT (14), while Ye
et al. established a nomogram model with tumor size and
SUVmax to predict 2-year locoregional recurrence and 2-year
progression-free survival (7). However, their analysis lacked
additional SBRT datasets for reliability verification and the
SUVmax based on PET-CT is not easy to obtain. Our study
avoided these limitations and showed that clinical stage, PLT
value, and BEDGTVmin were significantly correlated with the
local control status. This finding is also in accordance with other
studies (38–40). These results suggest that earlier clinical stage,
lower PLT value and higher BEDGTVmin contribute to tumor
FIGURE 5 | The correlation heat map of radiomics features. Red indicates positive correlation, and blue indicates negative correlation; the darker the color, the
stronger the relationship.
TABLE 3 | The performance of radiomics model using LR, DT, and SVM, clinical model and combined model.

Group Methods AUC (95% CI) p-value Accuracy (%) Sensitivity (%) Specificity (%)

Training LR 0.811 (0.713–0.910) 0.000 67.4 57.1 92.3
DT 0.832 (0.744–0.919) 1.000 90.9 79.4 80.8
SVM 0.796 (0.691–0.901) 0.000 82.0 96.8 46.2
Clinical 0.845 (0.757–0.934) 0.000 82.0 84.1 76.9
Combined 0.911 (0.845–0.977) 0.000 85.4 87.3 80.8

Validation LR 0.702 (0.507–0.898) 0.023 92.9 50.0 81.3
DT 0.629 (0.429–0.830) 0.909 62.5 64.3 58.3
SVM 0.714 (0.524–0.904) 0.018 75.0 85.7 50.0
Clinical 0.786 (0.638–0.933) 0.002 77.5 78.6 75.0
Combined 0.818 (0.659–0.978) 0.001 82.5 85.7 75.0
January 2022 | Volume 11
LR, logistic regression; DT, decision tree; SVM, support vector machine; AUC, area under the receiver operating characteristic curve (ROC); CI, confidence interval.
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local control and should be considered when designing
SBRT regimens.

However, these previous studies mainly focused on radiomics
features (18, 20, 21, 37) or clinical and dosimetric parameters (7,
14, 15, 41). In our work, we combined radiomics features and the
available clinical and dosimetric parameters to improve the
prediction performance and accuracy for local control in lung
SBRT. The combined model indicated outstanding performance
in the training group and had good stability in the validation
group. It failed to achieve statistical significance due to the small
Frontiers in Oncology | www.frontiersin.org 10
sample size, subtle differences in the data set or the mixed effect
of other parameters. Similar results were obtained by Avanzo
et al. who have demonstrated that combining BED features and
image features in radiomics and deep learning improves the
tumor response prediction of machine learning models for lung
SBRT (42). This trend is in agreement with past studies, showing
it is highly valuable to predict tumor local control in lung SBRT
using multivariate factors (43). Meanwhile, the combined
nomogram-integrated multiple features increases the value of
personalized estimation and has great clinical application
A B

C

FIGURE 6 | Receiver operating characteristic (ROC) curve of three models and comparison of ROC curves. ROC curve of three models in the training group (A) and
validation group (B). (C) Comparison of ROC curves with DeLong test in the training group and validation group.P1, P2, and P3 are in the training group; P4, P5,
and P6 are in the validation group; P1 and P4: radiomics model vs. clinical model; P2 and P4: radiomics model vs. combined model; P3 and P6: clinical model vs.
combined model. *p < 0.05, expressive significance.
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potential (19). More importantly, the variables involved in
nomogram are derived from clinically available data without
the need for additional expense, which will increase the
clinical applicability.

It is worth noting that the incidence of local control in our
study is lower than that reported previously. It might be due to
the inconsistent design of treatment plans and the selection bias
between different studies. According to our nomogram, the
radiation dose should be increased for patients with a high risk
of local recurrence. However, considering the patient’s condition
and nearby organs at risk, the BED95 used in our cohort, at a
median of 95.2 Gy, was lower than the standard dose of 100 Gy
(2). In addition, some metastatic lung cancer patients were
treated with significantly lower radiation doses, such as
20~35 Gy in 4~7 fractions. This was probably the reason for
the high local recurrence rate in our study. In our univariate
analysis, BED95 was also a significant parameter. Due to the
multicollinearity between dosimetric parameters, BED95 was
removed from the final model by the stepwise regression
methods. However, the last dosimetric parameters entering the
model, namely BEDGTVmin, covered some prediction
information of the BED95. Also with more data, a continued
work on verifying these results is imperative.

Finally, efforts have been made to reduce the risk of radiomics
feature biases and improve the quality of the prediction models.
A wide range of candidate radiomics features were extracted in
our study, which provided the foundation for algorithms to select
relevant radiomics features and obtained the valuable
information to reflect the local control status of lung cancer
lesions (24). In order to reduce the deviation of the
interobservers and examine the feature stability, we calculated
the ICC of radiomics features (44). In addition, we optimized
Frontiers in Oncology | www.frontiersin.org 11
feature selection by using univariate analysis, LASSO, and
stepwise regression, thus ensuring the independence and
robustness of each feature entering the final prediction model
(26). Three popular classifiers were utilized to evaluate the
performance of the radiomics model, and finally the classifier
with the best accuracy and the highest prognostic performance
was used to establish the prediction model (29, 30).

There are some limitations that should be considered in the
study (1): Our study was a retrospective, single-center-based
study and limited number of patients were involved in the study,
and results from a prospective multicenter study with a greater
number of population are needed (2). Local tumor failure was
not pathologically confirmed by biopsy in the study, which added
more uncertainty to our conclusions. However, data from the
literature show that histological confirmation was not mandatory
in NSCLC patients treated with SBRT (45). (3) Our study
analyzed the tumor local control status from a mixture of
primary and secondary lung tumor patients. However, it was
found in the previous study that TCP models were not different
between primary NSCLC and secondary NSCLC, because
histological heterogeneity does not influence radiosensitivity of
tumor in the SBRT (15). (4) Due to the limited sample size, our
endpoint mainly focused on 1-year local control and further
work is required to conduct a longer follow-up time and verify
the practicability of the prediction model.
CONCLUSIONS

We found that there was a significant quantitative correlation
between radiomics score and local control for patients
FIGURE 7 | The function of each feature in the combined model. The beta value and the p-value of radiomics score, clinical stage [III~IV], platelet (PLT), and
BEDGTVmin [≥98.79] in the combined model.
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undergoing SBRT, and we consider that it might be a
promising and potential biomarker. According to the LR
method, we developed a novel model using radiomics score
plus clinical and dosimetric parameters to improve the
prediction of local control. The nomogram we established
have a potential to be a noninvasive, low-cost approach
and could facilitate individualized treatment and follow-up,
survei l lance, and evaluation strategies for patients
undergoing SBRT.
Frontiers in Oncology | www.frontiersin.org 12
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GLOSSARY
SBRT stereotactic body radiation therapy
CT Computed tomography
SUVmax maximum standardized uptake value
4DCT four-dimensional computed tomography
3DCT three-dimensional computed tomography
CBCT Cone beam computed tomography
GTV gross tumor volume
ITV internal target volume
PTV planning target volume
BED biologically effective dose
KPS Karnofsky performance status
BMI body mass index
PLT platelet
Hb hemoglobin
NLR neutrophil-to-lymphocyte ratio
PLR platelet-to-lymphocyte ratio
BED95 the prescription dose covers 95% of the target area

expressed as BED
BEDmax the maximum dose in the whole plan
BEDPTVmin the minimum dose of PTV
BEDPTVmean mean dose of PTV
BEDPTVmax the maximum dose of PTV
BEDPTVmin/
PTVmax

dose inhomogeneity in PTV

BEDGTVmin the minimum dose of GTV
BEDGTVmean mean dose of GTV
BEDGTVmax the maximum dose of GTV
BEDGTVmin/
GTVmax

dose inhomogeneity in GTV

ROI region of interest
GLCM gray-level co-occurrence matrix
GLDM gray-level dependence matrix
GLRLM gray-level run length matrix
GLSZM gray-level size zone matrix
NGTDM neighborhood gray-tone difference matrix
ICC intraclass correlation coefficient
LASSO least absolute shrinkage and selection operator
LR logistic regression
DT decision tree
SVM support vector machine
ROC receiver operating characteristic
AUC area under the ROC curve
CI confidence interval
NSCLC nonsmall cell lung cancer
TCP tumor control probability
LVI lymphovascular invasion
PET-CT positron emission tomography-CT
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