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Abstract

The transition from traditional culture methods towards bioreactor based bioprocessing to produce cells in commercially
viable quantities for cell therapy applications requires the development of robust methods to ensure the quality of the cells
produced. Standard methods for measuring cell quality parameters such as viability provide only limited information
making process monitoring and optimisation difficult. Here we describe a 3D image-based approach to develop cell
distribution maps which can be used to simultaneously measure the number, confluency and morphology of cells attached
to microcarriers in a stirred tank bioreactor. The accuracy of the cell distribution measurements is validated using in silico
modelling of synthetic image datasets and is shown to have an accuracy .90%. Using the cell distribution mapping process
and principal component analysis we show how cell growth can be quantitatively monitored over a 13 day bioreactor
culture period and how changes to manufacture processes such as initial cell seeding density can significantly influence cell
morphology and the rate at which cells are produced. Taken together, these results demonstrate how image-based analysis
can be incorporated in cell quality control processes facilitating the transition towards bioreactor based manufacture for
clinical grade cells.
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Introduction

The use of living cells in clinical applications offers great benefits

over traditional treatments potentially allowing damaged and

diseased tissues to be repaired rather than replaced. However,

producing cells in the quantities required for cell based therapies

presents many challenges, particularly as the cells often have to be

adhered to a substrate, limiting the numbers of cells that can be

produced using standard cell culture practices. This is driving the

need for the development of new culture processes which not only

have the robustness of traditional methods but are also efficient

and scalable enough to produce cells in the amounts required for

therapeutic application [1].

A promising approach for producing large numbers of cells is

the use of bioreactors. These systems have been used extensively

within the bioprocessing industry for many years to grow

suspension cells for the manufacture of high value biochemicals

(e.g. antibody production by hybridoma cells) [2] but are now

increasingly being applied for the production of cells which require

anchorage to a substrate in order to grow. One of the most

commonly applied approaches is to use cells adhered to the surface

of three dimensional (3D) microcarriers in a stirred tank bioreactor

[3]. This approach provides a large surface area for cell

production, due to the surface area of the microcarriers, while

the stirring provides a homogenous culture environment, facili-

tating mass transfer of nutrients to all cells [4] thereby achieving

higher cell yields than conventional (2D) culture methods. Scaling

production of cells, using different microcarrier systems in stirred

tank bioreactors, has been shown, under optimal conditions, to

increase the yield of cells by as much as 12 fold when compared

with traditional culture methods [5] and has been applied to a

range of cell therapy models including mesenchymal stem cells

[6,7], embryonic stem cells [5,8], fibroblasts [9] and keratinocytes

[10]. Despite these proof of concept reports, bioreactor based cell

production is still mostly performed at the pilot scale (up to 1 litre

volume) and in-process monitoring of the cells is usually limited.

Measuring cell growth and assessing cell quality in standard

culture is usually achieved using simple imaging techniques such as

brightfield microscopy which can be used to monitor several

parameters simultaneously. Cell morphology, viability and prolif-

eration, which are good indicators of cell health, can be monitored

pro re nata to ensure quality, while cell number and confluency (the

percentage of the growth surface covered by cells) can be used to

judge the optimal point at which to retrieve cells from culture in

order to maximise cell yields. In bioreactor cultures these

multiparametric measurements are more complicated due to the

fact that the cells are adhered onto a 3D growth substrate and as

such most reports on the growth of cells in bioreactors rely on a

single measure of cell number using either direct or indirect

measurements (Table 1). Direct measurements [8,11–26] require
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the cells to be removed enzymatically from the growth substrate

and stained using cell viability dyes for bright field (trypan blue

exclusion assay) or fluorescence microscopy (live/dead assays,

Hoechst for nuclear labelling). These methods provide the most

quantitative results, but the requirement for cells to be detached

from the substrate affects both cell number and viability and means

that important information about cell confluency and morphology

are lost. Indirect monitoring techniques [2,3,8,12,13,23–33] do not

require the cells to be removed from the growth substrate and

instead estimate cell growth based on parameters such as the

depletion of nutrients by the cells from the culture medium (an

indication of cell metabolism rates) or cell number based on the

enzymatic metabolism of compounds within the cells. For example,

the MTT assay which estimates cell number based on the reduction

of tetrazolium salts to formazan in the mitochondria. These

methods, while easier to perform, are less sensitive than direct

methods and provide no information on cell quality characteristics

such as morphology and confluency.

Ideally, a system is required for direct measurement of cell

number and viability in cells that remain attached to the 3D

growth substrate so that these measurements can be combined

with information on cell morphology and confluency, allowing

multiparametric analysis. To make these measurements quantita-

tive, this would require a system which allows the simultaneous

measurement of thousands of individual cells attached to hundreds

of microcarrier beads. An approach which could be used to

generate this information is 3D imaging, although the lack of

speed with which the image data sets can be acquired, processed

and analysed in the 3D volume may be prohibitive. In this paper

we investigate a novel approach to processing 3D image data to

create 2D cell distribution maps which can be used for rapid direct

analysis of the number, confluency and morphology of cells

adhered to the surface of microcarrier beads. This approach which

is validated using in silico modelling is applied to an exemplar

model system of human dermal fibroblast cells grown in a stirred

tank bioreactor to demonstrate its use for monitoring proliferation

and the health of cells under different manufacture conditions.

Materials and Methods

Standard cell culture
Cultures of Human dermal fibroblasts (HDF) (LGC Standards,

UK) were prepared by growing the cells adhered to T-175 cell

culture flasks (Corning, UK) in Dulbecco’s Modified Eagle

Medium containing 10% fetal bovine serum (DMEM), buffered

at pH 7.4 using 30 mM HEPES. Cells were maintained at 37uC in

a humidified atmosphere with media changes every 48–72 hours

until ready for use. Cells from passage 12 to 17 were used for all

experiments.

Bioreactor cultures
Approximately 6.456106 Cytodex 1 microcarrier beads (GE

Healthcare, UK) were prepared by washing 3 times in phosphate

buffered saline (PBS) solution for 4 h and sterilised in 70% ethanol

overnight. The beads were rinsed 3 times in PBS, re-suspended in

DMEM and placed into a 125 ml glass stirred tank bioreactor

(Corning, UK). HDF cells were enzymatically dissociated from their

culture flasks by incubating the cells for 5 min with 0.025%

Trypsin-EDTA and resuspended in an equal volume of DMEM.

Cell number and viability were measured using the trypan-blue

assay. The HDF cells were seeded onto microcarriers by mixing

cells and microcarriers at a ratio of 5:1 or 10:1 in the stirred tank

bioreactor. Cells were allowed to attach to the microcarriers for

24 hours with 1 min 45 sec intermittent stirring at 40 RPM every

45 min. After 24 hours the stirring regime was changed to 2 min

intermittent stirring every 20 min for the remainder of the culture

process. DMEM growth media was replenished every 48–72 hours

by replacing 60% of the media.

Fluorescent labelling of live and dead cells
5 ml samples of DMEM media containing cells and micro-

carriers were removed from the stirred tank bioreactors under

sterile conditions at specific time points over a period of 13 days.

The microcarriers in each sample were allowed to settle by gravity.

Once settlement was complete the supernatant was removed and

the microcarriers were re-suspended in 1 ml of fresh DMEM

culture medium containing 4 mM calcein-AM (to label live cells)

and 2 mM ethidium homodimer-1 (to label dead cells) (Invitrogen,

UK) and incubated at 37uC for 30 min.

Laser scanning confocal microscopy
Fluorescently labelled cell samples were imaged using a Nikon

Eclipse TE2000 inverted laser scanning confocal microscope.

Images were acquired using the EZ-C1 acquisition and operating

software. Low magnification images were acquired at 610

magnification. A minimum of 10 fields of view comprising 15–30

microcarriers each were imaged for each time point. Z-interval was

set to a constant increment of 2.5 mm between successive focal

planes. An average of 100 images was collected per field of view,

encompassing the entire microcarrier volume. Live cells were

imaged at 488 nm excitation wavelength, dead cells at 543 nm.

Laser power was kept constant between each imaging session.

Development of cell distribution maps
Confocal images were processed using Matlab (R2008b, The

MathWorks, USA) for automatic detection of microcarriers, mapping

of live cell distribution around microcarriers, and quantification of

Table 1. Measurement techniques used to monitor the
quality of adherent cells in bioreactor culture.

Measurement
Technique

Culture
system References

Direct Trypan Blue Microcarriers 8, 11, 13–15, 17–19

Visualisation Aggregates 12, 16, 20

Fluorescent markers Microcarriers 17, 21

3D Scaffold 22

Nuclear counting Microcarriers 8, 13, 21–24

Aggregates 24

Light/Electron microscopy Microcarriers 17

Aggregates 25

Alamar Blue Microcarriers 26

Flow cytometry Microcarriers 17

Indirect Nutrient/Metabolites Microcarriers 8, 13, 23–28, 31

Metabolism Aggregates 2, 12, 28–30

Silk Scaffold 32

Cytosolic enzymes Microcarriers 3, 23–26

Aggregates 12, 24

MTT Microcarriers 13, 26, 33

Total DNA Aggregates 12

Silk Scaffold 32

doi:10.1371/journal.pone.0026104.t001
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confluence level. For each dataset, a Hough transform was applied to

the top maximum projection image to identify microcarrier positions

and radii in the 2D X-Y plane. A sub-volume encompassing each

microcarrier was extracted and further processed along the Z-axis in

order to identify top and bottom coordinates of the microcarrier. A

grid with resolution finer than the original images was mapped onto

the surface of a virtual sphere centred on the microcarrier to prevent

information loss from sub-optimal sampling. Fluorescence intensity

was iteratively sampled 30 times along the coordinates of this

spherical grid in the vicinity of the microcarrier surface, measuring

fluorescence along orthogonal lines to the microcarrier surface, below,

at and above this surface. The process generated a 5006500630

matrix Mx,y,z (surface = 5006500 points x-y, depth = 30 points z)

which was further processed in order to obtain a final map of cell

distribution, defined as

map~ log 1z
maxzMzszMz �MMz

3

� �
ð1Þ

where maxzM = maximum intensity value, szM = standard devia-

tion, and �MMz = mean intensity, all computed along the z dimension of

M and normalised to their maximum value. The logarithm was used

to transform the intensity distribution so that background values were

Normally distributed. In order to compensate for batch-to-batch

variability, all maps obtained in a given field of view were normalised

by scaling their values in the range [0, 1].

Cell confluency algorithm
For all cell distribution maps from one Z-stack, symmetrical 2D

intensity co-occurence histograms C(Dx, Dy) were computed using

pairs of points separated by Dx = 10 pixels (Dy = 0). The distance

Dx was chosen so the likelihood of co-occurrence of background

pairs of pixels (from uniform areas) was significantly increased

compared to the more variable cell signals. Median values were

computed down the columns of C and all profiles from the same

batch (i.e. Z-stack) were averaged to smooth low frequency cell

signal co-occurrences whilst emphasizing the distribution of

background noise co-occurrences. The resulting profile PC was

smoothed with a 561 averaging kernel, and its absolute first

derivative computed as DPc. This curve had high magnitude in

regions of large fluctuations of Pc (allegedly background) and low

magnitude elsewhere (in the largest proportion of the dynamic

range representing cell signal). The threshold T for separating

background from signal values was defined as the last intensity for

which DPc was higher than the value mean(DPc)+1.966SD(DPc).

The final confluence measurement was calculated as the

percentage of signal area in a map, corrected for spherical

distortion induced by mapping the 2D surface of a 3D spherical

microcarrier onto a 2D plane.

Validation of confluence measurements
Artificial in silico microcarriers and cells were modelled to

quantify the performance of the segmentation algorithm, estimate

the true confluence of the cells in 3D, and assign an error to the

estimated true confluence. Artificial maps were created by random

addition of N 2D Gaussian kernels of various sizes and magnitudes:

X
N

P x1,x2,Nð Þ~
X

N

AN

2ps1s2

ffiffiffiffiffiffiffiffiffiffiffiffi
1{r2

p exp {
z

2 1{r2ð Þ

� �
ð2Þ

where AN is the magnitude of the Nth kernel, the variables x are

spatial coordinates along dimensions 1 and 2, m are positions of the

kernel peaks, s are their standard deviations,

z:
x1{m1ð Þ2

s1
{

2r x1{m1ð Þ x2{m2ð Þ
s1s2

z
x2{m2ð Þ

s2
ð3Þ

and

r:cor x1,x2ð Þ~ v1,2

s1s2
ð4Þ

is the correlation of x1 and x2 and n1,2 is the covariance. The

variable number of kernels allowed the generation of maps with

any confluence in the range 0–100%. Each synthetic map was

projected onto the surface of a 3D sphere. This three-dimensional

volume was sampled at a resolution comparable to confocal

microscope imaging. Points located between the surfaces of the

artificial microcarrier and the 3D maps were labelled as cell

objects. Segmented cell regions in artificial datasets were

convoluted with a Gaussian point spread function (PSF) with

standard deviation estimated from real confocal datasets. This

processed blurred the true signal most predominantly along the Z

axis. Finally, noise was added to the whole data volume. The

modelled noise had a distribution identical to the noise measured

from real confocal datasets.

Principal Component Analysis
The intensity co-occurrence matrix of the cell distribution maps

was used for texture quantification, by computing contrast,

correlation, energy and homogeneity [34,35]. These measure-

ments were subjected to principal component analysis (PCA) and

the first two principal components (PC) were used to monitor the

morphology of the cell distributions quantitatively over time. The

distribution of points in the PC space provided an instant non-

subjective representation of the cell morphologies at the surface of

the microcarriers. The most representative maps were identified as

those located closest to the centre of the PC distributions.

Results

Generation of cell distribution maps
Measuring the properties of cells adhered to the surface of

microcarrier beads is more complex than performing the measure-

ments in standard 2D culture due to the spatial distribution of the

cells around the bead. To address this we developed an image analysis

approach to process the 3D data obtained using confocal microscopy

to produce 2D ‘‘cell distribution maps’’ which could be used for

automated measurements of cell number, confluency and morphol-

ogy. A summary of the process is shown in Figure 1. Confocal

microscopy images of cells adhered to the surface of microcarriers

were processed by applying a Hough transform-based algorithm to

locate the microcarriers in the X-Y plane (Fig. 1A, number circles).

This commonly used image analysis tool allowed individual

microcarriers to be identified and the image datasets for each

microcarrier to be isolated and processed independently (Fig. 1B).

The confocal image stack for each individual microcarrier were then

extracted into a sub-volume and processed along the Z-axis to identify

the top and bottom coordinates of the microcarrier (Fig. 1C), which

in combination with the X-Y data extracted previously allowed the

whole microcarrier surface to be identified. Next a grid was mapped

onto the surface of the microcarrier and the fluorescent intensity was

measured in each grid at 30 points orthogonal to the microcarrier

surface (Fig. 1D). The intensity measurements encompassed the area

above and below the microcarrier surface to ensure they captured the

volume of the cells adhered to the microcarriers. The gridded

fluorescent intensity measurements were then unwrapped from the

Monitoring Cell Growth in 3D Bioreactor Culture
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microcarrier sphere to create flat matrices which could be processed

to create a ‘cell distribution map’ showing the location and

morphology of the cells (Fig. 1E). This 2D map of the distribution

of the cells on the 3D microsphere could then be used for analysis of

cell number and confluency.

Measurement of cell number and confluency
Development of a method for automated analysis of cell

confluency and its link to cell number was initially established using

cells in 2D monolayer culture adhered to the surface of 2 mm2

gridded slides (Fig. 2A). Cells seeded at densities ranging from 200–

1200 cells/grid were imaged and the cell areas were segmented using

manual thresholding, which identified the cells by their fluorescence

intensity compared to the background (Fig. 2B). The total surface

area covered by the cells within the grids was measured and

compared to manual cell number counts for each image and were

shown to have a linear relationship across the cell density range

(Fig. 2C). To establish if the same principle could be applied to cell

attached to microcarriers, a ‘cell confluency algorithm’ was developed

which could automatically segment cells using the same thresholding

process applied to the cells in the 2D monolayer culture. A series of

cell distribution maps were then generated from cells attached to

beads at densities from ,5 cells/bead (low confluency) to .30 cells/

bead (high confluency) (Fig. 2D–E). Comparison of confluency

measurements generated using the ‘cell confluency algorithm’ with

manual cell counts from each bead also showed a linear relationship

across the seeding density range (Figure 2F).

Validation of the cell distribution mapping approach
To demonstrate that the procedure of creating cell distribution

maps provides an accurate means to measure the confluency and

number of cell adhered to microcarriers using the cell confluency

algorithm the process was validated in two stages.

In the first stage of the validation process cells were seeded onto

microcarrier at 4 different densities. Samples from each density

range were then either fluorescently labelled and imaged to create

cell distribution maps or lysed to extract DNA for cell number

analysis using the commercially available Cyquant assay. Cell

numbers attained using the two processes were then compared

(Fig. 3). This analysis showed a strong linear relationship

(R2 = 0.974) between the two measurements indicating that the

mapping process provides good platform for quantifying cell

number.

In the second stage of the validation process the cell confluency

algorithm was used to measure the confluency of in silico generated

cell distribution maps. This process allows a direct comparison of

the confluency measurements generated by the algorithm against

the known ‘ground truth’ confluency measurements from the in

silico maps. The process also allows controlled levels of noise and

point spread function (PSF) to be added to the artificial maps to

measure how these imaging artefacts bias the confluency

measurements. The process-map for the development of the in

silico cell distribution maps is shown in Fig. 4A. Over 1600 in silico

ground truth maps of cells distributions at different confluency

levels were generated and projected onto spherical surfaces with

the same geometric properties as the microcarrier beads. Fig. 4B

shows a comparison of ‘real’ cells adhered to the surface of the

microcarriers at 3 different densities (Fig. 4B ‘‘1’’) compared to the

in silico generated images of cells on beads at comparable densities

(Fig. 4B ‘‘2’’) and the 3D renderings of the in silico cells on beads

(Fig. 4B ‘‘3’’).

The accuracy of the cell confluency algorithm was initially

validated on the in silico cell distribution maps in the absence of

Figure 1. Mapping the distribution of HDF cells on the surface of microcarrier beads. (A) Maximum intensity projection from confocal
image Z-stack with microcarriers identified by Hough transform (circles). (B) Extraction of sub-volume from Z-stack containing 3D fluorescence
associated with a single microcarrier. (C) Top and side projection images calculated from sub-volume used to locate X-Y-Z coordinates of microcarrier
(dashed circles and arrows). (D) Iterative fluorescence intensity measurements in the vicinity of the microcarrier surface (sphere) using 30 sampling
spherical grids (horizontal planes in magnified sampling volume, extended to the whole microcarrier surface). (E) Cell distribution map (bottom)
computed from unwrapped stack of sampling grids (top, Mx,y,z).
doi:10.1371/journal.pone.0026104.g001
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noise and PSF distortion. Fig. 5A shows an in silico ground truth

cell distribution map (Fig. 5A ‘‘1’’) and the comparable cell

identification achieved using the cell confluency algorithm (Fig. 5A

‘‘2’’). Comparison of the confluency measurements achieved using

the cell confluency algorithm against the known ground truth

measurements from in silico maps with 0–100% cell confluency

(Fig. 5B) showed a linear response between the two measurements

(R2 = 0.982, slope = 0.92 for linear regression), indicating that in

‘clean’ images the algorithm is measuring cell confluency levels

with a good degree of accuracy.

To further validate the mapping process, the in silico ground

truth cell distribution maps underwent convolution with PSF and

addition of noise to closely mimic the images obtained in real

datasets. Fig. 5C shows the identification of cells for confluency

measurements on an in silico ground truth map using optimal

thresholding (Fig. 5C ‘‘1’’) and the comparable cell identification

using the cell confluency algorithm (Fig. 5C ‘‘2’’). Comparison of

these measurements from 0–100% confluency (Fig. 5D) showed a

strong non-linear response between actual and measured conflu-

ences. This bias was predominantly a consequence of the PSF,

which could be modelled (Fig. 5D black line) and corrected.

Comparing the bias-corrected confluency measurements to the

original in silico ground truth measurements (Fig. 5E) restored the

linearity between the two measurements (R2 = 0.96). Residual

analysis was used to calculate that the error associated with

measurements of confluency using the cell confluency algorithm is

approximately 10% (Fig. 5F).

Application of image analysis for bioreactor monitoring
To demonstrate that the cell distribution mapping approach

could be used for measuring the confluency of live cells grown

under different manufacturing conditions human dermal fibro-

blasts were grown at 2 seeding densities on the surface of

microcarriers (5 or 10 cells per microcarrier) in stirred tank

bioreactors for 13 days. Samples taken from the bioreactors at

various time points were imaged, used to create cell distribution

maps and analysed for cell number and confluency. The texture

parameters of the maps were also subjected to principal

component analysis (PCA) and the first two principal components

(PC) were used to quantitatively monitor change in morphology of

the cell distributions over time (Fig. 6). The distribution of points

in the PC space provides a non-subjective representation of the cell

morphologies at the surface of all of the sampled microcarriers

(Fig. 6A). Microcarriers containing the highest cell densities are

clustered on the left of the PC space (Fig. 6B), those containing the

lowest cell number being clustered on the right (Fig. 6C) and the

Figure 2. Comparison of confluency and cell number measurements in 2D and 3D culture. (A) 2D monolayer culture of fluorescently
labelled HDF cells seeded on 2 mm2 gridded slides at three different seeding densities. (B) Cell segmentation of the images using manual
thresholding to identify the individual cells. (C) Graph showing the linear relationship between cell confluency and cell number in 2D culture. (D) 3D
microcarriers seeded with fluorescently labelled HDF cells at three different densities. Dashed lines show circumference of the microcarrier beads. (E)
Segmented cell distribution maps processed using the cell confluency algorithm. (F) Graph showing the linear relationship between cell number and
confluency for cells grown on microcarrier beads and analysed using the cell confluency algorithm.
doi:10.1371/journal.pone.0026104.g002
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most representative maps of average cell confluency being located

closest to the centre of the PC distributions (Fig. 6D).

The most representative maps of cell growth identified from the

PCA at different time points for microcarriers seeded at the two

different densities are shown in Fig. 7. Uniform seeding of the cells

onto the microcarrier was achieved after 3 hours of bioreactor

culture for both seeding densities with an average of 4.2 cells per

bead for the lower seeding density and 11.2 cells per bead for the

higher density. At the lower seeding density, the cells spread more

quickly onto the microcarriers, although morphologically they

were not different to cells at the higher density. After 3 days

however, the majority of cells became fragmented, leaving on

average 2 to 3 cells per bead. Some expansion was achieved by the

end of the first week, although significant bead-to-bead variability

was still observed and this eventually led to majority of cells dying

within the bioreactor and very few beads containing viable cells by

day 13. In comparison, the microcarriers which were seeded at the

higher density had numerous cell colonies or clusters within 3 days

of culture, which subsequently sustained cell proliferation to the

point where the majority of the surface of the microcarriers was

covered by cells after 13 days in the bioreactor.

Quantitative analysis of bioreactor cultures
To quantitatively analyse the growth of cells in the bioreactor

culture a series of cell distribution maps were created from samples

taken over the 13 day growth period. These maps were then

analysed using the cell confluency algorithm. (Fig. 8). This analysis

shows that cells seeded onto microcarriers at a density of 10 cells

Figure 3. Comparison of cell number measurments. Graph to the
show the linear relationship between cell number measurements
obtained using the cell distribution mapping process and the
commercial Cyquant assay.
doi:10.1371/journal.pone.0026104.g003

Figure 4. Validation of distribution mapping process with in silico modelling of cells adhered to microcarrier beads. (A) Flow diagram
for in silico modelling (top compartment) and validation of confluence measurement (bottom compartment). (B) 1- Maximum intensity top projection
confocal images of real HDF cells adhered to microcarrier beads. 2 – Synthetic maximum intensity top projections of cells distributions around
microcarrier beads generated by in silico modelling. 3 – 3D rendering of the synthetic cell distribution in B2 to show cell localisation and
comparability to real image data.
doi:10.1371/journal.pone.0026104.g004

Monitoring Cell Growth in 3D Bioreactor Culture
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Figure 5. Validation of confluency measurements using cell distribution mapping. (A) 1 - Ground truth synthetic cell distribution map
generated in absence of noise or PSF. 2 – cell confluency map generated from the synthetic data using the distribution map image processing
algorithm. (B) Comparison of synthetic ground truth confluence versus measured confluence. The ground truth confluence is known before artificial
3D modelling (from A1) whereas the measured confluence is calculated from the map obtained after processing of the 3D model (from A2). White
line = power model fit, black lines are 95% confidence intervals. (C) 1 - Optimal thresholding (white lines) of cell distribution map shown in A1 after
convolution of the 3D model with PSF and the addition of noise. 2- Cell confluency analysis of image B1 generated using the cell distribution
mapping algorithm. (D) Comparison of true confluence (from ground truth data) with confluence measured by the cell distribution mapping
algorithm. Over-estimation from the proposed method is evident from the shape of the data distribution. However this bias can be accurately
modelled (black curve). (E) True confluence (from ground truth maps) versus measured confluence calculated from D (y axis) and the fitted model (D,
black curve). Estimated confluence through bias compensation restores the expected linearity between true and estimated confluences (R2 = 0.96).
Bold and dashed lines represent linear fit 695% confidence interval. (F) Error estimation by residual analysis. Residual values are obtained by
subtracting linear fit values from estimated confluences in E. Dashed lines represent 695% confidence interval.
doi:10.1371/journal.pone.0026104.g005

Monitoring Cell Growth in 3D Bioreactor Culture

PLoS ONE | www.plosone.org 7 October 2011 | Volume 6 | Issue 10 | e26104



per bead (Fig. 8A black circles) undergo an initial lag in growth

over the first 3 days of culture before entering a linear growth

phase and reaching almost full confluency after 7 days. In

comparison, cells seeded at the lower density (Fig. 8A open boxes)

underwent a decrease in confluency over the first 3 days of culture

before entering a proliferative state up to day 7 and then dying

within the bioreactor, such that even after 11 days of culture the

average confluency of cells on the microcarriers was only ,8%.

Analysis of the confluency variability over time, defined as

standard deviation divided by the median (Fig. 8B), showed that

the initial variability in the confluency levels for the two seeding

densities were almost the same (,40%). However, as cells were

grown in the bioreactor over 13 days the variability in bead-to-

bead confluency levels for the cells seeded at the lower density

significantly increased to .150% (Fig. 8B open squares) while the

variability in bead confluency levels for the cells at the higher

density slowly decreased to ,10%. This low inter-bead variability

at the higher density demonstrates that cell growth is progressing

evenly throughout the bioreactor culture.

In addition to confluency measurements, cell morphology could

also be quantified using PCA to give a measure of cell health

within the bioreactor environment (Fig. 8C–D). This analysis

shows that cells seeded at the higher densities initially have a larger

cell to cell morphological variability (,22%) than cells at the lower

seeding density (,5%). However, morphological variability in the

higher density culture then decreases over the first 7 days as the cells

are proliferating eventually reaching a plateau as the cells become

fully confluent (,5%). In comparison morphological variability in

the lower seeding density culture is stable for the first 7 days even

though the cells are proliferating. As the cells begin to die after 7

days of culture the morphological variability dramatically increases

(,28%) indicating an unhealthy culture.

PCA can also be used to graphically compare the morphologies

between low and high seeding densities (Fig. 8E–F). At the time of

seeding the cells onto the beads the PCA analysis shows that the

morphology of the cells at the higher density forms a tight cluster

on the right-hand side of the PCA space (Fig. 8E black line) while

the cells seeded at the lower density form a less compact but

overlapping cluster (Fig. 8E dashed line). By 7 days of culture

which correspond to the time immediately before the cells at the

lower seeding density will begin to die, the PCA analysis shows a

clear divergence in cell morphologies between the two culture

Figure 6. Principal Component Analysis (PCA) of the cell distribution maps. (A) Texture measurements from microcarrier seeded with 10
cells per bead and incubated for 2.5 hours were subjected to PCA and 1st and 2nd principal components were plotted. The PCA scatter plot provides a
snapshot graphical representation of the distribution of cell morphologies. (B) Cell distribution maps taken from the left of the PCA space have the
highest cell confluency. (C) Distribution maps from the right of the PCA have the lowest cell confluency. (D) The most representative cell distribution
maps for the analysis are located in the centre of the PCA space.
doi:10.1371/journal.pone.0026104.g006
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conditions. The higher seeding density cells are still tightly

clustered in the same location with the PCA space (Fig. 8F black

line). However, the lower seeding density cells have strongly shifted

with the PCA space forming a large distinct cluster on the left

hand side (Fig. 8F dashed line), which in this case indicates a cell

morphology associated with an unhealthy bioreactor culture.

Discussion

As regenerative medicine products transition from the labora-

tory into clinical application the requirement to produce cells in

commercially viable quantities is driving the use of bioreactor

based manufacturing [1]. This approach presents a number

challenges particularly as many of the cell models used for

therapeutic application require adherence to a solid substrate on

which to grow. In turn, this makes it difficult to perform biological

measurements directly on the cells to ensure optimal growth and

allow quality control of the production process [31].

In standard 2D cell culture, batch quality control throughout

the cell expansion process generally includes subjective measure-

ments of cell confluency and cell morphology as well as direct

measurements of cell number. However, there are currently no

methods to measure all these parameters simultaneously in 3D

bioreactor culture systems. Instead, bioreactor measurements tend

to analyse a single property such as cell number. This provides

only limited information and does not provide a quantitative

representation of important parameters such as the homogeneity

of the cell population or the morphology and distribution of the

cells. In this paper, we have described a versatile yet powerful

method to achieve multiplexed measurements of cell number,

confluency and morphology in 3D bioreactor cultures. This is

achieved by processing the data generated from confocal

microscopy imaging to create a 2D map of the distribution of

the cells on their 3D growth substrate while maintaining the cell

morphology information. The cell distribution maps can then be

used for automated analysis of cell number and confluency using

routine segmentation and thresholding approaches. This method

was designed to incorporate commonly used procedures such as

bioreactor sampling, fluorescent cell labelling and microscopy

imaging with a series of validated algorithms which are operated

using the commercially available Matlab platform in order to

allow the procedure to be easily used in other laboratories. The

analysis time for this method is comparable to cell counting

methods employed in standard 2D culture which, depending on

the assay used, can range from a few minutes (e.g. trypan blue

assay) to several hours (e.g. MTT assay). In this study, the

fluorescent Calcein-AM labelling of viable cells has an assay time

of less than 30 minutes, allowing the cells to be labelled without

affecting viability and morphology. On a typical confocal imaging

platform, another 30 minutes are necessary to acquire the raw

image datasets to constitute a statistically relevant sample. Once

the raw data is acquired, image processing and analysis can be

performed in approximately 30 minutes giving a total assay time

of about 1.5 hours. However, this could be improved through

parallel processing (simultaneous to data acquisition), which would

potentially ensure that the whole process, from cell labelling to

quantitative analysis, would take just 60 minutes. The image

processing and analysis software has also been thoroughly

Figure 7. Cell distribution maps to visualise changes in cell confluency in response to cell seeding density. Microcarriers were seeded
with either 5 cells per bead (left column) or 10 cells per bead (right column) and the most representative cell distribution maps from the centre of the
PCA space were used to visualise difference in cell confluency over an 11 day culture period.
doi:10.1371/journal.pone.0026104.g007
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validated using fully characterised in-silico 3D models replicating

real datasets and has been shown to have an accuracy of 90%

which is comparable to standard cell number assays such as MTT.

The use of cells in therapeutic applications requires stringent

monitoring during the manufacture process. This makes it important

to be able to link measurements such as cell number to the health

and quality of the cells during processing. The approach undertaken

in this study presents a number of advantages for use in quality

control procedures. Firstly, only small samples are required to obtain

statistically relevant data, in this study a 5 ml sample was used for

labelling and microscopy but, dependant on the concentration of

microcarriers in the bioreactor, this could be reduced significantly.

For example, the bead concentration presented here was approx-

imately 52,000 beads/ml which would mean that .200 beads could

be analysed from a bioreactor sample as small as 5 ml. This small

sampling size is particularly attractive for the manufacture of cell

therapy products where a significant proportion of the product cost is

tied up in the manufacture of the cells [36]. The use of this imaging

approach with fluorescent dyes such as Calcein-AM also offers the

potential for the samples to be fixed post-labelling and stored at 4uC
for several weeks permitting subsequent detailed analysis if, for

example, end-of-process cells are not of sufficient quality. Storage of

raw images and processed maps also offers the possibility of data re-

analysis, currently not achievable when only a simple cell count is

Figure 8. The use of PCA to quantitatively measure cell number, morphology and confluency during cell manufacture. (A) changes in
cell confluency over 11 days in bioreactor culture for HDF cells seeded onto microcarriers at a density of 10 cells per bead (black squares) or 5 cells per
bead (open squares). Fitted curves = median values, error bars = 16th–84th percentiles (percentiles are used to accommodate skewed distributions. If
the data were Normally distributed, the 16th–84th percentiles would correspond to 6 1SD). (B) Measurement of bead to bead variability in cell
confluency during the 11 day manufacture procedure for cells seeded onto microcarriers at a density of 10 cells per bead (black squares) or 5 cells per
bead (open squares). (C) Analysis of cell morphology using the 1st PC shows that microcarriers seeded at 10 cells per bead (black squares) maintain a
stable morphology compared to microcarrier seeded at 5 cells per bead (open squares). (D) Analysis of the bead to bead variability in cell
morphology for microcarrier seeded at 10 cells per bead (black squares) and 5 cells per bead (open squares). (E–F) The use of PCA to show differences
in morphological distribution of cells seeded onto microcarrier at 10 cells per bead (black squares) or 5 cells per bead (open squares) after 2.5 hours
(E) and 7 days (F) in bioreactor culture.
doi:10.1371/journal.pone.0026104.g008
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performed or few illustrative micrographs are taken. Importantly,

the analysis of the data itself is fully quantitative and does not rely

upon subjective assessment by trained staff, thereby allowing

traceability throughout the manufacture process.

The transition from standard cell culture to bioreactor based

manufacture is driven by practical issues associated with handling

large cell volumes and economic decisions regarding product cost

reduction. For human cells used in cell therapy products, which

are typically slow to expand in culture, it is important to have

methods in place which can be used to reduce manufacture costs

by optimising processes and identifying problems quickly [37].

The cell distribution mapping approach described here, in

combination with quantitative analysis of cell number and

confluency go someway to helping achieve this. In this study we

show how cells seeded at an initial density of 10 cells per bead have

reached maximum confluency within 7 days of bioreactor culture,

while cells seeded at 5 cells per bead have only reached 44%

confluency during this time. Even though under these conditions

the lower seeding density cells eventually died, if they had a

maintained a linear proliferate rate it would have taken

approximately 7 more days of culture for them to reach full

confluency. Having this type of quantitative information to hand

can therefore be invaluable in helping inform the decisions making

processes about the economic trade of between initial seeding

densities and the length of manufacture time.

Image based morphological measurements of individual cells in

2D systems is the principle behind powerful platform technologies

such as high content screening (HCS). These technologies are

being used to ‘industrialise’ cell analysis particularly in drug

discovery research by combining automation, sample preparation,

image acquisition, processing and analysis to permit subtle changes

in cell morphology be measured in great detail [38–40]. The

principals of HCS are equally applicable for monitoring the health

of cells during bioreactor manufacture but have not yet been

adapted for this purpose. With therapeutic cell lines, changes in

cell morphology can be indicative of a problem with the

manufacture process which in turn may have detrimental effects

on the quality of the cells (e.g. reduced expansion by increased

contact inhibition or spontaneous differentiation of stem and

progenitor cells). In this study we used well described texture

measurements [35,41] to quantify and classify cell morphology on

the microcarriers. Under different manufacturing conditions, such

as cell seeding density, PCA clearly identified two morphologically

distinct distributions amongst the cell populations. One of which

does not lead to cell expansion. This approach could therefore be

used to identify sub-optimal cultures rapidly following seeding

preventing wasted manufacturing time. The mapping process

described in this study also considerably compressed the

information contained in the original 3D image volumes, in this

case reducing the size of the dataset for a statistically relevant

analysis by a factor of 43. However, under optimal conditions this

compression factor could be increased to .200 without significant

loss of information. This dramatically increases the processing

speed for image data analysis overcoming some of the data

management bottlenecks that have been encountered with HCS

[42]. Furthermore, as cell technologies change, and in particular

as 3D culture technologies become incorporated into drug

screening programmes, the type of analysis system described in

this paper could also support the transition of HCS into high-

throughput 3D drug development cell models [43].

Although the approach presented in this study has been shown

to be robust and reliable, there is potential for improving the

image analysis software by incorporating deconvolution algorithms

or introducing different texture metrics that are specific for a

particular cell type. This would be useful for cell therapy products

based on stem cells or other progenitor populations which

incorporate a differentiation step following cell expansion. A good

example of this would be monitoring the production of neural cells

for the clinical treatment of neurodegenerative diseases. It has

been shown that morphological measurements can be used to

assess the differentiation of stem cells along a neuronal lineage

identifying, for example, the development of neurite outgrowths

typical of developing neurons [44]. This could also be combined

with fluorescent immunocytochemistry to incorporate morphology

measurements alongside cell specific markers such as b-III tubulin,

GFAP and O4 to identify developing subpopulations of neurons,

astrocytes and oligodendrocytes during the manufacture process.

In conclusion, as cell manufacture transitions from standard

culture into bioreactor based processing the tools to monitor cell

growth and measure cell quality need to be in place. The cell

distribution mapping approach described in this paper goes some

way to achieving this by providing a system for the unbiased

multiplexed measurement of cell number, confluency and

morphology. This offers distinct advantages over current methods

of analysis, which typically measure a single parameter, by

providing a more comprehensive evaluation of cell growth and

allowing bioreactor culture performance to be optimised. In

addition the minimal number of manual and sample handling

steps combined with fast automated analysis would facilitate the

use of this type of analytical approach within a cell manufacture

facility and could help in the transition towards bioreactor based

manufacture for clinical grade cells.
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17. Mendonça RZ, Arrózio SJ, Antoniazzi MM, Ferreira JM, Jr., Pereira CA (2002)

Metabolic active-high density VERO cell cultures on microcarriers following
apoptosis prevention by galactose/glutamine feeding. J Biotechnol 97: 13–22.

18. Sart S, Schneider YJ, Agathos SN (2009) Ear mesenchymal stem cells, an
efficient adult multipotent cell population fit for rapid and scalable expansion.

J Biotechnol 139: 291–299.

19. Varani J, Piel F, Josephs S, Beals TF, Hillegas WJ (1998) Attachment and growth
of anchorage-dependent cells on a novel, charges-surface microcarrier under

serum-free conditions. Cytotechnology 28: 101–109.
20. Yu Y, Li K, Bao C, Liu T, Jin Y, et al. (2009) Ex vitro expansion of human

placenta-derived mesenchymal stem cells in stirred bioreactor. Appl Biochem
Biotechnol 159: 110–108.

21. Chen R, Curran SJ, Curran JM, Hunt JA (2006) The use of poly(l-lactide) and

RGD modified microspheres as cell carriers in a flow intermittency bioreactor
for tissue engineering cartilage. Biomaterials 27: 4453–4460.

22. Solchaga LA, Tognana E, Penick K, Baskaran H, Goldberg VM, et al. (2006) A
rapid seeding technique for the assembly of large cell/scaffold composite

constructs. Tissue Eng 12: 1851–1863.

23. Lock LT, Tzanakakis ES (2009) Expansion and differentiation of human
embryonic stem cells to endoderm progeny in a microcarrier stirred-suspension

culture. Tissue Eng Part A 15: 2051–2063.
24. Serra M, Brito C, Leite SB, Gorjup E, von Briesen H, et al. (2009) Stirred

bioreactors for the expansion of adult pancreatic stem cells. Ann Anat 191:
104–115.

25. Gueza JS, Cassarb JP, Wartellec F, Dhulstera P, Suhrd H (2010) The viability of

animal cell cultures in bioreactors: can it be estimated online by using in situ
microscopy? Process Biochem 45: 288–291.

26. Schop D, Janssen FW, Borgart E, de Bruijn JD, van Dijkhuizen-Radersma R
(2008) Expansion of mesenchymal stem cells using a microcarrier-based

cultivation system, growth and metabolism. J Tissue Eng Regen Med 2:

126–135.

27. Abranches E, Bekman E, Henrique D, Cabral JM (2007) Expansion of mouse

embryonic stem cells on microcarriers. Biotechnol Bioeng 96: 1211–1221.

28. Bleckwenn NA, Shiloach J (2004) Large-scale cell culture. Curr Protoc Immunol

A.1U.1–A.1U.44 (Supplement 59, Appendix 1U).

29. De León A, Mayani H, Ramı́rez OT (1998) Design, characterization and

application of a minibioreactor for the culture of human hematopoietic cells

under controlled conditions. Cytotechnology 28: 127–138.

30. Franco R, Daniela G, Fabrizio M, Ilaria G, Detlev H (1999) Influence of

osmolarity and pH increase to achieve a reduction of monoclonal antibodies

aggregates in a production process. Cytotechnology 29: 11–25.

31. Kino-Oka M, Ogawa N, Umegaki R, Taya M (2005) Bioreactor design for

successive culture of anchorage-dependent cells operated in an automated

manner. Tissue Eng 11: 535–45.

32. Marolt D, Augst A, Freed LE, Vepari C, Fajardo R, et al. (2006) Bone and

cartilage tissue constructs grown using human bone marrow stromal cells, silk

scaffolds and rotating bioreactors. Biomaterials 27: 6138–6149.

33. Lua G, Zhua L, Konga L, Zhanga L, Gonga Y, et al. (2006) Porous chitosan

microcarriers for large scale cultivation of cells for tissue engineering, fabrication

and evaluation. Science & Technology 11: 427–432.

34. Haralick RM, ShanMugam K, Dinstein I (1973) Textural features of Image

classification. IEEE Trans. Syst Man Cybern SMC–3 6: 610–621.

35. Sabino DMU, da Fontoura Costa L, Rizzatti EG, Zago MA (2004) A texture

approach to leukocyte recognition. Real-Time Imaging 10: 205–216.

36. Dietz A, Padley D, Gastineau D (2009) Infrastructure development for human

cell therapy translation. Clin Pharmacol Ther 82: 320–324.

37. Williams DJ, Sebastine IM (2006) Tissue engineering and regenerative medicine:

manufacturing challenges. Nanobiotechnology 152(6): 207–210.

38. Abraham V, Lansing Taylor D, Haskins J (2004) High content screening applied

to large-scale cell biology. Trends Biotechnol 22: 15–22.

39. Paran Y, Ilan M, Kashman Y, Goldstein S, Liron Y, et al. (2007) High-

throughput screening of cellular features using high-resolution light-microscopy;

application for profiling drug effects on cell adhesion. J Struct Biol 158: 233–243.

40. Zanella F, Lorens JB, Link W (2010) High content screening, seeing is believing.

Trends Biotechnol 28: 237–245.

41. Soh L, Tsatsoulis S (1999) Texture analysis of SAR sea ice imagery using gray

level co-occurence matrices. IEEE Trans Geosci Remote Sens 37: 780–795.

42. Kozak K, Bakos G, Hoff A, Bennett E, Dunican D, et al. (2010) Workflow-based

software environment for large-scale biological experiments. J Biomol Screen 15:

892–899.

43. Justice BA, Badr NA, Felder RA (2009) 3D cell culture opens new dimensions in

cell-based assays. Drug Discov Today 14: 102–107.

44. Arien-Zakay H, Lecht S, Perets A, Roszell B, Lelkes PI, et al. (2008)

Quantitative assessment of neuronal differentiation in three-dimensional

collagen gels using enhanced green fluorescence protein expressing PC12

pheochromocytoma cells. J Mol Neurosci 37: 225–237.

Monitoring Cell Growth in 3D Bioreactor Culture

PLoS ONE | www.plosone.org 12 October 2011 | Volume 6 | Issue 10 | e26104


