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Objectives: Transcranial direct current stimulation (tDCS) of the right 
dorsolateral prefrontal cortex has been hypothesized to reduce tinnitus 
severity by modifying cortical activity in brain regions associated with 
the perception of tinnitus. However, individual response to tDCS has 
proven to be variable. We investigated the feasibility of using random 
forest classification to predict the response to high-definition (HD) tDCS 
for tinnitus relief.

Design: A retrospective analysis was performed on a dataset consisting 
of 99 patients with subjective tinnitus receiving six consecutive sessions 
of HD-tDCS at the Antwerp University Hospital. A baseline assessment 
consisted of pure-tone audiometry and a set of questionnaires includ-
ing the Tinnitus Functional Index (TFI), Hospital Anxiety and Depression 
Scale, and Edinburgh Handedness Inventory. Random forest classifica-
tion was applied to predict, based on baseline questionnaire scores and 
hearing levels, whether each individual responded positively to the treat-
ment (defined as a decrease of at least 13 points on the TFI). Further test-
ing of the model was performed on an independent cohort of 32 patients 
obtained from the tinnitus center at the University of Regensburg.

Results: Twenty-four participants responded positively to the HD-tDCS 
treatment. The random forest classifier predicted treatment response 
with an accuracy of 85.71% (100% sensitivity, 81.48% specificity), sig-
nificantly outperforming a more traditional logistic regression approach. 
Performance of the classifier on an independent cohort was slightly but 
not significantly above chance level (71.88% accuracy, 66.67% sensi-
tivity, 73.08% specificity). Feature importance analyses revealed that 
baseline tinnitus severity, co-occurrence of depressive symptoms and 
handedness were the most important predictors of treatment response. 
Baseline TFI scores were significantly higher in responders than in 
nonresponders.

Conclusions: The proposed random forest classifier predicted treatment 
response with a high accuracy, significantly outperforming a more tra-
ditional statistical approach. Machine learning methods to predict treat-
ment response might ultimately be used in a clinical setting to guide 
targeted treatment recommendations for individual tinnitus patients.

Keywords: Machine learning, Random forest classification, Tinnitus, 
Transcranial direct current stimulation.

Abbreviations: AUC = area under the curve; BDI = Beck Depression 
Inventory; EHI = Edinburgh Handedness Inventory; HADS = Hospital 
Anxiety and Depression Scale; HD-tDCS = high-definition transcranial 
direct current stimulation; HQ = Hyperacusis Questionnaire; LTA = left 
temporal area; OOB = out-of-bag; rDLPFC = right dorsolateral prefron-
tal cortex; ROC = receiver operating characteristic; rTMS = repetitive 
transcranial magnetic stimulation; tDCS = transcranial direct current 
stimulation; TFI = Tinnitus Functional Index; THI = Tinnitus Handicap 
Inventory; VAS = Visual Analog Scale.
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INTRODUCTION

In normal hearing subjects, the systematized and intricate 
trajectory of auditory stimuli from the cochlea to the cerebral 
cortex effortlessly results in the perception of sound. When 
auditory input is reduced, for instance after cochlear damage, 
neuroauditory responses may drastically alter cortical circuitry 
and function. This is the case in chronic subjective tinnitus, 
where dysfunctional activation of neuronal plasticity results 
in the generation of a sound that can only be perceived by the 
patient (Langguth et al. 2013; Van de Heyning et al. 2015). 
These maladaptive responses can include sensory deafferen-
tiation and release from lateral inhibition, allowing irregular 
spontaneous hyperactivity within neuronal networks associated 
with sound processing (Eggermont & Roberts 2012; Shore et 
al. 2016). Indeed, aberrant patterns of brain activity in tinnitus 
patients have been found along the auditory pathway includ-
ing the auditory cortex, as well as in nonauditory areas such as 
the prefrontal cortex and anterior cingulate cortex (Vanneste et 
al. 2010a; De Ridder et al. 2011; Elgoyhen et al. 2015). Thus, 
the tinnitus percept may be interpreted as an emergent property 
resulting from activity in multiple, partially overlapping but 
separable networks encompassing both auditory and nonaudi-
tory areas (De Ridder et al. 2014).

Neuromodulation is the act of modifying the nervous system 
and bears potential as a treatment modality. It is hypothesized 
that by inducing neuroplastic changes, neuromodulation can 
interrupt abnormal cortical activity and alter or reduce the tinni-
tus percept (Hoare et al. 2015). For instance, repetitive transcra-
nial magnetic stimulation (rTMS) was shown to be beneficial 
in the treatment of tinnitus, although effect sizes are small and 
duration of the treatment effect often remains limited (Soleimani 
et al. 2016; Liang et al. 2020). Transcranial direct current stimu-
lation (tDCS) might be considered a viable alternative approach 
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based on its easy, painless, and noninvasive application (Song et 
al. 2012; Shekhawat et al. 2015; Rabau et al. 2017; Jacquemin 
et al. 2018, 2019). TDCS delivers direct currents at low inten-
sities via scalp electrodes to the cerebral cortex, where it can 
modulate cortical excitability in a polarity-dependent manner. 
Interestingly, this technique may be particularly powerful on a 
longer term (Paulus 2003). For instance, through the induction 
of synaptic plasticity, anodal tDCS can have various effects on 
the cell level, including the release of neurotransmitters and neu-
rotrophic factors and the growth of dendritic spines (Pelletier 
& Cicchetti 2014). Furthermore, tDCS can have extensive 
effects on cortical connectivity, impacting oscillatory activity, 
and functional coupling between spatially separated brain areas 
(Roche et al. 2015).

In existing tDCS trials for treating tinnitus, electrodes have 
often been placed over either the left temporal area (LTA) or the 
right dorsolateral prefrontal cortex (rDLPFC). Stimulation of 
the LTA targets aberrant activity in the primary auditory cor-
tex, while anodal tDCS of the rDLPFC has been proposed to 
strengthen deficient inhibitory top-down mechanisms and inter-
fere with the emotional processing of tinnitus (Vanneste et al. 
2010b). Collectively, outcomes of tDCS in tinnitus treatment 
show considerable variability, both between and within indi-
vidual studies. A meta-analysis published in 2012 concluded 
that overall, 40% of patients respond positively to active tDCS, 
resulting in a mean reduction of 13.5% in tinnitus intensity 
(Song et al. 2012). More recently published placebo-controlled 
studies have led to conflicting results, with only some authors 
reporting significant efficacy of tDCS treatment for tinnitus 
(Shekhawat et al. 2013; Teismann et al. 2014; Pal et al. 2015; 
Forogh et al. 2016; Hyvärinen et al. 2016). Varying protocols 
and limited sample sizes make definitive conclusions about the 
efficacy of tDCS for tinnitus rather elusive (Lefaucheur et al. 
2017; Cardon et al. 2019). Despite the large degree of uncer-
tainty regarding effective outcomes of this technique, many 
centers currently offer some form of tDCS as an experimental 
tinnitus treatment. The variability in treatment response is not 
only disheartening for the large group of patients who do not 
experience any benefit, but also inefficient in a clinical setting 
where cost-effectiveness is often crucial.

Predictive modeling might be applied in healthcare to pro-
vide targeted treatment to individual patients and reduce unnec-
essary costs. It has been suggested that, compared with more 
traditional inferential linear statistics, machine learning meth-
ods are more suitable for predictive purposes, and superior in 
handling datasets containing complicated nonlinear interactions 
(Bzdok & Ioannidis 2019). Within the tinnitus research field, 
machine learning methods have recently been applied toward 
outcome prediction of different tinnitus treatment modali-
ties, including cognitive behavioral therapy and physiotherapy 
(Niemann et al. 2020; Rodrigo et al. 2021). However, an inves-
tigation of the feasibility of machine learning models to pre-
dict outcomes from neuromodulation treatment for tinnitus is 
currently lacking in the literature. The current paper uses the 
technique of random forest classification, consisting of a large 
number of randomly sampled decision trees operating as an 
ensemble. Crucially, this method can handle complex relation-
ships between input data, whereas maintaining a high level 
of interpretability (Bzdok et al. 2018). In the related field of 
cochlear implantation, the technique has recently been used to 
successfully predict treatment outcome (Kim et al. 2018). Here, 

we apply a random forest classifier to predict response to high-
definition (HD) tDCS treatment of tinnitus.

MATERIALS AND METHODS

Data and Code Availability
Patient data are uploaded to the Zenodo data repository with 

restricted access and can be made available upon motivated 
request (DOI: 10.5281/zenodo.5011428). The code generated 
during this study will be made available at GitHub.

Participants
All procedures were approved by the Ethical Committee of 

the University of Antwerp and the Antwerp University Hospital 
(file number: 16/41/415). Subjects gave written informed con-
sent at the start of the study. An overview of patient characteris-
tics is provided in Table 1.

Procedure
Study Design  •  This study presents a retrospective secondary 
analysis of a previous prospective trial, the full details of which 
can be found in (Jacquemin et al. 2021). In short, participants 
received 6 sessions of high-definition transcranial direct cur-
rent stimulation (HD-tDCS) performed according to the opti-
mal parameters concerning electrode placement, intensity, and 
duration of the stimulation (Shekhawat et al. 2016). At the start 
of the therapy and at a follow-up time point of 7 weeks after the 
last HD-tDCS session, tinnitus severity was evaluated using a 
set of self-report questionnaires.
Baseline Evaluation  •  Before the start of the therapy, tinnitus 
patients were thoroughly evaluated at our outpatient ENT clinic. 
Tinnitus characteristics, including duration, etiology, type (i.e., 

TABLE 1.  Baseline characteristics of all participants

General Characteristics  

  Gender: m/f (n) 81/18
  Age: mean (SD) 52 (12)
  Handedness (EHI): left-handed/ambidextrous/ 

right-handed (n)
11/4/84

  PTAlow: mean (SD) 13 (12)
  PTAhigh: mean (SD) 20 (13)

Tinnitus Characteristics  

  Duration in years: mean (SD) 6.15 (7.42)
  Side: bilateral/central/left/right (n) 60/15/10/14
  Type: pure tone/noise/polyphonic (n) 68/20/11
  Etiology: otologic/spontaneous/psychological/ 

  non-otologic/unknown
46/24/4/4/21

Questionnaire Scores  

  TFI: mean (SD) 46.23 (19.84)
  VAS for mean tinnitus loudness: mean (SD) 59.26 (23.70)
  VAS for maximum tinnitus loudness: mean (SD) 71.99 (20.55)
  VAS for tinnitus awareness: mean (SD) 62.38 (29.46)
  HQ: mean (SD) 18.62 (8.20)
  HADS anxiety subscale: mean (SD) 7.60 (3.99)
  HADS depression subscale: mean (SD) 6.79 (4.44)

EHI indicates Edinburgh Handedness Inventory; HADS, Hospital Anxiety and Depression 
Scale.; HQ, Hyperacusis Questionnaire; PTAhigh, pure-tone average for 1, 2, and 4 kHz; 
PTAlow, pure-tone average for 0.5, 1 and 2 kHz; TFI, Tinnitus Functional Index; VAS, Visual 
Analog Scale, ranging from 0 to 100.
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pure tone, noise, or polyphonic) and laterality, were queried and 
hearing levels from 125 Hz to 8 kHz were assessed using stan-
dard pure-tone audiometry. Hemispheric asymmetry has recently 
been suggested to influence the effects of tDCS (Brookshire & 
Casasanto 2018). As a proxy for hemispheric dominance, hand-
edness of the participants was assessed using the Edinburgh 
Handedness Inventory (Oldfield 1971). Tinnitus severity, rang-
ing from 0 to 100, was assessed using the Tinnitus Functional 
Index (TFI) (Meikle et al. 2012) and a visual analog scale (VAS) 
from 0 to 100 was employed to explore mean and maximum tin-
nitus loudness. Finally, accompanying symptoms such as hyper-
acusis, anxiety, and depression were assessed via the Hospital 
Anxiety and Depression Scale (HADS) and the Hyperacusis 
Questionnaire (Zigmond & Snaith 1983; Khalfa et al. 2002).
HD-tDCS  •  Participants received 6 sessions of anodal 
HD-tDCS of the right dorsolateral prefrontal cortex (rDLPFC) 
biweekly during 3 consecutive weeks, with a minimum interval 
of 1 day between subsequent sessions. Positions of the silver/
silver chloride (Ag/AgCl) ring electrodes were in accordance 
with the 10/20 international EEG system, with the central anode 
at F4 and the surrounding cathodes at AF4, FC4, F6, and F2. To 
ensure their optimal and reliable reuse, electrodes were rotated 
so that each of the used 5 electrodes functioned as the central 
electrode an equal number of times (Hampstead et al. 2020). 
A constant current of 2 mA was applied for 20 minutes, with a 
fade-in and fade-out time of 20 seconds. Current was delivered 
by a 1 × 1 tDCS low-intensity stimulator and 4 × 1 multichannel 
stimulation adaptor (Soterix Medical Inc., New York, NY).
Outcome measures  •  The TFI was chosen as the primary 
outcome measure. A binary division between responders and 
nonresponders was made to reflect whether or not patients expe-
rienced a meaningful improvement in tinnitus severity (Fackrell 
et al. 2016). It has been reported previously that the minimal 
clinically relevant difference, that is, the smallest change in TFI 
score that an individual patient would identify as important, is 
13 points (Meikle et al. 2012). Therefore, responders to the ther-
apy were defined as participants whose TFI scores decreased by 
at least 13 points from baseline to follow-up.

Quantification and Statistical Analysis
Data Preparation  •  Only participants who completed the 
follow-up assessment were included in the final dataset. 
Observations containing missing data were removed from the 
dataset. Categorical variables with more than two levels (i.e., 
tinnitus type, etiology, and laterality) were one-hot encoded 
before data analysis, meaning that these variables themselves 
were removed and one new binary variable was added for each 
unique integer value in the variable.
Random Forest Classifier Construction  •  A random for-
est classifier was trained to predict whether or not a partici-
pant responded positively to the treatment, based on variables 
available at the baseline assessment. This machine learning 
method was selected as it is able to capture complex relation-
ships between input data, can be interpreted fairly easily, and is 
able to handle challenges arising from relatively small sample 
sizes (Qi 2012; Bzdok and Ioannidis 2019). The classifier was 
trained using the randomForest package in R (version 3.6.2, 
2019 The R Foundation for Statistical Computing) on a random 
subset of 64 observations, while the remaining data (n = 35) was 
kept apart as a test set. Hyperparameters of the classifier were 

optimized during the training phase, with the number of trees 
set at 1000 and a minimal terminal node size of 1. The num-
ber of variables randomly sampled as candidates at each split, 
suggested to approximate the square root of the total number 
of included variables (Hastie et al. 2008), was 4 for the initial 
model with 16 variables and 3 for the final model with the 6 
most important features.
Feature Selection  •  Feature selection was performed during 
the training phase based on variable importance. As a measure 
for feature importance, the mean decrease in accuracy when 
permuting out-of-bag (OOB) data was calculated. For each tree, 
the error rate on the OOB portion of the data was recorded. 
Then, the same was done after permuting each feature. The 
differences between these two error rates were then averaged 
across all trees and normalized by the standard deviation of the 
differences. Features with consistently high-importance values 
overall validation folds were selected for the final model.
Validation of the Model  •  Five-fold cross-validation was per-
formed to validate the classifier model. For each fold, a ran-
domly sampled subset consisting of ca. 20% of the training 
dataset was withheld from the training phase. After the training 
phase, the model was tested on this validation dataset.
Cost-sensitivity  •  The current classification model is intended 
to predict response to an experimental, but noninvasive treat-
ment. As such, the cost of false negatives was deemed to be 
higher than the cost of false positives; depriving potential 
responders from the therapy would be more detrimental than 
subjecting patients to a noneffective, but ultimately nonharm-
ful, treatment. Therefore, an ensemble approach was used based 
on the outcomes of the five-fold cross-validation. A standard 
thresholding procedure was applied by modifying the cutoff 
values for classification. This cutoff value was determined by 
a stepwise procedure designed to minimize the classification 
error for both classes. The final cutoff value was placed at 0.36, 
that is, a subject was classified as a responder if the predicted 
positive response probability exceeded 0.36.
Testing of the Model  •  After validation, performance of 
the final model was tested on the testing dataset (n = 35). 
Furthermore, the model was also tested on a cohort of tinni-
tus patients tested at the tinnitus center of the University of 
Regensburg. Data were provided from 32 patients before and 
after traditional tDCS of the rDLPFC. Results from this trial 
have been published previously (E. Frank et al. 2012). Where 
necessary, these external data were first modified to correspond 
to the dataset that was used to construct the classifier. Tinnitus 
severity in this study was enquired by the Tinnitus Handicap 
Inventory (THI), a self-report questionnaire of which total 
scores range from 0 to 100 (Newman et al. 1996). Responders 
were defined as subjects whose score decreased with at least 
the clinically relevant difference on the THI, that is, 7 points 
(Zeman et al. 2011). Severity of depressive symptoms in this 
cohort was examined using the Beck Depression Inventory 
(BDI). Although these questionnaires were developed for 
slightly different purposes, a literature review found strong 
correlations between their outcomes (Bjelland et al. 2002). 
Therefore, scores on the BDI were rescaled to match scores on 
the depression subscale of the HADS. Categorial handedness 
data were converted to continuous data to correspond to scores 
on the EHI. Missing data were handled by median imputation. 
Statistical significance of the model performance on this dataset 
was assessed by the Mann-Whitney U statistic, which can be 
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seen as equivalent to the AUC of the receiver operating charac-
teristic (ROC) curve (Bamber 1975).
Multiple Logistic Regression  •  To facilitate evaluation of the 
random forest classifier performance, a multiple logistic regres-
sion model was designed based on the variables included in 
the final random forest model. Similarly to the random forest 
model, a thresholding procedure was applied by modifying the 
cutoff values for classification. The final cutoff value was placed 
at 0.26, that is, a subject was classified as a responder if the pre-
dicted positive response probability exceeded 0.26. A five-fold 
cross-validation was applied on the training dataset. Feature 
selection was based on Wald Chi-square statistics, which were 
used as a measure of feature importance, as the dataset con-
tained both continuous and categorical data. Performance of the 
logistic regression model and the random forest model on the 
test dataset were compared using a McNemar’s Chi-squared test 
(Dietterich 1998).
Post Hoc Analyses  •  Post hoc statistical tests were performed 
to compare the responder and the nonresponder group concern-
ing the topmost important features identified in the random forest 
classifier model. For TFI scores at baseline, two-sided t tests were 
used. HADS depression scores, VAS maximum loudness scores, 
EHI scores, tinnitus duration, and pure-tone averages were not 
normally distributed (as evidenced by a Shapiro-Wilk test) and 
for these variables, nonparametric Wilcoxon tests were used. A 
Bonferroni correction for multiple comparisons was applied so 
that differences were considered significant at α = 0.0083.

Additional Resources
The study protocol of the clinical trial, which garnered the 

data discussed in this paper was registered at Clinicaltrials.gov 
(protocol number: NCT04565132).

RESULTS

Twenty-four of 99 Participants Responded Positively 
HD-tDCS

A total of 99 patients completed all assessments and were 
included in the analysis. An overview of demographic details, 
tinnitus-related characteristics, and questionnaire scores at 
baseline is provided in Table 1.

Overall, treatment outcome was variable, with a consider-
able number of participants showing no improvement after 
treatment. On average, Tinnitus Functional Index (TFI) scores 
dropped from 46.23 ± 19.84 at baseline to 42.24 ± 19.83 at the 
follow-up time point. The difference in TFI scores between 
baseline and follow-up was significant (paired t test: t = 2.395, 
P = 0.019). In 24 of 99 participants, TFI scores decreased with 
the minimal clinically relevant difference of 13 points or more. 
These participants were classified as responders. Overall, TFI 
scores of most nonresponders remained on a similar level from 
baseline to follow-up. TFI scores of 10 participants increased 
with 13 or more points.

The Random Forest Classifier Predicts Treatment 
Response With High Accuracy

An initial random forest model with five-fold cross-valida-
tion was developed on a training dataset (n = 64), based on all 
available parameters at baseline. These 16 parameters consisted 

of demographic variables, hearing level, tinnitus characteris-
tics, and questionnaire scores. A complete overview of all used 
parameters is provided in Table 1. A measure of cost-sensitiv-
ity was added to the model, penalizing false negatives more 
strongly than false positives. Based on these initial analyses, 
all features were ranked according to feature importance across 
all folds and the top six parameters were selected for the final 
model. These parameters included TFI scores at baseline, VAS 
for maximum tinnitus loudness, HADS depression subscale 
scores, EHI handedness scores, tinnitus duration, and hearing 
level.

The final model, tested on an unseen dataset (n = 35), 
achieved an accuracy of 85.71%, corresponding to a sensitiv-
ity of 100% and specificity of 81.48%. Area under the curve 
(AUC) of the ROC curve was 0.815 (Fig. 1A), while AUC of 
the precision-recall curve was 0.548 (Fig. 1B). Feature impor-
tance computation showed that TFI scores at baseline and EHI 
scores, indicating handedness, were of the highest importance 
in the development of the model (Fig.  1C). The random for-
est model outperformed a predictive multiple logistic regres-
sion model based on the same six parameters included in the 
random forest classifier (68.57% accuracy, 87.50% sensitivity, 
62.96% specificity). AUC of the ROC for this multiple logistic 
regression model was similar as for the random forest model 
(Fig. 1D), whereas that of the precision-recall curve was con-
siderably lower (Fig. 1E). A McNemar’s Chi-squared test indi-
cated that the difference between both models was statistically 
significant (P = 0.041).

Post hoc analyses were performed to aid interpretation of 
the classifier results. Compared to nonresponders, the group of 
HD-tDCS responders was characterized by significantly higher 
baseline TFI scores (t[97] = 4.62, P < 0.001) (Fig. 2). No signif-
icant differences between responders and nonresponders were 
found for any of the remaining features used in the final model. 
Results of these post hoc tests are provided in Table 2.

The Random Forest Classifier Does Not Perform 
Significantly Above Chance Level on an External 
Dataset

To further explore the generalizability of the random forest 
classifier, its performance was tested on a dataset composed of 
tinnitus patients who received traditional tDCS at the tinnitus 
center of the University of Regensburg (Frank et al. 2012). In 
this cohort of 32 patients, six subjects responded to the treat-
ment, with response being defined as a reduction of at least 
7 points in the THI. The random forest classifier was able to 
predict treatment response with an accuracy of 71.88%, corre-
sponding to a sensitivity of 66.67%, and specificity of 73.08%. 
AUC of the ROC curve was 0.635 (Fig. 3). A Mann-Whitney U 
test was performed to examine whether this AUC was signifi-
cantly different from 0.5. No significant difference was found 
(P = 0.071).

DISCUSSION

We employed a machine learning approach to predict 
response to HD-tDCS treatment in a group of 99 patients with 
subjective tinnitus. The proposed random forest classifier pre-
dicted treatment response with a high accuracy of 86%, out-
performing a more traditional statistical approach. To our 
knowledge, the current paper represents the first attempt to 
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predict tinnitus treatment response using a machine learning 
method.

The final random forest classifier achieved high accuracy 
with balanced sensitivity and specificity. To increase the robust-
ness of these results and reduce the risk of overfitting, we 

employed a five-fold cross-validation and tested our model on 
a separate dataset not used for training. Thus, the evaluation of 
model performance was solely based on how well it predicted 
treatment response in unseen data. A five-fold cross-validation 
was performed instead of a more commonly used 10-fold 

Fig. 1. Performance of the random forest classifier (above) is superior to a multiple logistic regression (below). A, ROC curve for the random forest classifier. 
B, Precision-recall curve for the random forest classifier. C, Feature importance, based on the permutation of out-of-bag data and normalized to the most 
important feature. D, ROC curve for the multiple logistic regression model. E, Precision-recall curve for the multiple logistic regression model. Red dotted lines 
in panels (A, B, D, and E) represent classifier models without skill. EHI indicates Edinburgh Handedness Inventory; HADS, Hospital Anxiety and Depression 
Scale; TFI, Tinnitus Functional Index; ROC, receiver operating characteristic; VAS, Visual Analog Scale.

Fig. 2. The random forest classifier performs above chance level on an unrelated dataset. A, ROC curve for the random forest classifier. B, Precision-recall curve 
for the random forest classifier. Red dotted lines represent classifier models without skill. ROC indicates receiver operating characteristic.
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cross-validation to ensure that, given our relatively small sam-
ple size and imbalanced dataset, samples from both responder 
and nonresponder classes were present in all folds. As an addi-
tional test of the model’s generalizability, its performance was 
tested on a dataset containing the outcomes of a tDCS trial per-
formed at a different tinnitus center with different stimulation 
settings and different outcome measures. Although the classifier 
performed with acceptable accuracy, the ROC indicated that 
the model did not perform significantly better than chance (P 
= 0.07). It must be noted that the sample size of this dataset 
was relatively small, and that the absolute number of respond-
ers (n = 6) was low. This might lead to either over- or underes-
timation of model precision, and as such, estimations of model 
performance on this test set should be interpreted with caution. 
Furthermore, although these data were relatively well-aligned to 
the dataset collected at the Antwerp University Hospital, some 
unavoidable differences between the two used datasets should 

be noted. Patients included in the Regensburg trial received tra-
ditional tDCS instead of HD-tDCS. Although an earlier study 
did not find significant differences in overall efficacy of tDCS 
and HD-tDCS of the rDLPFC for tinnitus treatment (Jacquemin 
et al. 2018), there remains a distinct possibility that the work-
ing mechanisms of diffuse tDCS differ from those of targeted 
HD-tDCS, and that positive responders of one technique would 
not necessarily respond well to the other. Furthermore, tinnitus 
severity was examined using the Tinnitus Handicap Inventory 
(THI) instead of the TFI, depressive symptoms were gauged 
using the BDI instead of the HADS, and handedness was 
assessed as a self-reported categorical variable but not exam-
ined by the EHI. The drop in performance accuracy might be 
at least partially explained by these differences in data struc-
ture. To facilitate the comparison of treatment response and the 
validation of both statistical and machine learning models, we 
strongly suggest the standardization of stimulation protocols 
and participant assessment in tDCS trials.

The random forest classifier significantly outperformed 
a multiple logistic regression model, which was based on the 
exact same features. Both specificity and sensitivity were nota-
bly lower for this model than for the random forest classifier, 
and this difference in performance was found to be statistically 
significant. This finding may be an indication of the presence 
of more complex, nonlinear interactions in the data that are not 
captured by a linear model. The superior performance of the 
random forest classifier on the test data is a clear indication of 
the possible value of ensemble learning techniques for clinical 
datasets, even when their sample size is relatively small.

A major benefit of the random forest technique is the high 
level of interpretability of its results, as the importance of each 
feature can be calculated reliably. We identified several impor-
tant features necessary to predict HD-tDCS outcome. First, 
the importance of both Tinnitus Functional Index (TFI) scores 
and maximal subjective tinnitus loudness demonstrates the 
relevance of baseline tinnitus severity for treatment response. 
Responders were characterized by significantly higher TFI 
scores, suggesting that patients with a higher baseline tinnitus 
severity might be more susceptible toward HD-tDCS treatment. 
The predictive effect of baseline tinnitus severity on treatment 
response has been shown in previous neuromodulation trials (G. 
Frank et al. 2010; Lehner et al. 2012). Neuromodulation effects 
are known to be dependent on ongoing activity in the stimulated 
brain area, as has been demonstrated in animal experiments 
(Fritsch et al. 2010). Thus, if we assume that maladaptive brain 
activity is more pronounced in patients with higher tinnitus dis-
tress (Vanneste et al. 2010a), this could provide an explanation 
for the observed predictive effect of baseline tinnitus severity.

Scores on the depression subscale of the Hospital Anxiety 
and Depression Scale (HADS) represented an additional feature 
of importance. This is a finding of particular interest, as tDCS of 
the dorsolateral prefrontal cortex (DLPFC) has also been used 
in the experimental treatment of depression (Boggio et al. 2008; 
Fregni et al. 2006; Loo et al. 2012). The confounding effect of 
concurrent depressive symptoms on tinnitus treatment response 
should clearly be further explored. Ideally, future clinical trials 
into the efficacy of HD-tDCS for tinnitus treatment should con-
trol for the confounding effect of these co-occurring symptoms, 
for instance by excluding participants exhibiting clinical signs 
of depression. Moreover, scores on a handedness inventory were 
found to greatly influence the random forest classifier results, 

TABLE 2.  Results of post hoc tests comparing responders and 
nonresponders

Feature P

  TFI scores at baseline <0.001*

  VAS scores for maximum tinnitus loudness 0.31
  HADS depression subscale scores 0.14
  EHI handedness scores 0.50
  Tinnitus duration 0.22
  Hearing level 0.66

A two-sided t test was used to compare TFI scores at baseline between responders and 
nonresponders. Nonparametric Wilcoxon tests were used for the remaining features, as these 
data were not normally distributed. A Bonferroni correction for multiple comparisons was 
applied to the results of these post hoc t tests so that results were only significant if P < 0.0083.
*denotes a significant result.
EHI indicates Edinburgh Handedness Inventory; HADS, Hospital Anxiety and Depression 
Scale; TFI, Tinnitus Functional Index; VAS, Visual Analog Scale.

Fig. 3. Responders are characterized by a significantly higher baseline tin-
nitus severity than nonresponders. TFI scores at baseline were significantly 
higher in responders (60.45 ± 16.85) than in nonresponders (41.69 ± 18.75). 
Responders are presented in green, while nonresponders are presented in 
gray. TFI indicates Tinnitus Functional Index.
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and a slightly higher proportion of left-handed participants was 
found in the responder group. This might be an indication that 
the neurophysiological effects of tDCS of the DLPFC depend 
on hemispheric dominance and handedness, as has been shown 
recently (Brookshire and Casasanto 2018). However, this claim 
is difficult to substantiate, as many tDCS studies have exclu-
sively tested right-handed subjects. Moreover, it must be noted 
that although handedness has historically been used as an easy 
and reliably measured proxy for cerebral lateralization, the rela-
tionship between both factors is not straightforward (McManus 
2019; Güntürkün et al. 2020). As such, handedness should 
merely be interpreted as an indirect surrogate of hemispheric 
dominance that is currently more accessible than more direct 
measures of the phenomenon. Clearly, further research is neces-
sary to explore the putative role of hemispheric dominance in 
unilateral tDCS of the rDLPFC. Further research is necessary to 
confirm this putative role of hemispheric dominance and hand-
edness in unilateral tDCS of the DLPFC.

An important limitation of this study remains the absence of 
a sham control group. This analysis was performed on a data-
set obtained in a previous study that originated in a clinical set-
ting (Jacquemin et al. 2021). A sham-controlled trial using this 
HD-tDCS method is currently ongoing (Cardon et al. 2019), 
and results from this trial will be used to further validate the 
model. In the absence of a sham arm, it is currently not pos-
sible to distinguish naturally occurring fluctuations of tinnitus 
severity from specific effects of the HD-tDCS. The predictive 
factors identified in this paper do not seem to play an impor-
tant role in predicting spontaneous improvement of tinnitus, 
although the published research on this topic mainly focuses 
on acute rather than chronic tinnitus (Muhlmeier et al. 2016; 
Simoes et al. 2021). Moreover, high-baseline tinnitus severity 
has not been found to predict response to other treatments such 
as orofacial treatment (van der Wal et al. 2020), and thus may be 
a specific predictor for neuromodulation treatment response. To 
gain more insight into the role of baseline tinnitus severity, but 
also handedness and depressive symptoms, as predictive factors 
for treatment response, we strongly recommend the inclusion of 
a sham control group in future tDCS trials for tinnitus treatment. 
Overall, in order to ultimately achieve the implementation of 
predictive models in a clinical setting, we advocate the collec-
tion of large datasets within randomized controlled trials, ideally 
using a standardized set of baseline and outcome measurements. 
For instance, the development of a core outcome domains set 
that is specifically tailored toward neuromodulation treatment in 
tinnitus would greatly benefit the future implementation of these 
machine learning models in clinical practice (Hall et al. 2018).

In conclusion, we propose a machine learning classifier able 
to predict response to tDCS treatment for tinnitus with high 
accuracy. Input data for the model are easily obtainable, allow-
ing this model to be readily implemented and evaluated in a 
clinical setting. The future development and validation of treat-
ment outcome prediction models may ultimately aid caregiv-
ers to provide targeted treatment options for individual tinnitus 
patients.
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