
ORIGINAL RESEARCH

Development of a novel gene signature to predict prognosis and response to PD-1 
blockade in clear cell renal cell carcinoma
Xiaomao Yin a, Zaoyu Wangb*, Jianfeng Wanga*, Yunze Xua, Wen Kong a, and Jin Zhang a

aDepartment of Urology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China; bDepartment of Pathology, Renji Hospital, 
School of Medicine, Shanghai Jiaotong University, Shanghai, China

ABSTRACT
Clear cell renal cell carcinoma (ccRCC) is the most common kidney malignancy characterized by a poor 
prognosis. The treatment efficacy of immune checkpoint inhibitors (ICIs) also varies widely in advanced 
ccRCC. We aim to construct a robust gene signature to improve the prognostic discrimination and 
prediction of ICIs for ccRCC patients. In this study, adopting differentially expressed genes from seven 
ccRCC datasets in GEO (Gene Expression Omnibus), a novel signature (FOXM1&TOP2A) was constructed in 
TCGA (The Cancer Genome Atlas) database by LASSO and Cox regression. Survival and time-dependent 
ROC analysis revealed the strong predictive ability of our signature in discovery set, two online validation 
sets and one tissue microarray (TMA) from our institution. High-risk group based on the signature 
comprises more high-grade (G3&G4) and advanced pathologic stage (stageIII/IV) tumors and presents 
hyperactivation of cell cycle process according to the functional analysis. Meanwhile, high-risk tumors 
demonstrate an immunosuppressive phenotype with more infiltrations of regulatory T cells (Tregs), 
macrophages and high expressions of genes negatively regulating anti-tumor immunity. Low-risk tumors 
have an improved response to anti-PD-1 therapy and the predictive ability of our signature is better than 
other recognized biomarkers in ccRCC. A nomogram containing this signature showed a high predictive 
accuracy with AUCs of 0.90 and 0.84 at 3 and 5 years. Overall, this robust signature could predict 
prognosis, evaluate immune microenvironment and response to anti-PD-1 therapy in ccRCC, which is 
very promising in clinical promotion.
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Introduction

Clear cell renal cell carcinoma (ccRCC) is the most common 
subtype of renal cell carcinoma (RCC) and responsible for the 
majority of RCC-related deaths.1 Surgical resection is recom-
mended for patients with localized ccRCC and many of them 
possess favorable prognosis.2 However, 20–40% patients would 
experience tumor progression and death after curative intent 
surgery.3,4 Benefiting from better understandings of tumor 
immunogenicity and large numbers of clinical trials, several 
immune checkpoints inhibitors (ICIs) have been approved for 
metastatic ccRCC after targeted therapy failure (nivolumab) or 
in combination with targeted agents (pembrolizumab + axiti-
nib/avelumab + axitinib) as the first-line therapy.5–7 Tumor 
immune microenvironment (TIME) which comprises infil-
trated immune cells and immunomodulatory molecules has 
been revealed highly correlated with cancer progression and 
ICIs response.8–10 Thus, constructing a prognostic model with 
the power of evaluating TIME has a great potentiality of pre-
dicting clinical outcomes and immunotherapy response in 
ccRCC.

In recent years, some powerful multi-gene signatures have 
been developed to evaluate the postoperative risk or ICIs 
response for ccRCC. ClearCode34 is a mRNA classifier 

established from an institutional cohort and The Cancer 
Genome Atlas (TCGA) database. It demonstrated 
a satisfactory diagnostic performance over clinical nomo-
grams with c-indices of 0.65–0.70.11 Rini and his collgues 
developed a 16-gene assay capable of predicting recurrence 
after surgery for localized ccRCC.12 Deep RNA-seq analysis 
constructed a B cell-related gene signature to predict efficacy 
of anti-PD-1 therapy in ccRCC.13 All of these mRNA-based 
signatures usually incorporated dozens of biomarkers 
detected by RNA sequencing or RT-PCR without validation 
by other types of data (such as microarray or tissue micro-
array), which might restrain their applications in clinical 
practice.

In this study, we integrally analyzed seven ccRCC datasets 
from Gene Expression Omnibus (GEO) and TCGA database to 
develop a robust signature, the predictive ability of which was 
validated in two independent cohorts online and one tissue 
microarray (TMA) cohort from our institution. This signature 
further demonstrated strong capacity of estimating TIME and 
response to immunotherapy in ccRCC. What’s more, in com-
bination with clinicopathological features, a nomogram based 
on our gene signature presented improved predictive power 
and risk stratification for ccRCC.
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Material and methods

Collection of ccRCC datasets

Microarray datasets applied to robust DEGs analysis were 
downloaded from GEO (http://www.ncbi.nlm.nih.gov/geo/). 
All included datasets met the following criteria: Gene expres-
sion data containing at least 10 human ccRCC and adjacent 
normal tissues. Seven ccRCC datasets were finally determined 
for our research: GSE53757, GSE53000, GSE36895, GSE15641, 
GSE66272, GSE68417, GSE40435. Clinical and RNA-seq data 
of ccRCC samples was downloaded from TCGA database 
(https://cancergenome.nih.gov/). E-MTAB-1980 dataset 
downloaded from ArrayExpress database (https://www.ebi.ac. 
uk/arrayexpress/) was served as validation set.

Tissue microarray (TMA) containing ccRCC and adjacent 
normal samples were collected from patients undergoing 
nephrectomy in Renji Hospital. Informed consent was 
obtained from all patients. Clinicopathologic information was 
collected during the follow-up after surgery. TNM stage was 
determined according to American Joint Committee on 
Cancer staging manual (7th edition), and pathological grade 
was evaluated according to the Fuhrman grading system. This 
was approved by the Ethics and Research Committees of Renji 
Hospital, Shanghai Jiao Tong University School of Medicine.

Robust DEGs identification

R packages “affy” or “oligo” were selected to conduct combination 
of original CEL file, RMA background correction and data nor-
malization according to their compatibility with platforms.14,15 

Package “limma” was utilized to find DEGs with the threshold set 
at log2FoldChange >.585 and adjusted P < .05.16 Then, we utilized 
the robust rank aggregation (RRA) method to integrate the results 
of 7 GEO datasets to identify the robust DEGs.17

Co-expression modules construction and hub genes 
identification

Weighted Gene Co-expression Network Analysis (WGCNA) is 
a method capable of transforming expression data into co- 
expression gene modules and exploring the relationship 
between modules and phenotypic traits.18 In our study, top 
3000 upregulated DEGs (according to P) were extracted from 
RRA analysis to perform WGCNA using the expression data of 
TCGA cohort. Scale independence and average connectivity 
degree of network with different power value were tested (ran-
ging from 1 to 18). The appropriate power value was deter-
mined when scale independence was above 0.85 with relatively 
higher connectivity degree. Then, according to topological 
overlap matrix(TOM)-based dissimilarities, genes were sorted 
into different gene modules. The module with the highest 
correlation with clinical traits was regarded as key module 
and selected to identify candidate hub genes.

Hub genes were determined by the overlap of candidate hub 
genes and genes selected from protein–protein interaction 
(PPI) network.19 These genes were further validated in TCGA 
cohort. Genes which were upregulated in tumor and signifi-
cantly correlated with overall survival (OS) of ccRCC patients 
(P < .01) were chosen for further analysis.

Signature construction

Least Absolute Shrinkage and Selection Operator regression 
(LASSO) is a form of penalized regression which could be used 
in screening variables from high dimensional data to construct 
risk models.20 In our study, patients in TCGA cohort were 
randomly divided into two group by 3:1 ratio, discovery set 
(n = 398) and internal validation set (n = 133). LASSO regres-
sion was performed on discovery set to find most valuable 
genes with prognostic power in ccRCC. Optimal value of tun-
ing parameter (λ) were determined by ten-time cross- 
validation using minimum criteria. Prognostic values of these 
genes were further validated on the TMA cohort. Multivariate 
cox regression was used to construct the gene signature. Based 
on the signature we built, a risk score formula was established 
as follows: 

Riskscore ¼
X

i
Coefficient of ið Þ � Expression of gene ið Þ

Coefficient of gene (i) is the regression coefficient of gene (i) in 
LASSO-Cox regression model and Expression of gene (i) is the 
expression value of Gene (i) for each patient. Patients were 
divided into high- and low-risk groups according to the med-
ian of risk score.

Enrichment analysis

Gene Ontology (GO) enrichment and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway analysis were per-
formed on genes in the key module by R package 
“clusterprofiler”.21 After setting the criteria of adjusted 
P < .01, GO terms and KEGG pathways were visualized by 
package “ggplot2”.

We utilized the package “clusterprofiler” to conduct Gene 
Set Enrichment Analysis (GSEA) analysis for signature genes.21 

Meanwhile, the “GSVA” package was used to find significantly 
correlated pathways.22 adjusted P < .01 was regarded as statis-
tical significance. The gene set “c2.cp.kegg.v6.2.symbols.gmt” 
and “h.all.v7.2.symbols.gmt” was chosen as the reference 
gene set.

Nomogram construction

We performed univariate analysis on clinicopathologic para-
meters and our signature in the TMA cohort. The significant 
prognostic variables (P < .05) were subsequently incorporated 
into multivariate Cox regression analysis. R package “rms” was 
utilized to build the nomogram adopting variables with pre-
dictive significance in multivariate analysis (P < .05). 
Calibration curves were used to assess the consistency between 
predicted and actual survival outcome. Furthermore, time- 
dependent ROC curves were applied to compare the predictive 
accuracy of nomogram, gene risk model and clinicopathologic 
factors.

Immune infiltration analysis

CIBERSORT, IMMUNCELL AI and ESTIMATE were used to 
estimate immune cells abundance between high- and low-risk 
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groups using expression data from TCGA database.23–25 

Immune-related molecules were further analyzed to under-
stand immune infiltration in ccRCC.26,27

Response to anti-PD-1 therapy

Clinical and RNA-seq data were retrieved from two clinical 
trials: 1) a phase III study of nivolumab vs. everolimus in 
patients with previously treated metastatic RCC (CheckMate 
025, NCT01668784); 2) a phase II study of metastatic RCC 
patients treated with nivolumab (CheckMate 010, 
NCT01354431).28 Details on study designs and treatment for 
patients in each trail have been published before.5,29 Metastatic 
ccRCC patients treated with nivolumab were collected to eval-
uate the predictive ability of our signature.

Somatic variants analysis

Genetic mutation data were downloaded from TCGA database. 
The “maftools” package was used to analyze somatic variants. The 
overall mutation status was depicted in high- and low-risk groups. 
Top five mutated genes were also compared between two risk 
groups.

Immunohistochemistry (IHC)

The primary antibodies used in IHC for TMA slides were as 
follows: anti-FOXM1 (Proteintech, #13147-1-AP, 1:100 dilu-
tion), anti-TOP2A (Santa Cruz, #sc365916, 1:50 dilution), 
anti-NUF2 (Bioss, #bs-7714 R, 1:100 dilution), anti-KIF18B 
(Novus, #NBP1-90882, 1:50 dilution). TMAs were stained 
according to the conventional streptavidin-peroxidase 
method of IHC (Zymed Laboratories Inc, San Francisco, 
CA, USA). Two certified pathologists who were blind to the 
information of patients independently analyzed the IHC 
results. At high (200×) magnification, the percentage of 
positive cells was scored as: 1 (0–25%), 2 (26–50%), 3 (51–-
75%), 4 (>75%), the intensity of positive staining was classi-
fied into 4 scales: 0 (negative), 1 (weak), 2 (moderate), 3 
(strong). Then, comprehensive score (staining percentage × 
intensity) was used to evaluate the expression level of signa-
ture genes. Disagreements between two pathologists were 
resolved by consensus. Comprehensive score = 6 was set as 
cutoff value to define high and low expression group of 
signature genes.

Multiplex immunohistochemistry (mIHC)

Staining of TMA slides was performed with the autostainer 
system Bond III (Leica Biosystems, Austria). Primary antibo-
dies are as follows: anti-CD68 (Gene Tech, #GM087602, 1:100 
dilution), anti-CD163 (ABCAM, #ab182422, 1:300 dilution), 
anti-FOXP3 (R&B, #MAB8214, 1:100 dilution), anti-PD-L1 
(CST, #13684, 1:400 dilution). Each slides were scanned with 
the Pannoramic MIDI (3DHISTECH, Hungary). Multispectral 
images were evaluated using HALO Image Analysis Platform 
(Version 2.3.2089.52, Indica Labs, US). Individual cells were 
identified using the DAPI nucleus staining. Treg cell (FOXP3 
+), Macrophage (CD68+), Macrophage M2 (CD68+/CD163+) 

and PD-L1 positive cells were quantified and their percentages 
in each TMA core were calculated.

Results

Identification of robust DEGs

The design of our study is shown in Figure 1. The information 
of 7 ccRCC GEO datasets included in current study is displayed 
in Table S1. RRA could combine and rank multiple lists of 
DEGs derived from datasets measured by different platforms.17 

A total of 266 ccRCC samples and 343 peritumor tissues were 
incorporated into RRA analysis to identify the robust DEGs. 
The expression pattern of top 20 upregulated and down- 
regulated robust DEGs demonstrated high consistency in dif-
ferent datasets (Figure S1).

Identification of the key module and hub genes

To find the key module most correlated with clinical traits, we 
performed WGCNA on TCGA cohort extracting robust DEGs 
derived from the RRA analysis. Clinical information was 
retrieved from TCGA (Figure 2a). After setting soft- 
thresholding value as 6 (scale free R2 = .87, mean connectiv-
ity = 11.10) and cut height as 0.20, eight co-expression modules 
were eventually identified (Figure 2b-d). According to the heat-
map of module-trait relationships, green module demonstrates 
the highest correlations with clinical traits (Figure 2e; R2 = .35 
and P = 2e−16 with pathologic stage, R2 = .38 and P = 6e−20 with 
tumor grade, R2 = .31 and P = 2e−13 with vital status). Module 
significance analysis further validated that green module is the 
highest correlated module with survival status of ccRCC patients 
(Figure 2f). Herein, we determined green module as the key 
module. GO and KEGG analyses were conducted to obtain 
further insight into biological function of genes within the key 
module. Based on adjust P value, top ten significant GO terms 
for biological process, molecular function and cellular compo-
nent, as well as KEGG pathways, are shown in Figure S2. The 
results implied that genes in the key module are mainly involved 
in mitotic cell cycle, nuclear division and organelle fission.

Hub genes were recognized as the overlap of candidate hub 
genes and gene in MCODE sub module.30 Under the thresh-
olds of Module Membership >.8 and Gene Significance >.2, 53 
candidate genes in green module were extracted (Figure S3A), 
105 genes were chosen from PPI network after MCODE ana-
lysis and visualized by Cytoscape (Figure S3B). Forty nine hub 
genes were eventually identified after mapping candidate genes 
to MCODE genes. These hub genes were listed in Table S2. The 
up-regulation of hub genes in tumors was confirmed by inde-
pendent samples t-test (P < .01, Table S3 & Figure S4). These 
genes were further performed Kaplan-Meier survival analysis 
on GEPIA website (http://gepia.cancer-pku.cn/). Twenty 
four hub genes highly correlated with OS of ccRCC patients 
were chosen for further analysis (P < .01, Table S3 & Figure S5).

Construction of the gene signature

LASSO regression was performed on 24 validated hub genes in 
discovery set and 4 biomarkers: FOXM1 (Forkhead box M1), 
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TOP2A (DNA Topoisomerase IIα), KIF18B (Kinesin Family 
member 18B), NUF2 (NUF2 component of NDC80 kinetochore 
complex) were preserved when the tuning parameter (λ) was 
minimized to 0.038 and log(λ) was −3.25 (Figure 3a). Immuno- 
staining of these genes was performed on TMA containing 348 
ccRCC tumors and peritumor tissues from our institution. 
Detailed information of patients in the TMA is shown in Table 
1. The representative images of four genes expressed in tumors 
and peritumor tissues are shown in Figure 3c. The result showed 
all genes were significantly upregulated in tumors from TCGA 
cohort (P < .001) (Figure 3b), IHC staining revealed protein 

levels of FOXM1, TOP2A and NUF2 were significantly higher in 
tumors compared with peritumor tissues (P < .001). While the 
protein level of KIF18B was reversely upregulated in peritumor 
tissues (P < .001)(Figure 3d). Furthermore, survival analysis 
showed that high expressions of FOXM1 and TOP2A were 
significantly correlated with shortened OS in the TMA cohort 
(P < .001, Figure 3e). Finally, TOP2A and FOXM1 were incor-
porated into the Cox proportional hazard model and risk 
score = (0.693 � FOXM1 expression) + (−0.184� TOP2A 
expression). According to the median of risk score, patients 
were divided into high- and low-risk groups.

Figure 1. Schematic diagram of the study design.
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Validation of the gene signature

To evaluate the predictive abilities of our signature, we 
performed Kaplan-Meier survival and time dependent 
ROC analysis in discovery (n = 398), internal (n = 133) 
and two external validation sets (E-MTAB-1980, n = 101; 
TMA cohort, n = 348). In discovery set, high-risk group 
comprised more death cases than low-risk group (Figure 
4a, left panel). The survival rate of patients in high-risk 
group was significantly lower than those in low-risk group 

(P < .0001, Figure 4a, middle panel). The predictive accuracy 
of this signature was 0.68, 0.70 and 0.70 at 3,5 and 8 years 
(Figure 4a, right panel). In accordance with the results in 
discovery set, a lower survival rate was observed in high-risk 
group, both in internal validation set (P = .029, Figure 4b, 
middle panel) and two external validation sets (P < .0001, 
Figure 4c, middle panel; P < .0001, Figure 4d, middle panel). 
In internal validation set, the predictive accuracy of the gene 
signature was 0.63, 0.66 and 0.76 at 3, 5 and 8 years (Figure 

Figure 2. Identification of the key module by WGCNA. (a) Clustering dendrogram of ccRCC samples and heatmap of clinical traits. The clustering was based on the 
expression data of robust DEGs. The color intensity in heatmap increased with age, pathological stage and grade. In terms of survival status, white means alive and red 
means dead. (b) Analysis of the scale-free fit index (left) and the mean connectivity (right) for various soft-thresholding power value. (c) Clustering of module 
eigengenes. The red line indicates cut height = 0.20. (d) Dendrogram of all DEGs clustered based on a dissimilarity measure (1-TOM) together with assigned module 
colors. (e) Heatmap of the correlation between module eigengenes and clinical traits of ccRCC. Each cell contains the Pearson correlation coefficient and P value. (f) 
Distribution of average gene significance and errors in the modules associated with survival status of ccRCC. ccRCC, clear cell renal cell carcinoma; DEGs, differentially 
expressed genes; TOM, topological overlap matrix; WGCNA, Weighted Gene Co-expression Network Analysis.
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4b, right panel). In external validation sets, this signature 
also had a good performance in predictive accuracy (AUC: 
0.76, 0.67 and 0.72 at 3, 5 and 8 years, Figure 4c, right panel; 
AUC: 0.72, 0.75 and 0.74 at 3, 5 and 8 years, Figure 4d, right 
panel).

High-risk group correlates with higher tumor grade and 
advanced pathologic stage

Significant differences were found between high- and low-risk 
groups in tumor grade and pathologic stage. High-risk group 
comprised more high-grade tumors (G3&G4) than low-risk 
group (62.5% vs. 45.0% in TCGA cohort, P < .001; 66.7% vs. 
17.9% in combined GEO cohort, P < .001; 36.0% vs. 18.4% in 

E-MTAB-1980 cohort, P = .049; 28.2% vs. 6.9% in TMA 
cohort, P < .001; Figure 5a). With respect to the distribution 
of pathologic stage, patients in high-risk group also underwent 
significant upstaging compared with those in low-risk group 
(49.8% vs. 28.2% in TCGA cohort, P < .001; 66.7% vs. 33.3% in 
combined GEO cohort, P = .032; 39.2% vs. 10.0% in E-MTAB- 
1980 cohort, P < .001; 8.6% vs. 1.1% in TMA cohort, P < .001; 
Figure 5b).

Relationships between clinicopathologic features and 
TOP2A/FOXM1 expressions were also investigated respec-
tively in the TMA cohort. The results indicated that expression 
of FOXM1 was correlated with age (P = .012), AJCC stage 
(P = .015), grade (P < .001), tumor size (P < .001) and necrosis 
(P = .003), expression of TOP2A was correlated with grade 

Figure 3. Construction of the gene signature. (a) 10-time cross validation for tuning parameter selection by LASSO regression. The solid vertical lines are partial 
likelihood deviance ± standard error (SE). The dotted vertical lines are drawn at the optimal values by minimum criteria and 1-SE criteria (b) Expression levels of 4 
selected genes between tumors and peritumor tissues in TCGA database (c) Representative immunostaining pictures of 4 selected genes. Staining of FOXM1, TOP2A and 
KIF18B are mainly located in the nuclei as well as cytoplasm, staining of NUF2 are mainly located in the cytoplasm. The upper half comprises images of tumors, images of 
adjacent normal tissues were at the bottom half. Scale bar: 100 μm. (d) Expression levels of 4 selected genes between tumors and peritumor tissues in the TMA cohort. 
(e) Kaplan–Meier survival analysis of 4 selected genes in the TMA cohort. ***P < .001. LASSO, Least Absolute Shrinkage and Selection Operator regression; TCGA, The 
Cancer Genome Atlas; TMA, tissue microarray.
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(P < .001), tumor size (P = .002) and necrosis (P < .001) (Table 
2). Representative pictures depicted correlations between 
TOP2A/FOXM1 expressions and tumor grade is shown in 
Figure 5c, the staining intensities of TOP2A and FOXM1 
gradually increased with advancing tumor grade. These results 
indicate these two genes may be closely related to cell cycle 
process.

GSEA and GSVA confirm the high correlation between 
signature genes and cell cycle procession in ccRCC

To reveal the underlying mechanism of TOP2A and FOXM1 in 
ccRCC progression, we performed GSEA and GSVA on RNA- 
seq data of TCGA cohort. Top three significantly enriched 
pathways are demonstrated in Figure 5d-e. Genes in high 
expression groups of TOP2A and FOXM1 were all enriched 
in “Cell cycle” and “Homologous recombination”. GSVA con-
firmed that gene sets of “Cell cycle”, “Homologous recombina-
tion”, “DNA replication” and “Mismatch repair” were 
significantly upregulated in the high expression group of sig-
nature genes (Figure 5f-g). Moreover, high-risk group has 
significant upregulation of cell cycle pathways, for example, 
“G2M checkpoint”, “E2F targets”, “Mitotic spindle” and “MYC 
targets” (Figure S6). Thus, ccRCC in high-risk group presents 
upregulated cell cycle procession which might contribute to the 
hyperproliferation of tumor cells and dismal outcomes.

Immune landscape between high- and low-risk ccRCC

To evaluated whether this cell cycle-related signature could 
reflect the tumor immune microenvironment, we estimated 
the infiltration of immune cells in ccRCC through 
ESTIMATE, CIBERSORT and IMMUNECELL AI, three inde-
pendent algorithms. ESTIMATE score and immune cell types 
which were differentially infiltrated between low- and high-risk 
groups were presented in Figure 6a. High-risk group with 
significantly higher immune_score indicated more immune 
cells infiltration (P < .001). Moreover, high-risk tumors 

contained higher level of immune suppressive cells (T follicular 
helper cells, regulatory T cells (Tregs), Macrophages, ect). By 
comparing the results of CIBERSORT and IMMUNECELL AI, 
regulatory T cells (Tregs) and Macrophages were both signifi-
cantly upregulated in high-risk group (Figure 6b), which indi-
cated an immunosuppressive phenotype might exist in those 
tumors.

High-risk tumors show immunosuppressive phenotype

To confirm the immune cell abundance inferred by two algo-
rithms, we performed mIHC on TMA to identify infiltrations 
of Macrophages and Tregs in ccRCC. In accordance with the 
immune infiltration analysis, proportions of Macrophages 
(CD68+) infiltrated in high-risk tumors were significantly 
higher than those in low-risk group (P = .0035). FOXP3 
+ Tregs also presented the same trend (P = .005). Moreover, 
M2 Macrophages (CD68+ CD163+) were also markedly 
increased in high-risk group (P = .015)(Figure 6c). 
Representative immunofluorescence staining pictures of high- 
and low-risk tumors were showed in Figure 6d. These results 
further validated more immune suppressive cells infiltrated in 
high-risk tumors. In addition, PD-L1 expression was also 
detected in the TMA. PD-L1 positive tumors (PD-L1 positive 
cell >1%) accounted for 5.9% of all tumors and there was no 
difference in PD-L1 expression between high- and low-risk 
tumors (11 positive tumors vs. 9 positive tumors) (Figure 6c).

To further validate the immunosuppressive phenotype, we 
investigated immune molecules which negatively regulated the 
anti-tumor immune response. Expression data of genes nega-
tively regulating The Cancer-Immunity Cycle were download 
from Tracking Tumor Immunophenotype website (http:// 
biocc.hrbmu.edu.cn/) and analyzed between high- and low- 
risk groups.31,32 The results showed that genes involved in 
the negative regulation of the Cancer-Immunity Cycle were 
essentially upregulated in high-risk group, indicating high-risk 
patients have low activities of antitumor immune processes 
(Figure 6e). Common immune checkpoints, such as PD-1, PD- 
L1, CTLA-4 and LAG3, were compared between two groups. 
The results showed that PD-1, CTLA-4 and LAG3 were sig-
nificantly overexpressed in high-risk group compared to the 
counterpart (P < .001)(Figure 6f). Chemokines involved in 
immunosuppressive process induced by Macrophages and 
Tregs (IL-4, IL-10, IL-13, TGF-β) were also significantly upre-
gulated in high-risk group (P < .001)(Figure 6g).33–35 These 
data suggest high-risk patients exhibit inertia in antitumor 
immunities, which might contribute to their poor prognosis.

Low-risk patients are associated with increased response 
to anti-PD-1 immunotherapy

In light of the correlation between our signature and immuno-
logic activity in ccRCC, we next investigated whether there was 
a correlation between the signature and immunotherapy 
response. 156 advanced ccRCC patients treated with nivolu-
mab (anti-PD-1 agent) were retrieved for analysis.28 Patients 
classified into clinical benefit (CB), intermediate clinical benefit 
(ICB) and no clinical benefit (NCB) groups were 53, 44 and 59, 
respectively. Distribution of high- and low-risk patients among 

Table 1. Clinical and pathologic features of 348 ccRCC patients in TMA cohort.

Features n(%)

Age, n(%) 
≤65 
>65

266 (76.4%) 
82 (23.6%)

Tumor size (cm) 
≤4 
>4

179 (51.4%) 
169 (48.6%)

Gender, n(%) 
Male 
Female

245 (70.4%) 
103 (29.6%)

AJCC stage, n(%) 
I 
II 
III 
IV

276 (79.3%) 
55 (15.8%) 
10 (2.8%) 

7 (2.1%)
Fuhrman grade, n(%) 

I 
II 
III 
IV

114 (32.8%) 
173 (49.7%) 

55 (15.8%) 
6 (1.7%)

Tumor Necrosis, n(%) 62 (17.8%)
Death during follow-up, n(%) 71 (20.7%)

ccRCC: clear cell renal cell carcinoma; TMA: tissue microarray
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three groups was shown in Figure 7a. ICB patients were 
included into the CB group for subsequent analysis. The results 
showed low-risk patients were enriched in CB versus NCB 
group (57.7% vs. 37.3%, P = .013, Figure 7b). Meanwhile, 
significantly prolonged progression-free survival (PFS) was 
observed in low-risk patients compared to high-risk ones 
(P = .0031, Figure 7c).

To compare the predictive value of this gene signature 
and other biomarkers of immunotherapy response, PD-L1, 
tumor mutation burden (TMB) and PBRM1 (Polybromo 1) 
mutations were also involved in analysis.28,36–38 There were 
no differences in PD-L1 expression level and TMB between 

CB and NCB group (P = .71, Figure 7d; P = .27, Figure 7f). 
PBRM1 mutations were more likely to cluster in CB versus 
NCB group, but significance was not detected (35.5% vs. 
26.3%, P = .34, Figure 7e). These results indicate our signa-
ture has a potent predictive ability in immunotherapy 
response and better than other recognized biomarkers.

Analysis of somatic variants

Somatic mutations in high- and low-risk ccRCC tumors were 
also investigated. Differences of mutation landscapes between 
two groups were depicted in Figure 8a-b. VHL, PBRM1, TTN, 

Figure 4. Distribution of risk score, Kaplan–Meier survival analysis, time-dependent ROC curves at 3, 5, and 8 years between patients at high- and low-risk in TCGA 
discovery set (a), TCGA validation set (b), E-MTAB-1980 (c) and TMA cohort (d). ROC, receiver operating characteristic; TCGA, The Cancer Genome Atlas; TMA, tissue 
microarray.
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and SETD2 were the most commonly mutated genes (>10% 
mutation rate) both in high- and low-risk tumors. The muta-
tion rate of BAP1 (BRCA1 associated protein 1) was signifi-
cantly higher in high-risk group (17% vs. 5%, P < .001) 
(Figure 8c).

Since PBRM1 loss of function (missense mutation, frameshift 
deletion, nonsense mutation, splice-site, etc.) was previously 
reported to correlate with ccRCC survival and response to 

ICIs,36,39 the correlation between PBRM1 LOF (loss of function) 
and this cell cycle-related signature was explored. The result 
showed percentage of PBRM1 LOF was higher in low-risk 
group, while difference was not significant in statistic (45% vs. 
38%, P = .22, Figure 8c-d). Patients with PBRM1 LOF were 
found to have significantly prolonged OS compared to PBRM1 
intact ones (P = .012, Figure 8e). Multivariate Cox regression 
analysis demonstrated both the cell cycle-related signature and 

Figure 5. High correlations of the gene signature with tumor grade and pathologic stage followed by functional analysis of signature genes. (a) Distribution of G1&G2 
and G3&G4 tumors between high- and low-risk group in TCGA, combined GEO (GSE66272 & GSE36895), E-MTAB-1980 and TMA cohort. (b) Distribution of stage I/II and 
III/IV tumors between high- and low-risk group in TCGA, combined GEO (GSE66272 & GSE36895), E-MTAB-1980 and TMA cohort. (c) Representative immunostaining 
pictures of FOXM1 and TOP2A between different tumor grade. Scale bar: 100 μm. Top 3 gene sets enriched in the high-expression group of signature genes (d) FOXM1 
(e) TOP2A. Clustering heatmaps of differentially enriched pathways for signature genes based on GSVA. (f) FOXM1 (g) TOP2A. χ2 test was used to test difference in 
distribution of tumor grade and pathologic stage, *P < .05.**P < .01.***P < .001. GEO, Gene Expression Omnibus; GSVA, gene set variation analysis; TCGA, The Cancer 
Genome Atlas; TMA, tissue microarray.
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PBRM1 mutation status were independent risk factors of ccRCC 
survival (Figure 8f). Moreover, combination of PBRM1 mutation 
status and our signature had an improved risk stratification 
ability (Figure 8g).

Construction of nomogram predicting OS based on the cell 
cycle-related signature

According to the rank in descending of risk scores, patients in 
TMA cohort were identically classified into three groups: high- 
risk, moderate-risk and low-risk. Kaplan–Meier survival ana-
lysis proved that patients at different risks presented distinct 
prognosis (Figure S7A). Patients were further stratified into 
subgroups of male and female, age ≤ 65 and ag e> 65 years old, 
grade I/II and grade III/IV, stage I/II and stage III/IV. Except 
for the subgroup of stage III/IV (P = .24) and grade III/IV (P = 
.061), patients in high-risk group showed a better prognosis 
than those in moderate- and low-risk groups (Figure S7B-I).

The univariate and multivariate analysis were performed on 
the signature and clinicopathological factors to construct 
nomogram. In multivariate analysis, patients at higher risk 
according to the signature showed significantly shortened OS 
(moderate-risk: HR = 2.48, P = .042; high-risk: HR = 4.53, 
P < .001) compared to those at low risk (Figure 9a). The 
independent prognostic factors: AJCC stage, tumor size and 
Fuhrman grade were also incorporated into nomogram. 
A nomogram capable of predicting survival probabilities of 
ccRCC at 3, 5 and 8 years was finally built (Figure 9b). The 
C-index of nomogram was 0.81. The calibration curves at 3, 5 
and 8 years showed good consistency between actual observa-
tion and the prediction by nomogram (Figure 9c-e). Time- 
dependent ROC showed that AUC of protein signature was 
0.74, 0.75 and 0.72 at 3, 5 and 8 years. All AUCs of the gene 
signature were better at predicting survival probabilities than 
clinicopathological factors at each time point. Furthermore, 
nomogram had an obviously improved predictive accuracy of 
0.89, 0.84 and 0.82 at 3, 5 and 8 years (Figure 9f-h).

Discussion

Cell cycle progress plays a crucial role in cell proliferation, the 
alteration of which has been recognized as the hallmark of 
oncogenesis.40 Recent studies indicate that cell cycle gene sig-
natures show strong capacities of prognostication in many 
malignancies and have the potential of evaluating immuno-
genicity of tumors and their responses to ICIs.41–43 However, 
such relationship between cell cycle signatures and tumor 
immune microenvironment (TIME) in ccRCC was not 
reported before. In present study, we built a gene signature 
included two cell cycle genes (FOXM1&TOP2A) adopting 
DEGs from GEO database. The prognostic value of this signa-
ture was validated in three ccRCC cohorts: TCGA (n = 531), 
E-MTAB-1980 (n = 101) and TMA (n = 348) from our institu-
tion. Based on the signature, high-risk tumors present more 
aggressive biological behavior due to the high correlations with 
higher tumor grade and advanced pathologic stage. 
Furthermore, an immunosuppressive phenotype exits in high- 
risk tumors with more infiltrations of Tregs and tumor- 
associated macrophages (TAMs) accompany by high expres-
sions of genes negatively regulating anti-tumor immune pro-
cesses. In addition, we found low-risk tumors have an better 
response to nivolumab (anti-PD-1 agent) and compared to 
PD-L1, tumor mutation burden (TMB) and PBRM1 mutation, 
the cell cycle-related signature shows better ability in predict-
ing response to immunotherapy.

In recent years, several gene signatures have been developed 
to evaluate the prognosis for ccRCC. These signatures contain-
ing multiple genes established from RNA-seq or RT-PCR data 
showed satisfactory predictive abilities, while none of them 
could utilized in clinical practice due to the high-condition 
analysis environment or lack of further validations.11,12,44 

Detecting protein levels on TMA by IHC is a well-mastered 
and efficient method which is suitable for all tumor patients 
undergoing surgical resection. For the purpose of promotion in 
clinic, we constructed this cell cycle-related signature with 
good performance both in RNA-seq data (TCGA and 

Table 2. Association of TOP2A and FOXM1 expression with clinicopathologic factors of ccRCC patients in TMA cohort.

Factors Case

TOP2A expression

χ2 P value

FOXM1 expression

χ2 P value

Low High Low High

233(67%) 115(33%) 182(52%) 166(48%)

Gender
Male 245 162 (66%) 83 (34%) 0.26 0.611 125 (51%) 120 (49%) 0.54 0.461
Female 103 71 (69%) 32 (31%) 57 (55%) 46 (45%)
Age
≤65 266 185 (70%) 81 (30%) 3.44 0.064 149 (56%) 117 (44%) 6.25 0.012*
>65 82 48 (59%) 34 (41%) 33 (40%) 49 (60%)
AJCC stage
I+ II 331 225 (68%) 106 (32%) 3.20 0.074 178 (54%) 153 (46%) 5.93 0.015*
III+ IV 17 8 (47%) 9 (53%) 4 (23%) 13 (77%)
Tumor size(cm)
≤4 179 133 (74%) 46 (26%) 9.00 0.003* 107 (60%) 72 (40%) 8.26 0.004*
>4 169 100 (59%) 69 (41%) 75 (44%) 94 (56%)
Grade
I+ II 287 208 (73%) 79 (27%) 22.55 <0.001* 168 (58%) 119 (42%) 25.54 <0.001*
III+ IV 61 25 (41%) 36 (59%) 14 (23%) 47 (77%)
Necrosis
Yes 62 26 (42%) 36 (58%) 21.34 <0.001* 22 (36%) 40 (64%) 8.55 0.003*
No 286 207 (72%) 79 (28%) 160 (56%) 126 (44%)

ccRCC: clear cell renal cell carcinoma; TMA: tissue microarray
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E-MTAB-1980) and TMA cohort. Our signature was proved to 
be the independent risk factor of ccRCC prognosis and 
a nomogram comprising this signature and clinicopathologic 
factors showed high AUCs (0.90 and 0.84 at 3 and 5 years) in 
predicting ccRCC survival outcomes.

Further investigation revealed the association between the 
cell cycle-related signature and TIME. In accordance with the   

theory tumor cells confer protection from immune surveil-
lance by hyperactivation of cell cycle,45 high-risk tumors 
demonstrated a more suppressive immune phenotype due to 
higher cell abundance of infiltrate Tregs and TAMs. 
Regulatory T cells (Tregs) are immunosuppressive cells char-
acterized by the expression of the FOXP3.46 Tregs can sup-
press immune activation via secreting immune suppressive 

Figure 6. Immunosuppressive phenotype exists in high-risk tumors. (a) Results of ESTIMATE score and differentially infiltrated immune cells evaluated by CIBERSORT and 
IMMUNECELL AI between high- and low-risk group in TCGA. (b) Relative cell abundance of Macrophage and Treg calculated by CIBERSORT and IMMUNECELL AI between 
two groups in TCGA. (c) Cell percentage of CD68+ Macrophage, CD68+ CD163+ Macrophage M2, FOXP3+ Treg and PD-L1 expression in tumors detected by mIHC in the 
TMA cohort. (d) Representative immunofluorescence staining pictures of high- and low-risk tumors. DAPI (blue), CD68 (purple), CD163 (red), FOXP3 (green). (e) 
Differentially expressed genes profile involved in the negative regulation of the Cancer-Immunity Cycle between high- and low-risk group. (f) Expression of the common 
immune checkpoints between high- and low-risk group. (g) Expression of the immune suppressive cytokines between high- and low-risk group. *P < .05.**P < .01. 
***P < .001. mIHC, multiplex immunohistochemistry; TCGA, The Cancer Genome Atlas; TMA, tissue microarray.
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cytokines (IL-10, IL-35, TGF-β), or expressing co-inhibitory 
molecules such as CTLA-4, PD-1, LAG-3 and TIGIT.47–49 

Tumor-associated macrophages (TAMs), presenting an M2- 
like polarization(anti-inflammatory), are the most abundant 
leucocyte subset in cancers.50 They are shaped by chemokines 
such as IL-4, IL10 and IL-13 to impede anti-tumor 
immunity.33,34 In the present study, CIBERSORT and 
IMMUNECELL AI were used to infer immune cell infiltra-
tions in ccRCC, Tregs and TAMs are both upregulated in 
high-risk tumors deduced by two algorithms. We further 
proved this result by mIHC detection of FOXP3+ Tregs and 
CD68+ CD163+ Macrophages in the TMA. In addition, cyto-
kines (IL-4, IL-10, IL-13, TGF-β) participating in immuno-
suppressive process and co-inhibitory checkpoints (CTLA-4, 
PD-1 and LAG-3) were all upregulated in high-risk group, 
which validated the immunosuppression induced by Tregs/ 
TAMs exists in high-risk tumors. Our findings show the great 
potential of our signature in predicting TIME of ccRCC, 
which might benefit the immunotherapy of such malignancy.

Nowadays, a substantial amount of clinical trials for immu-
notherapy are conducted across the world, which promotes the 
utilization of ICIs in ccRCC. Previous studies demonstrated that 
ccRCC patients could benefit from inhibition of immune check-
points, such as CTLA-4 and PD-1/PD-L1. However, the response 
rates (5–12.5% to CTLA-4 inhibitor; 20–27% to PD-1 inhibitor) 

were relatively lower compared to other solid tumors (lung cancer, 
melanoma, ect).

Reliable biomarkers for immunotherapy response are des-
perately needed. Although PD-L1 has been the most promis-
ing biomarker of response to ICIs in most malignancies, its 
predictive value in ccRCC is controversial. Mori et al. 
reported that patients with PD-L1+ ccRCC tumors derived 
higher benefit from ICI combinations compared to PD-L1- 
ones.38 While results from the CHEKMATE-025 trial of 
nivolumab versus everolimus in refractory mRCC demon-
strate improvement in overall survival are consistent regard-
less of PD-L1 expression.5 TMB also serves as a potent 
predictor of ICIs response, while ccRCC generally carries 
low to moderate mutation load, the efficacy of this biomarker 
in ccRCC need more investigation.51 PBRM1 mutation is 
the second most common mutation in ccRCC according to 
TCGA database. PBRM1 LOF (loss of function), the specific 
biomarker in ccRCC, shows a strong correlation with 
improved survival in anti-PD-1 therapy. Thus, in present 
study, we tested the predictive value of PD-L1, TMB, 
PBRM1 LOF and the cell cycle-related signature in immu-
notherapy. The results show low-risk tumors according to the 
signature have improved responses to anti-PD-1 therapy (P = 
.013). PD-L1 expression and TMB are not associated with the 
efficacy of immunotherapy. PBRM1 LOF were more likely to 

Figure 7. Increased response to anti-PD-1 immunotherapy exists in low-risk tumors. (a) Risk group and response to anti-PD-1 therapy by sample. (b) Proportion of low- 
risk tumors in CB versus NCB group. Error bars are standard errors, which were calculated as follows: p(1 − p)/n, where p is the proportion in the population and n is the 
sample size. (c) PFS in high- and low-risk patients with advanced ccRCC. (d) PD-L1 expression between CB and NCB group (e) Proportion of PBRM1 LOF tumors in CB 
versus NCB group (f) Tumor mutation burden between CB and NCB group. χ2 test and independent t-test were used for statistical analysis. CB, clinical benefit; NCB, no 
clinical benefit; ccRCC, clear cell renal cell carcinoma; PFS, progression-free survival.
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cluster in CB than NCB group (35.5% vs. 26.3%, P = .34). 
Meanwhile, PBRM1 LOF is a protective factor for ccRCC 
survival. Incorporating PBRM1 LOF could enhance the abil-
ities of risk stratification of our signature. Our study demon-
strate this cell cycle-related signature is a promising and 
potent predictors of immunotherapy response in ccRCC.

Forkhead box M1 (FOXM1) is a transcriptional activator 
involved in cell proliferation and tumorigenesis. The encoded 
protein regulates the expression of several cell cycle genes, such 
as cyclin B1 and cyclin D1.52 Its overexpression has been reported 
in a diverse range of tumors.53,54 FOXM1 combined with CENPF 
can synergistically promote the malignant transformation of pros-
tate cells and indicate poor prognosis of prostate cancer.55 TOP2A 
encodes topoisomerase IIα, a nuclear enzyme that controls DNA 

topological structure and promotes gene transcription during 
mitosis.56 Plenty of researches based on GEO or TCGA datasets 
have proved TOP2A is correlated with tumor progression and 
poor survival in ccRCC.57–59 Our research confirms the overex-
pression of TOP2A is associated with shortened OS and higher 
tumor grade in the TMA for the first time.

There are still some limitations in our research. Firstly, the 
TMA cohort only contains few patients with higher tumor grade 
(G3&G4) and pathologic stages (III&IV), which cause the failure 
in predicting ccRCC prognosis in those subgroups. Thus, data 
from multicentric cohorts with comprehensive clinical informa-
tion are needed to confirm our findings. Secondly, although tissues 
in the TMA were selected from the area of tumor with the highest 
grade, which might represent the most aggressive subclones, the 

Figure 8. Somatic variants between high- and low-risk tumors in TCGA. Top 15 gene mutations in high-risk (a) and low-risk tumors (b). (c) Top 5 differentially mutated 
genes between high- and low-risk tumors. (d) Proportion of PBRM1 LOF in high- and low-risk tumors. (e) OS of ccRCC patients with PBRM1 LOF and PBRM1 intact. (f) 
Multivariate analysis of the gene signature and mutation status of PBRM1 (g) OS of ccRCC patients sorted by combined score: PBRM1 LOF and low-risk, 1; PBRM1 LOF 
and high-risk, PBRM1 intact and low-risk, 2; PBRM1 intact and high-risk, 3. χ2 test was used to test difference in proportions of gene mutation. ccRCC, clear cell renal cell 
carcinoma; OS, overall survival; PBRM1 LOF, PBRM1 loss of function; TCGA, The Cancer Genome Atlas.
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known intratumor heterogeneity in RCC couldn’t be fully 
addressed.60 Thirdly, We only selected patients with RNA-seq 
data to analyze immunotherapy response in ccRCC, this selection 
bias might cause the inconsistence of PBRM1 LOF predicting 
abilities.

Overall, we developed a robust gene signature which could 
predict the prognosis of ccRCC. This signature reveals the close 
relationship between hyperactivation of cell cycle procession 
and immunosuppression in ccRCC for the first time. It also 
demonstrates a strong ability in predicting response to PD-1 
blockade. Moreover, a nomogram developed based on the 

signature with a strong capacity of predicting ccRCC outcomes 
deserves promotion in clinical practice.
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Figure 9. Construction f a nomogram predicting OS based on the gene signature in ccRCC. (a) Multivariate analysis in the TMA. (b) Nomogram integrated the gene 
signature, AJCC stage, grade and tumor size (c-e) Calibration curve for predicting OS at 3, 5 and 8 years. (f-h) Time dependent ROC curves of nomogram, cell cycle- 
related signature, AJCC stage, grade and tumor size at 3, 5 and 8 years. AJCC, American Joint Committee on Cancer; ccRCC, clear cell renal cell carcinoma; OS, overall 
survival; ROC, receiver operating characteristic; TMA, tissue microarray.
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