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Abstract
Background: The protein tyrosine phosphatase-1B, a negative regulator for insulin and leptin signalling, potentially modulates
glucose and energy homeostasis. PTP1B is encoded by the PTPN1 gene located on chromosome 20q13 showing linkage with
type 2 diabetes (T2D) in several populations. PTPN1 gene variants have been inconsistently associated with T2D, and the aim of
our study was to investigate the effect of PTPN1 genetic variations on the risk of T2D, obesity and on the variability of metabolic
phenotypes in the French population.

Methods: Fourteen single nucleotide polymorphisms (SNPs) spanning the PTPN1 locus were selected from previous association
reports and from HapMap linkage disequilibrium data. SNPs were evaluated for association with T2D in two case-control groups
with 1227 cases and 1047 controls. Association with moderate and severe obesity was also tested in a case-control study design.
Association with metabolic traits was evaluated in 736 normoglycaemic, non-obese subjects from a general population. Five
SNPs showing a trend towards association with T2D, obesity or metabolic parameters were investigated for familial association.

Results: From 14 SNPs investigated, only SNP rs914458, located 10 kb downstream of the PTPN1 gene significantly associated
with T2D (p = 0.02 under a dominant model; OR = 1.43 [1.06–1.94]) in the combined sample set. SNP rs914458 also showed
association with moderate obesity (allelic p = 0.04; OR = 1.2 [1.01–1.43]). When testing for association with metabolic traits,
two strongly correlated SNPs, rs941798 and rs2426159, present multiple consistent associations. SNP rs2426159 exhibited
evidence of association under a dominant model with glucose homeostasis related traits (p = 0.04 for fasting insulin and HOMA-
B) and with lipid markers (0.02 = p = 0.04). Moreover, risk allele homozygotes for this SNP had an increased systolic blood
pressure (p = 0.03). No preferential transmission of alleles was observed for the SNPs tested in the family sample.

Conclusion: In our study, PTPN1 variants showed moderate association with T2D and obesity. However, consistent
associations with metabolic variables reflecting insulin resistance and dyslipidemia are found for two intronic SNPs as previously
reported. Thus, our data indicate that PTPN1 variants may modulate the lipid profile, thereby influencing susceptibility to
metabolic disease.
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Background
The ubiquitously expressed protein tyrosine phosphatase-
1B (PTP1B), encoded by the PTPN1 gene, catalyzes the
dephosphorylation of tyrosine residues from the insulin
receptor kinase activation segment [1] and IRS1 [2] result-
ing in the down-regulation of insulin signalling. PTP1B
also inhibits leptin signalling through the dephosphoryla-
tion of JAK2 and STAT3 [3,4]. The disruption of the
PTPN1 gene in mice results in increased insulin sensitiv-
ity, resistance to diet-induced obesity [5] and enables nor-
malization of blood glucose levels [6]. Moreover, it was
shown that the inactivation of PTPN1 with antisense oli-
gonucleotides regulates the expression of genes involved
in lipogenesis, such as SREBF1, suggesting that PTP1B
may play a role in the enlargement of adipocyte energy
storage [7]. Taken together, these data illustrate a crucial
role for PTP1B in insulin and leptin pathways and suggest
that abnormal PTP1B activity could lead to insulin resist-
ance and thereby to T2D and to obesity.

The human PTPN1 gene maps on chromosome 20q13.13,
a syntenic region of the distal arm of the murine chromo-
some 2 that harbours quantitative trait loci for body fat
and body weight [8]. In humans, several linkage signals
with T2D [9], BMI [10], fat mass and energetic intake
[8,11,12] were reported at this locus in different popula-
tions, further supporting PTPN1 candidacy in T2D and
obesity. This locus also showed evidence of linkage with
early onset T2D (onset = 45 years) in a subset of 55 French
families [13]. Several recent studies have investigated
genetic variants of PTPN1 for association with T2D. In an
extensive analysis of the PTPN1 gene locus, Bento et al.
[14] found convincing associations between multiple
SNPs and T2D in two independent Caucasian American
case-control samples. All of the associated SNPs were
found to lie in a single 100 kb haplotype block and one
common haplotype (frequency = 36%) was found to be
strongly associated with T2D. The same group evaluated
SNPs and haplotypes of PTPN1 for association with quan-
titative glycaemic traits in Hispanic American subjects
from the Insulin Resistance Atherosclerosis Study Family
Study (IRASFS) [15]. Again, multiple SNPs were found to
be associated with the insulin sensitivity index (Si) and
fasting glucose. Haplotypes that were previously associ-
ated with T2D risk also presented association with lower
Si and with higher fasting glucose in the IRAS family
study. However, a recent meta-analysis including 7883
individuals from three large European case-control sam-
ples (from US, Poland and Scandinavia) did not replicate
this association for any single SNP or haplotype [16].
These divergent findings question the impact of variation
in the PTPN1 gene on the risk of T2D in populations of
different ethnic origin. The aim of the present study was to
further investigate the contribution of common PTPN1
polymorphisms to the risk of T2D and obesity, and to the

variability of quantitative metabolic traits in the French
population.

Methods
Subjects
Two independently ascertained case-control samples were
used to investigate association between PTPN1 gene vari-
ants and T2D. The first case group (D1) is composed of
325 unrelated T2D probands from French families with
strong T2D aggregation recruited at the CNRS unit in Lille
[13]. The D1 probands were compared to a group of 311
unrelated normoglycaemic subjects called C1 (age> 45
years; fasting glycaemia< 5.6 mM) selected among
spouses of French families recruited at the CNRS unit in
Lille. The second case group, called D2, consists of 902
diabetes subjects recruited at the Endocrinology-Diabetol-
ogy Department of the Corbeil-Essonnes Hospital. The
D2 diabetes subjects were compared to a second group of
736 normoglycaemic (fasting glycaemia< 5.6 mM), non-
obese subjects (C2) selected from the D.E.S.I.R. cohort
[17]. To assess the association between SNPs and obesity,
two groups of obese subjects were studied: a group of 616
subjects with moderate obesity (30 kg/m2< BMI< 40 kg/
m2) referred to as OBM and a group of 688 subjects with
severe obesity (BMI> 40 kg/m2) termed SO. Both groups
of obese subjects were compared to the C2 control group.
The clinical characteristics of the case and control groups
are given in Table 1. Familial association tests were per-
formed in 148 French Caucasian nuclear families and in a
subset of 55 sib-pairs characterized by an early age-of-
onset of T2D (before 45 years) previously presenting link-
age with T2D [13]. The entire family sample set include a
total of 633 individuals, of whom 432 presented with dia-
betes (sex ratio: 198/234, mean age-at-diagnosis: 49.5 ±
10.6 years, mean BMI: 27.9 ± 4.5 kg/m2), 72 with glucose
intolerance (sex ratio: 36/36, mean age-at-diagnosis: 59.1
± 9.6 years, mean BMI: 27.4 ± 4.7 kg/m2), and 129 were
normoglycaemic subjects (sex ratio: 40/89, mean BMI:
25.1 ± 4.1 kg/m2).

Genotyping
SNPs were genotyped using the Applied Biosystem
SNPlex™ Technology based on the Oligonucleotide Liga-
tion Assay (OLA) combined with multiplex PCR, to
achieve target amplification and allelic discrimination
[18]. This allows multiplex genotyping for 48 SNPs simul-
taneously in a unique sample. Allelic discrimination is
performed through a capillary electrophoresis analysis
using an Applied Biosystems 3730xl DNA Analyzer and
the GeneMapper3.7 software. Thirty two individuals were
genotyped in duplicate to assess the genotyping accuracy.
All SNPs gave a genotyping concordance rate of 100%.
SNPs rs941798 and rs914458 were genotyped in the fam-
ily sample set by direct sequencing using an automated
ABI Prism 3700 DNA sequencer in combination with the
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Big Dye Terminator Cycle Sequencing Ready Reaction Kit
(Applied Biosystems, Foster City, California, United
States). For SNP-7077G/C, genotyping in the families was
performed by the FRET technology using the LightCycler™
assay based on hybridization probes labelled with fluores-
cent dyes (Roche Diagnostics, Basel, Switzerland). In
order to assess genotyping accuracy for this SNP, more
than 10% of the genotypes were checked by direct
sequencing and presented a concordance rate in excess of
99%.

Tag SNP selection
The genotypes of 29 SNPs in 30 Caucasian European trios
available from the HapMap database (version of January
2005) were analysed using the Haploview software, and
seven tag SNPs were selected according to the pairwise
linkage disequilibrium calculated using the four gamete
rule.

Statistical analysis
The Chi-square test was used to assess the deviation of
SNP genotypes from the Hardy-Weinberg Equilibrium
(HWE) and to examine the association of SNPs with T2D
and obesity [19]. Significant association was considered
for a p-value< 0.05. The Mantel-Haenzsel interaction test
was used to define odds-ratios for the combined case-con-
trol analysis [20]. Four quantitative traits related to glu-
cose homeostasis were analysed in the control group C2:
fasting glucose (Go expressed in mM); fasting insulin (Io
expressed in μU/ml); HOMA-B, defined by the formula
HOMA-B = (Io*20)/(Go-3.5); and HOMA-IR, defined by
the formula HOMA-IR = (Io*Go)/22.5. BMI (kg/m2),
total cholesterol (mM), HDL cholesterol (mM), LDL cho-
lesterol (mM), triglycerides (mM), systolic and diastolic
blood pressure were also analysed in this control group.
Non-Gaussian variables were either log or square-root

transformed. Linear regressions were then performed to
adjust each variable for covariates such as age, sex and
BMI. According to the normality of the standardized resid-
uals, ANOVA or non-parametric tests were performed and
three genetic models (codominant, dominant and reces-
sive) were investigated. Linear regressions, ANOVA and
non-parametric tests were performed using the SPSS sta-
tistical analysis software. Familial association was investi-
gated using the Family Based Association Test (FBAT)
[21]. The Haploview software [22] was used to determine
the pairwise linkage disequilibrium (D') and the minimal
set of SNPs displaying the genetic information. This was
checked with the STRATEGY software [23]. Haplotype
analyses were then performed using the Haplotype Trend
Regression (HTR) programme [24] to test haplotypic asso-
ciation with T2D, obesity status and adjusted quantitative
variables. The relevance of the best haplotypic association
was computed using 1000 permutations and the
Cocaphase software [25]. The statistical power of our
combined sample of diabetes and control subjects was
evaluated through the Quanto software [26] using the log-
additive model of inheritance. Prevalence of T2D was esti-
mated at 5%, and power was calculated for 1.2= OR= 1.4.

Results
Fourteen PTPN1 SNPs were selected for the study, includ-
ing: (i) six common PTPN1 gene promoter or intronic
SNPs (-7077G/C, rs941798, rs1570179, rs3787345,
rs754118 and rs718050) showing association with T2D
in previous studies [14,15,27]; (ii) seven tag SNPs selected
from the HapMap version 14 of January 2005; and (iii)
the synonymous exon 8 variant rs2282146, previously
referred to as P303P [28]. The linkage disequilibrium
(LD) structure at the PTPN1 locus was evaluated from the
fourteen SNPs genotyped in a group of 736 French nor-
moglycaemic non-obese subjects (C2). As shown in Fig-

Table 1: Characteristics of the case and control groups studied

Populations n Sex ratio men/women Mean age-at-diagnosis 
(years)

Mean age-at-
examination (years)

Mean BMI (kg/m2)

Diabetic subjects 
recruited in Lille (D1)

325 175/150 45.50 ± 10.71 61.83 ± 10.51 26.64 ± 3.63

Diabetic subjects 
recruited in Corbeil-
Essonnes hospital 
(D2)

902 518/384 51.76 ± 8.87 62.55 ± 9.50 30.46 ± 6.02

Subjects with 
moderate obesity 
(OBM)

616 275/341 - 50.11 ± 14.15 34.21 ± 3.61

Subjects with severe 
obesity (SO)

688 165/523 - 46.03 ± 11.67 47.55 ± 7.33

Control subjects (C1) 311 123/188 - 62.99 ± 10.93 25.80 ± 4.57
Control subjects from 
D.E.S.I.R. cohort (C2)

736 293/443 - 53.47 ± 5.65 23.25 ± 1.78

For each group the number of subjects (n) and the sex ratio (men/women) are given. The mean age-at-diagnosis is the age of the patient when 
diabetes was diagnosed. The mean age-at-diagnosis, the mean age and the mean BMI are given as means ± standard deviation.
Page 3 of 10
(page number not for citation purposes)



BMC Medical Genetics 2006, 7:44 http://www.biomedcentral.com/1471-2350/7/44
ure 1, the LD analysis defined two strongly correlated
haplotype blocks (D' = 0.98). Moreover the LD matrix
showed high pairwise LD between 12 of the 14 SNPs gen-
otyped. The SNP rs3787335 presented a moderate LD
(0.55=D'= 0.70) with 7 SNPs leading to a two block struc-
ture covering ~91 kb at the PTPN1 locus and SNP
rs914458, located 10 kb downstream of PTPN1, that
showed no LD with the other 13 SNPs genotyped. Thus,
our data indicated that PTPN1 lies in a region of strong
LD, in agreement with previous reports [14,16].

To assess the influence of the PTPN1 genetic variation on
T2D and obesity risk in the French population, the 14
common SNPs (minor allele frequency (MAF) >5%) were
genotyped in two case-control cohorts described in Table
1. Only SNP rs914458 deviated from the Hardy-Weinberg
equilibrium (HWE) in the group of subjects presenting
with a severe obesity (p = 0.005). To avoid genotyping

errors, 17% of the total genotypes were verified by direct
sequencing, resulting in a 99.1% concordance rate.

In our initial T2D association analysis, we compared the
allelic frequencies of the 14 SNPs between 325 probands
from T2D French families (D1) and a group of 311 nor-
moglycaemic controls (C1). As shown in Table 2, only
SNP rs6020563 presented a nominal allelic association
with T2D (p = 0.04, OR = 1.29 [1.01–1.65]). This associa-
tion is slightly stronger under a recessive model (p =
0.031, OR = 1.52 [1.04–2.23]; data not shown). In our
second independently ascertained case-control study
comprising 902 French adult diabetes subjects (D2) and
736 normoglycaemic subjects from the general popula-
tion (C2), none of the 14 SNPs tested were associated with
T2D. In order to assess a possible confounding role of BMI
on the diabetes status, the D2 diabetes subjects were
divided into two sub-groups: (i) subjects with BMI< 27
kg/m2 (n = 277); and (ii) subjects with BMI= 27 kg/m2 (n
= 625). Neither of the sub-groups showed evidence of
association with T2D (data not shown). To enhance statis-
tical power, combined odds-ratios were then determined
for each SNP by the Mantel-Haenszel test, except for
rs6020563 which showed a significant difference in allelic
frequencies between the two case-control studies (p =
0.019). In the combined sample, no significant differ-
ences of allele frequency were observed for the 13 remain-
ing SNPs, as shown in Table 2. However, SNP rs914458,
located 10 kb downstream of PTPN1, associated with T2D
when analysed under a dominant model (p = 0.02; Com-
bined OR = 1.43 [1.06–1.94]). In order to assess the hap-
lotypic effects, the Haploview and Strategy software were
used to define a minimal set of 4 SNPs (-7077 G/C,
rs941798, rs2282146 and rs914458), which were identi-
fied as tagging the seven common haplotypes (frequency=
5%), and accounted for 97.6% of the haplotypic diversity
(Figure 1). In the combined sample, haplotype CACG,
including the G "protective" allele of the associated SNP
rs914458, was more frequent in the control subjects than
in the diabetes cases (Table 3) suggesting a potential "pro-
tective" effect. In order to better estimate the significance
of this effect, we computed the p-value for the association
in 1000 permutations of the dataset. The empirical p-
value obtained (p = 0.22) was not statistically significant,
suggesting that the association could have been observed
by chance.

We also investigated the potential contribution of the 14
common PTPN1 SNPs to obesity risk. SNPs were geno-
typed in a group of 616 subjects presenting with moderate
obesity (30 kg/m2<BMI< 40 kg/m2) and a group of 688
subjects presenting with severe obesity (BMI = 40 kg/m2).
Both groups were compared to the C2 group of 736 non
diabetic and non-obese control subjects. SNP rs914458
displayed an association with moderate obesity (p = 0.04,

Linkage disequilibrium plot of the PTPN1 gene region evalu-ated in a group of 736 French normoglycaemic non-obese subjectsFigure 1
Linkage disequilibrium plot of the PTPN1 gene region evalu-
ated in a group of 736 French normoglycaemic non-obese 
subjects The PTPN1 gene is shown by the black line with 
boxes representing its 10 exons. The localisation of the 
selected SNPs is indicated by the dotted line. The linkage dis-
equilibrium plot represents the pairwise LD (D') estimated 
from the control group (C2) using the four gamete rule 
implemented in the Haploview software. The values indi-
cated in each square is the D' value, when no value is indi-
cated D' = 1. The red colour indicates strong (D'> 0.8) and 
statistically significant (LOD>2) LD. Above the gene, the hap-
lotype combinations are indicated with their respective fre-
quencies; they were determined using the Haploview and 
Strategy softwares.
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OR = 1.2 [1.01–1.43], Table 4) and a trend towards association with morbid obesity. The
effect of the haplotypes was also investigated in both groups of obese subjects. In spite of
a non-significant overall p-value, the CACG haplotype was significantly more frequent in
the control group compared to the moderately obese subjects group (Table 4). However,
the empirical p-value estimated through permutation testing, was not significant (p =
0.30) suggesting that the association observed with moderate obesity was probably due
to chance.

In order to assess the influence of the common PTPN1 gene variants on quantitative met-
abolic variables, association analyses were performed in the C2 group of normoglycaemic
and non-obese subjects. Tables 5 and 6 present the results of the genotype-quantitative

traits correla metabolism traits, respectively. Two SNPs
located in in (D' = 0.99), were strongly correlated and
showed mul arameters as previously reported for SNP
rs941798 [1 ssociation with HOMA-B in a dominant
model (p = 0 t was associated with decreased HDL cho-
lesterol (p = evels (p = 0.03). SNP rs2426159 showed
associations  0.04), HOMA-B (p = 0.04), triglycerides
(p = 0.02), a 3), decreased HDL cholesterol level (p =
0.03) and w ressure (p = 0.03). Taken together these
results sugg abolic syndrome. No associations were

Table 2: Type 2 Diabetes case-control association study of the 14 PTPN1 SNPs.

First T2D case-control study Second T2D case-control study All cases vs all controls

MAF in group 
D1 (n = 325)

MAF in group 
C1 (n = 311)

Allelic p-
values

OR [95% CI] MAF in group 
D2 (n = 902)

MAF in group 
C2 (n = 736)

Allelic p-
values

e 
 of 
 = 

Allelic p-
values

Dominant 
model p-

values

Recessive 
model p-

values

-7077 G/C 31.7 36.3 0.09 1.23 [0.97–
1.55]

36.6 37.4 0.63 0.20 0.17 0.43

rs6020563 T/
G

44.0 50.4 0.04 1.29 [1.01–
1.65]

49.3 47.3 0.26 - - -

rs2426157 A/
G

25.5 26.6 0.66 1.06 [0.82–
1.36]

28.0 29.0 0.53 0.44 0.14 0.92

rs3787335 T/
G

6.3 8.5 0.14 1.38 [0.90–
2.12]

7.7 8.1 0.73 0.29 0.85 0.26

rs6126033 C/
T

5.4 7.5 0.12 1.43 [0.90–
2.26]

6.5 6.8 0.80 0.30 0.85 0.30

rs941798 A/
G

51.4 47.5 0.17 1.17 [0.94–
1.46]

46.4 45.1 0.48 0.18 0.33 0.27

rs1570179 C/
T

31.8 34.4 0.34 1.12 [0.89–
1.42]

34.7 35.4 0.65 0.38 0.17 0.80

rs2426159 A/
G

43.6 48.2 0.10 1.20 [0.96–
1.50]

46.2 47.2 0.59 0.18 0.56 0.13

rs3787345 C/
T

36.0 40.7 0.09 1.22 [0.97–
1.53]

40.6 39.8 0.66 0.58 0.46 0.84

rs6020608 C/
T

27.1 27.7 0.82 1.03 [0.80–
1.32]

28.5 29.1 0.75 0.70 0.20 0.83

rs754118 C/
T

33.6 35.1 0.57 1.07 [0.84–
1.36]

34.9 35.6 0.67 0.51 0.15 0.94

rs2282146 C/
T

5.9 6.7 0.55 1.15 [0.72–
1.82]

6.0 6.7 0.47 0.35 0.91 0.34

rs718050 G/
A

34.4 37.0 0.36 1.12 [0.88–
1.41]

36.8 36.3 0.80 0.78 0.79 0.85

rs914458 C/
G

27.5 30.5 0.26 1.16 [0.90–
1.49]

29.1 30.4 0.42 0.20 0.02 0.78

All SNPs were in Hardy-Weinberg equilibrium in the different groups tested. Minor Allele Frequencies (MAF) are given for each gro s-ratios (OR) and 95% confidence interval (95%CI) 
were estimated by a chi-square test for both initial case-control studies. Individual ORs are given for each SNP as "at-risk" vs. "pro e determined by the Mantel-Haenszel interaction 
test. For the combined analysis, the p-values for dominant and recessive genetic models are also given. For SNP rs914458, which sh odel from the combined analysis, the OR value was 
1.43, [95%CI: 1.06–1.94].
tion studies for glucose and lipid 
tron 1, rs941798 and rs2426159 
tiple associations with metabolic p
4]. SNP rs941798 displayed an a
.03), whilst in a recessive model i

 0.05) and increased triglyceride l
 with increased fasting insulin (p =
nd LDL cholesterol levels (p = 0.0
ith an increased systolic blood p

est an association with the met

OR [95% CI] MAF in the 
total group of 

cases (n = 
1227)

MAF in th
total group
controls (n

1047)

1.04 [0.90–
1.20]

35.3 37.1

1.09 [0.94–
1.26]

48.0 48.1

1.05 [0.90–
1.23]

27.3 28.3

1.05 [0.81–
1.35]

7.4 8.2

1.04 [0.78–
1.38]

6.2 7.0

1.05 [0.91–
1.21]

47.8 45.8

1.03 [0.89–
1.20]

33.9 35.1

1.04 [0.90–
1.20]

45.5 47.5

1.03 [0.89–
1.19]

39.2 40.0

1.03 [0.88–
1.20]

28.1 28.7

1.03 [0.89–
1.20]

34.5 35.5

1.11 [0.84–
1.48]

6.0 6.7

1.02 [0.88–
1.18]

36.1 36.5

1.07 [0.91–
1.25]

28.7 30.4

up and for the pooled sample. P-values, odd
tective" alleles. The combined p-values wer
owed an association under the dominant m
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Table 4: Obesity case-control association study of the 14 PTPN1 SNPs and haplotypes.

OBM vs C2 SO vs C2

MAF in the 
OBM group (n 

= 616)

MAF in the SO 
group (n = 688)

MAF in the C2 
group (n = 736)

Allelic p-values OR [95% CI] Allelic p-values OR [95% CI]

-7077 G/C 38.4 38.0 37.4 0.60 1.04 [0.89–1.22] 0.83 1.02 [0.87–1.19]
rs6020563 T/G 48.4 50.2 47.3 0.56 1.05 [0.89–1.23] 0.14 1.12 [0.96–1.31]
rs2426157 A/G 28.9 27.8 29.0 0.96 1.00 [0.84–1.18] 0.39 1.07 [0. 91–

1.27]
rs3787335 T/G 8.5 9.6 8.1 0.67 1.06 [0.81–1.40] 0.13 1.22 [0.94–1.58]
rs6126033 C/T 7.0 8.7 6.8 0.81 1.04 [0.77–1.41] 0.05 1.32 [1.0–1.75]
rs941798 A/G 44.6 45.2 45.1 0.76 1.02 [0.88–1.19] 0.97 1.00 [0.86–1.16]
rs1570179 C/T 35.4 35.9 35.4 0.99 1.00 [0.85–1.17] 0.82 1.02 [0.87–1.19]
rs2426159 A/G 48.9 49.4 47.2 0.36 1.07 [0.92–1.25] 0.22 1.10 [0.95–1.27]
rs3787345 C/T 40.4 42.0 39.8 0.76 1.02 [0.88–1.20] 0.23 1.10 [0.94–1.28]
rs6020608 C/T 28.7 27.8 29.1 0.85 1.02 [0.86–1.20] 0.41 1.07 [0. 91–

1.12]
rs754118 C/T 35.5 37.4 35.6 0.93 1.00 [0.86–1.18] 0.35 1.08 [0.92–1.27]
rs2282146 C/T 6.2 7.0 6.7 0.65 1.08 [0.77–1.53] 0.69 1.06 [0.79–1.43]
rs718050 G/A 36.7 38.7 36.3 0.84 1.02 [0.87–1.19] 0.20 1.11 [0.95–1.29]
rs914458 C/G 26.7 27.5 30.4 0.04 1.20 [1.01–1.43] 0.07 1.17 [0.99–1.39]

Haplotype Frequencies in 
OBM

Frequencies in 
SO

Frequencies in 
C2

Individual p-
values

Overall p-value Individual p-
values

Overall p-value

GGCC 32.3 34.4 31.5 0.53 0.17
CACC 24.3 20.5 21.8 0.25 0.71
GGCG 12.0 11.3 13.3 0.22 0.19
GACC 12.2 11.1 11.0 0.38 0.32 0.91 0.78
CACG 5.8 8.7 8.5 0.04 0.58
GACG 6.2 6.3 6.5 0.58 0.70
CATC 4.7 6.0 5.0 0.78 0.55

Genotype and allele frequencies were estimated for each group. All genotypes were in Hardy-Weinberg equilibrium in the populations tested, 
except for SNP rs914458 C/G in the group of subjects with severe obesity. The p-values for chi-square tests, odds-ratios (ORs) and 95% confidence 
intervals (CI95) are given. The individual and overall p-values of the haplotypes are indicated. We estimated the empirical p-value of the CACG 
haplotype in the group of moderate obese subjects (p = 0.30) using 1000 permutations.

Table 3: Type 2 Diabetes association analysis for the seven common haplotypes

Haploty
pes

Frequencies Frequencies Frequencies

D1 C1 Individua
l p-

values

Overall 
p-value

D2 C2 Individua
l p-

values

Overall 
p-value

D1 + D2 
cases

C1 + C2 
controls

Individua
l p-

values

Overall 
p-value

GGCC 37.8 34.3 0.13 31.9 31.5 0.59 33.5 32.3 0.23
CACC 18.3 19.9 0.42 24.0 21.8 0.40 22.4 21.1 0.67
GGCG 13.8 12.2 0.61 13.8 13.3 0.97 13.7 13.0 0.88
GACC 11.8 11.7 0.93 0.44 10.7 11.0 0.97 0.42 11.0 11.3 0.95 0.20
CACG 7.1 9.1 0.17 6.1 8.5 0.07 6.4 8.7 0.02
GACG 5.1 5.4 0.78 6.6 6.5 0.85 6.2 6.1 0.87
CATC 3.9 3.4 0.96 4.2 5.0 0.45 4.2 4.6 0.48

The 7 haplotypes defined by the four most informative SNPs (-7077 G/C, rs941798, rs2282146 and rs914458) were tested for association with 
T2D in both the individual case-control samples and in the pooled sample. Frequencies were estimated from case and control groups separately 
using the HTR software. Individual and overall p-values were indicated. We estimated the empirical p-value of the CACG haplotype in the 
combined sample through 1000 permutations of the dataset using the Cocaphase software (p = 0.20).
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observed for BMI, HOMA-IR, or total cholesterol. Finally,



Table 5: Analysis of associations between genotypes and phenotypes related with T2D in the C2 group.

Genotypes N Go (mmol/l)* Io (mSI/ml) HOMA-B HOMA-IR*

Mean pdom prec Mean pdom prec Mean pdom prec Mean pdom prec

-7077G/C GG 283 5.03 ± 0.37 0.41 5.02 ± 2.45 0.43 68.63 ± 35.42 0.14 1.13 ± 0.58 0.63
GC 336 5.05 ± 0.35 0.37 5.24 ± 4.81 0.13 66.44 ± 32.30 0.05 1.19 ± 1.11 0.16
CC 102 5.10 ± 0.34 4.57 ± 1.85 58.96 ± 25.34 1.04 ± 0.44

rs6020563 TT 186 5.05 ± 0.34 0.83 5.23 ± 2.52 0.05 69.98 ± 35.11 0.07 1.18 ± 0.60 0.08
TG 319 5.05 ± 0.36 0.98 5.17 ± 4.88 0.07 65.68 ± 31.96 0.1 1.17 ± 1.13 0.11
GG 150 5.06 ± 0.34 4.63 ± 1.89 61.23 ± 25.65 1.05 ± 0.47

rs941798 AA 223 5.08 ± 0.33 0.23 4.69 ± 1.93 0.15 61.23 ± 25.81 0.03 1.06 ± 0.46 0.31
AG 345 5.03 ± 0.37 0.85 5.23 ± 4.88 0.06 67.75 ± 35.89 0.075 1.18 ± 1.13 0.06
GG 153 5.05 ± 0.35 5.20 ± 2.24 70.15 ± 34.05 1.17 ± 0.54

rs2426159 AA 202 5.04 ± 0.35 0.64 5.21 ± 2.51 0.04 70.36 ± 37.00 0.05 1.18 ± 0.60 0.07
AG 360 5.05 ± 0.36 0.81 5.19 ± 4.71 0.06 66.71 ± 35.32 0.06 1.17 ± 1.09 0.15
GG 161 5.06 ± 0.35 4.66 ± 2.01 61.68 ± 26.88 1.05 ± 0.45

rs3787345 CC 261 5.03 ± 0.37 0.31 5.05 ± 2.49 0.55 69.12 ± 36.16 0.15 1.14 ± 0.59 0.82
CT 332 5.05 ± 0.34 0.18 5.06 ± 2.44 0.115 67.28 ± 35.07 0.03 1.14 ± 0.57 0.21
TT 116 5.10 ± 0.34 5.28 ± 7.38 59.37 ± 25.80 1.21 ± 1.70

rs6020608 CC 366 5.02 ± 0.38 0.17 4.95 ± 2.36 0.79 67.93 ± 34.04 0.12 1.12 ± 0.56 0.92
CT 291 5.06 ± 0.33 0.03 5.25 ± 5.08 0.79 65.54 ± 32.22 0.16 1.19 ± 1.17 0.99
TT 64 5.15 ± 0.33 4.80 ± 2.12 59.72 ± 59.72 1.10 ± 0.50

rs754118 CC 297 5.01 ± 0.38 0.05 4.97 ± 2.44 0.92 68.76 ± 35.38 0.09 1.12 ± 0.58 0.73
CT 314 5.07 ± 0.33 0.18 5.28 ± 4.93 0.36 65.67 ± 31.93 0.14 1.20 ± 1.14 0.5
TT 94 5.11 ± 0.34 4.71 ± 1.99 60.19 ± 26.53 1.08 ± 0.47

rs718050 GG 290 5.01 ± 0.38 0.09 5.03 ± 2.48 0.54 69.50 ± 35.55 0.05 1.13 ± 0.59 0.77
GA 324 5.06 ± 0.33 0.07 5.23 ± 4.86 0.30 65.79 ± 32.21 0.07 1.18 ± 1.13 0.48
AA 96 5.12 ± 0.34 4.65 ± 1.90 58.93 ± 24.56 1.06 ± 0.45

Data are means ± SD for nonadjusted variables. Variables were transformed and adjusted by covariates (age, sex, BMI). The G0 and HOMA-IR variables had non-Gaussian residuals and were thus analysed by non-parametric 
tests as indicated by an asterisk (*); other variables were analysed by an ANOVA test. Results were presented for dominant and recessive models. Only SNPs showing an association were presented.

Table 6: Association analysis with quantitative traits related to the lipid and arterial blood pressure profiles

HDL* LDL Triglycerides Systolic pressure* Diastolic pressure*

SNPs Genotypes N Mean pdom prec Mean pdom prec Mean pdom prec Mean pdom prec Mean pdom prec

rs2426157 AA 367 1.75 ± 0.44 0.12 3.65 ± 0.84 0.05 0.97 ± 0.51 0.68 131.3 ± 13.0 0.03 78.1 ± 8.4 0.87
AG 289 1.77 ± 0.45 0.29 3.55 ± 0.80 0.52 0.98 ± 0.50 0.27 129.2 ± 12.5 0.04 77.9 ± 8.7 0.02
GG 65 1.77 ± 0.40 3.55 ± 0.84 0.94 ± 0.51 133.6 ± 10.5 80.8 ± 7.2

rs941798 AA 223 1.78 ± 0.42 0.06 3.54 ± 0.86 0.13 0.94 ± 0.47 0.09 130.8 ± 12.1 0.89 78.7 ± 7.8 0.53
AG 345 1.75 ± 0.46 0.05 3.61 ± 0.80 0.17 0.97 ± 0.48 0.03 130.4 ± 13.2 0.20 78.2 ± 8.9 0.87
GG 152 1.71 ± 0.41 3.69 ± 0.83 1.05 ± 0.60 131.6 ± 12.7 78.1 ± 8.9

rs2426159 AA 201 1.72 ± 0.43 0.03 3.71 ± 0.84 0.03 1.04 ± 0.58 0.02 132.4 ± 14.2 0.03 78.6 ± 8.9 0.36
AG 360 1.77 ± 0.45 0.65 3.58 ± 0.81 0.20 0.95 ± 0.47 0.38 130.1 ± 12.2 0.98 78 ± 8.7 0.82
GG 161 1.77 ± 0.44 3.51 ± 0.83 0.94 ± 0.48 129.9 ± 11.2 78.4 ± 7.4

rs6020608 CC 366 1.74 ± 0.44 0.18 3.65 ± 0.84 0.08 0.97 ± 0.51 0.87 131.5 ± 13.4 0.03 78.2 ± 8.8 0.88
CT 291 1.77 ± 0.45 0.81 3.55 ± 0.81 0.83 0.99 ± 0.50 0.61 129.2 ± 12.2 0.02 77.9 ± 8.4 0.03
TT 64 1.72 ± 0.35 3.58 ± 0.82 0.95 ± 0.50 133.4 ± 10.8 80.7 ± 7.5

Data are means ± SD for nonadjusted variables. Variables were transformed and adjusted by covariates (age, sex, BMI). The HDL and blood pressure measures variables had non-Gaussian residuals and were analysed by non-
parametric tests as indicated by an asterisk (*); other variables were analysed by an ANOVA test. Results were presented for dominant and recessive models. Only SNPs showing an association are presented here.
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no PTPN1 haplotype was associated with any of the quan-
titative traits (data not shown).

Three non redundant SNPs (-7077 G/C, rs941798 and
rs914458) presenting trends or associations with T2D in
the case-control study, or with quantitative traits, were
further investigated in the entire family sample set com-
prising 148 French families and in a subset of 55 sib-pairs
presenting with an early age-of-onset of T2D and having
shown linkage at the 20q13 locus. No preferential trans-
mission of alleles was observed for the SNPs tested in
either of the samples (using the FBAT software; data not
shown).

Discussion
In this study, we investigated the effect of PTPN1 genetic
variation on susceptibility to T2D and obesity, and also
on quantitative metabolic parameters. Our T2D associa-
tion results strongly differ from those obtained in Cauca-
sian American populations [14] and in Hispanic
Americans from IRASFS [15] but are in good accordance
with the meta-analysis conducted by Florez et al. [16].
Indeed, in the meta-analysis of the French case-control
samples, only an extragenic SNP, rs914458 located 10 kb
downstream of the PTPN1 gene, showed moderate associ-
ation with T2D under a dominant model (p = 0.02). These
divergent findings could be due to heterogeneity of T2D
aetiology among the different populations, perhaps
driven by differences in genetic or environmental modifi-
ers. Indeed, we note that the Bento et al. and Palmer et al.
studies displaying associations to T2D were performed in
American subjects, whereas the Florez study and the
present study were focused on European populations. The
hypothesis of a lack of power seems unlikely for SNPs
with an "at-risk" allele frequency> 24%. According to the
Quanto software, for such an allele frequency and consid-
ering ORs between 1.2 and 1.4, our combined case-con-
trol sample (including 1227 diabetic subjects and 1047
controls) provide more than 80% power to detect an asso-
ciation with T2D (power of 80.4% for OR = 1.2, and
power of 99.9% for OR = 1.4). Thus, we expect that our
study has good power to replicate the Bento et al results.
However, we cannot formally exclude the possibility that
our study design does not allow us to observe associations
for SNPs rarer than 24% (rs3787335, rs6126033 and
rs2282146).

Only a few association studies between PTPN1 gene vari-
ants and obesity status have been reported previously.
Here, we show a weak association between SNP rs914458
and moderate obesity (p = 0.04) and a trend towards asso-
ciation with severe obesity for SNP rs6126033 located in
the first intron (p = 0.05). However, our association anal-
ysis of metabolic syndrome quantitative traits supports
the hypothesis of a possible influence of PTPN1 genetic

variation on insulin sensitivity, plasma lipid levels and
hypertension which are characteristics of the metabolic
syndrome. Indeed, multiple consistent associations were
observed between SNPs rs941798 and rs2426159 and
metabolic parameters reflecting insulin sensitivity and the
lipid profile. These results are in accordance with a
number of studies showing influence of PTPN1 SNPs on
metabolic syndrome traits. Recently, Spencer-Jones et al
[29] reported several associations between PTPN1 gene
variants and insulin sensitivity quantitative traits. Kipfer-
Coudreau et al [30] showed association between PTPN1
genetic variation and dyslipidemia in the French popula-
tion. An association was also reported between the
Pro387Leu variant and hypertriglyceridemia in a German
population [31]. In addition, Olivier et al. reported asso-
ciations of PTPN1 gene variants with BMI and total cho-
lesterol level in an Asian population [27]. These results are
consistent with the known role of PTPN1 in the dephos-
phorylation of the JAK2 kinase, an essential event in the
leptin signalling pathway, and in the regulation of the
expression of the lipogenic SREBF1, LPL and PPARγ genes
[7].

Conclusion
Taken together, our data indicate that PTPN1 variants may
modify the lipid profile, thereby influencing susceptibility
to the metabolic syndrome in the French population. Fur-
ther genetic and functional studies of the contribution of
PTPN1 variation to the metabolic syndrome and related
traits are clearly warranted.
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