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A genome-scale metabolic network 
alignment method within a 
hypergraph-based framework using 
a rotational tensor-vector product
Tie Shen1, Zhengdong Zhang2, Zhen Chen3, Dagang Gu2, Shen Liang2, Yang Xu1, Ruiyuan Li1, 
Yimin Wei5, Zhijie Liu1, Yin Yi4 & Xiaoyao Xie1

Biological network alignment aims to discover important similarities and differences and thus find 
a mapping between topological and/or functional components of different biological molecular 
networks. Then, the mapped components can be considered to correspond to both their places 
in the network topology and their biological attributes. Development and evolution of biological 
network alignment methods has been accelerated by the rapidly increasing availability of such 
biological networks, yielding a repertoire of tens of methods based upon graph theory. However, most 
biological processes, especially the metabolic reactions, are more sophisticated than simple pairwise 
interactions and contain three or more participating components. Such multi-lateral relations are not 
captured by graphs, and computational methods to overcome this limitation are currently lacking. 
This paper introduces hypergraphs and association hypergraphs to describe metabolic networks and 
their potential alignments, respectively. Within this framework, metabolic networks are aligned by 
identifying the maximal Z-eigenvalue of a symmetric tensor. A shifted higher-order power method 
was utilized to identify a solution. A rotational strategy has been introduced to accelerate the tensor-
vector product by 250-fold on average and reduce the storage cost by up to 1,000-fold. The algorithm 
was implemented on a spark-based distributed computation cluster to significantly increase the 
convergence rate further by 50- to 80-fold. The parameters have been explored to understand their 
impact on alignment accuracy and speed. In particular, the influence of initial value selection on the 
stationary point has been simulated to ensure an accurate approximation of the global optimum. 
This framework was demonstrated by alignments among the genome-wide metabolic networks of 
Escherichia coli MG-1655 and Halophilic archaeon DL31. To our knowledge, this is the first genome-
wide metabolic network alignment at both the metabolite level and the enzyme level. These results 
demonstrate that it can supply quite a few valuable insights into metabolic networks. First, this method 
can access the driving force of organic reactions through the chemical evolution of metabolic network. 
Second, this method can incorporate the chemical information of enzymes and structural changes of 
compounds to offer new way defining reaction class and module, such as those in KEGG. Third, as a 
vertex-focused treatment, this method can supply novel structural and functional annotation for ill-
defined molecules. The related source code is available on request.

In recent years, whole-genome sequencing has been gradually completed for thousands of organisms, enabling 
a deeper and broader understanding of the functions represented by gene sequences1. Together with continuous 
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improvements in determining the interactions among biological molecules, this sequencing effort has produced a 
huge number of biological networks at different scales for various species. Biological networks such as metabolic 
networks, protein-protein interaction networks and gene regulation networks can be used to describe the compo-
sition, status, and operation of biological systems2,3. Analysis of biological network, especially the genome-scale 
network, could systematically provide the collective patterns and common features of massive amounts of 
genome information can be studied as well as new biometric features and emergent phenomena4.

The flood of increasingly rich biological networks has accelerated the development and evolution of biological 
network alignment methods5–7. Biological network alignment aims to find a mapping between topological and/
or functional components of different biological molecular networks. It can successfully address many essential 
biological questions, including the following4,5,8: which biological molecular interactions or groups of interactions 
are likely to have equivalent or conserved functions across species? In light of these similarities, can we predict 
novel functional information about components and interactions that are poorly characterized? Do these rela-
tionships inform us about the dynamics and evolution of molecules, networks and entire species?

Accordingly, numerous algorithms and tools have been developed for biological network alignment over the 
past decade5,9–15. For instance, Kelley and Sharan et al. matched two networks by searching high-ranking seeds 
in a dynamic programming method and extending around the seeds using a greedy strategy5,9. Pache et al. pro-
posed a pairwise alignment approach with connected components as seeds13. Flannick et al. developed a multiple 
network aligner, Graemlin, which uses an incremental alignment approach by implementing successively pair-
wise alignments on the closest graph pairs16. Singh et al. used the idea of PageRank as the definition of similar-
ities between vertices from different networks. And, they used a spectral graph method to rapidly identify the 
highest-ranking match from all possible matches in terms of the total score of all the aligned vertices17. Pržulj 
et al. exploited graphlet counts as topological node similarity scores and a greedy seed-and-extend method as 
the alignment strategy11. Heymans et al. performed metabolic network alignment by identifying a maximum 
weight matching of the enzyme similarity bipartite graphs. Pinter et al. converted the metabolic graph matching 
problem into a simple tree homeomorphism problem for alignment. Ay et al. proposed the SubMAP method, 
in which pathways are represented as compound-enzyme bipartite graphs and the alignment is converted into 
a conventional optimization problem18. Ay and his team again proposed a method that included a compression 
and decompression process of the pathways followed by the SubMAP. These efforts lead to a family of alignment 
methods that have swiftly evolved from a few early approaches into a repertoire of tens of methods19,20. The 
resulting methods have driven exploration and enhanced our understanding of the functional and organizational 
principles of different cellular processes.

These methods all rely on a graph representation. However, graph representation does not fully conform to 
reality of metabolic network, since metabolic reactions are obviously more complicated than can be described in 
simple graphs. A fundamental attribute of a graph is that each edge links two vertices. In contrast, metabolic reac-
tions involve more than two participating components and are therefore not always bilateral21. Such multi-lateral 
relations cannot be captured by a graph.

Hypergraphs offer a framework to overcome such difficulties; biological networks can be intuitively described 
using the hypergraph model21. Klamt et al. and Mithani et al. proposed using a hypergraph to represent biological 
networks21,22. Michoel et al. have used hypergraph-based spectral clustering to perform protein-protein interac-
tion networks classification23. Mohammadi et al. introduce a Triangular Alignment (TAME), which attempts to 
maximize the number of aligned triangles for 3-order protein-protein interaction network alignment based upon 
a tensor approach24.

This contribution introduces a hypergraph framework for metabolic network representation and develops a 
fast and easy alignment method through mathematical and computer improvements. Within this framework, 
metabolic networks are matched by identifying the maximal Z-eigenvalue of a symmetric tensor. A shifted 
symmetric higher-order power method was used to identify a solution that accurately approximates the global 
optimum. A rotational calculation strategy was designed to traverse all possible hyper-edges in Mohammadi’s 
implicit kernel of tensor-vector products for speed acceleration. The corresponding algorithm was realized with 
a Spark-based distributed memory computation on a cluster of 35 workers. These efforts attain a hundreds-fold 
increase in the convergence rate. Impact of certain parameters have been tested for this method. And, the influ-
ence of initial value on the convergent point has been investigated and a uniform vector has been found to be an 
appropriate choice. To demonstrate the framework, we apply it to aligning genome-scale metabolic networks of 
Escherichia coli MG1655 and Halophilic archaeon DL31.

This framework offers a completely intuitive, accurate, and comprehensive basis for the processing, man-
agement and analysis of metabolic networks. Because it is compatible with numerous tensor-based algorithms, 
this method will be benefit to a large family of downstream tools that could provide more in-depth insight into 
metabolic systems. The related source code is available on request.

Results
Illustration of a hypergraph-based metabolic network alignment.  First, the difference of repre-
senting a metabolic network by a graph or by a hypergraph has been illustrated in Fig. 1. A metabolic network in 
Fig. 1A and its original storage format cannot be directly targeted by a simple graph.

Instead, it can only be represented by a reformatted simple graph using enzymes as the vertices and metabo-
lites as the edges of the network, as shown in Fig. 1B. This reformat processing creates several problems. Substrates 
and metabolic end products become hovering edges connected to only one vertex. Parallel edges have been intro-
duced between two vertices, leading to difficulties in map handling.

Fortunately, a hypergraph, in which edges can join more than two vertices (please see Method section), realize 
a more precise and comprehensive representation of metabolic network. This can be shown in Fig. 1C which is 
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the corresponding hypergraph of Fig. 1A. And, Fig. 1D is the hypergraph matrix corresponding to the metabolic 
network.

Figure 2 summarizes the metabolic network alignment using a toy hypergraph case. Network A contains 3 
reactions and 3 compounds, whereas network B consists of only 1 reaction and 2 compounds (Fig. 2A). All of 
the potential alignments between edges and vertices are listed by generating an association hypergraph of the 
two hypergraphs Gab (Fig. 2B). The association hypergraph can be generated so that its vertex corresponds to a 
potential pair of vertices of the two hypergraphs while its hyperedge a potential pair of hyperedges (please see 
Method section).

When conducting the alignment, we added a null vertex ‘N’ to each hypergraph (metabolic network) to 
account for empty alignment or an absent compound, such as V1N. Therefore, the association hypergraph (Fig. 2B) 
contains 12 association vertices that represent the pairwise alignment of original vertices.

The number of association hyperedges will be more than association vertices. Alignments between any two 
enzymes can produce multiple association hyperedges, since the vertices subscript of one association hyperedges 
can be permutated to form other equivalent association hyperedges. For example, the alignment between E2 in 
Ga and E1 in Gb in Fig. 2A can produce two edges: V11-V22-VNN and V12-V21-VNN. Here, when the dimension of 
association vertices is less than the tensor order, VNN is used to fill the vacancies. The alignment between E3 and 
E2 can produce more hyperedge combinations.

As a graph represented by a matrix, the association hypergraph can be described by a tensor (please see 
Method section). A mathematical tensor is a multidimensional array of numerical values organized by their 
subscripts. For instance, a 2-dimentional tensor is a matrix. The element of such tensor is corresponding to the 
hypervertices and hyperedges of the association hypergraph. The value of each element is the similarity score of 
related association components. As such, association hypervertex is denoted by diagonal element and association 

Figure 1.  Different representation of metabolic network. (A) The original metabolic network. Circle of purple 
line and yellow fill represents the metabolites and green line represents the enzymatic reactions. (B) Simple 
graph representation of the metabolic network. Circle of green line and green fill represents the enzymatic 
reactions and brown line represents the metabolites. (C) Hypergraph representation of the metabolic network. 
Circle of purple line and yellow fill represents the metabolites and colorized blocks represent enzymatic 
reactions. E1: purple block, E2: green block, E3: red block. E4: blue block. (D) The hypergraph matrix of the 
metabolic network. Each column is representative of reaction while each row is representative of metabolite.



www.nature.com/scientificreports/

4SCIeNTIFIC ReporTS |         (2018) 8:16376  | DOI:10.1038/s41598-018-34692-1

hyperedge by non-diagonal element. This tensor is symmetric since non-diagonal elements’ value will not change 
when the subscripts are permutated. Figure 2C shows the cross-section h(11, :, :) of the super-symmetric score 
tensor of Fig. 2B.

Tensor power iteration algorithm for hypergraph alignment.  As described in the Methods section, 
the score of hypergraph alignment can be represented as a modal tensor-vector product25,26. Then, hypergraph 
alignment determines a vector x that maximizes the tensor multiplication according to certain constraints. 
The task for such a problem is seeking this vector and then discretizes it via a greedy algorithm27. This seeking 
task remains a NP-hard problem. Currently, we can only achieve an optimal approximate solution in the actual 
calculation24,28.

Several methods are available for this task. For example, maximizing the n-mode tensor product can be con-
verted into a semi-definite programming problem via semi-definite relaxation, and a solution can be obtained 
via the primal-dual interior point method29. However, this method is computationally intensive and can only 
be used for networks with few vertices. Alternatively, tensor power iterations can be used to solve the prob-
lem24,30,31. This approach seeks the maximum Z-eigenvector and the eigenvalue of the tensor. Because the ten-
sor is super-symmetric, this approach is equivalent to identifying the best symmetric rank-1 approximation of 
a symmetric tensor, and we adopt the shifted symmetric higher-order power method (SS-HOPM), which was 
introduced by Kolda et al.30. The corresponding procedure is provided in algorithm 1 (see Method section). The 
super-symmetric tensor H corresponds to the association hypergraph. The elements of x represent the alignment 
of vertices between two hypergraphs.

Algorithm speed acceleration and storage reduction by rotational multiplication and distrib-
uted memory computing.  Generally, genome-scale metabolic networks encompass hundreds to thousands 

Figure 2.  Illustration of hypergraph based metabolic network alignment. Circle of purple line and yellow 
fill and circle of purple line and brown fill represent the metabolites and green line represents the enzymatic 
reactions. (A) The two metabolic networks for alignment. Circles with dashed lines is null vertex N. Hypergraph 
a is of order 3 whereas hypergraph b is of order 2. (B) The associate hypergraph of the alignments. The subscript 
shows different alignments of the vertex in original network. VNN represents the association vertex between 
the two null vertices. Dashed lines represent the association hyperedges containing VNN. This association 
hypergraph is of order 3. (C) The cross-section h(11, :, :) of the supersymmetric score tensor.
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of reactions, resulting in association hypergraphs of up to millions of hyperedges32. To ensure an accurate 
tensor-vector product, the hyperedge of the association hypergraph should be proliferated by permutating its 
subscript and filled into a symmetry tensor. A full representation of this symmetric tensor will introduce a K! fold 
increase in the number of variables. Such combinatorial explosion leads to massive storage need and, in particu-
lar, explosive computation requirement, which prevents the alignment on large networks.

To this end, computational efforts have been realized to ensure the practicability of network alignment on 
a genome scale. The combinatorial explosion stemmed from the high-dimensional structure of tensor. After a 
careful study of the process of tensor-vector n-mode product, we found that this difficulty could be addressed 
by taking advantage of the symmetry of the tensor (Algorithm 2). We call this a rotational tensor-vector product 
for a super-symmetric tensor. In the process of production, the tensor could be fully represented by the elements 
with their size just as one upper hypertriangular region. Thus, it is only necessary to reconstruct such elements 
and store them in memory. An element in one position will contribute to elements on multiple positions of the 
resulting vector according to its subscript. To account for this feature, the elements are rotated according to its 
subscript to generate its K equivalents, each of which contribute to one position (Step 2 in algorithm 2). In addi-
tion, different elements contribute to the same position of the resulting vector as long as the last K-1 subscripts of 
these elements belong to the permutations of the same set of numbers. To this end, the new elements generated 
by rotation were multiplied by the permutation number of its last K-1 subscripts (Step 3 in algorithm 2). The 
flowchart of the entire process is displayed in Fig. 3.

We theoretically compared the computation and storage cost of the normal strategy and the rotational strat-
egy. Given an association hypergraph with |Eab| edges, |Vab| vertices, K orders and its corresponding tensor. For 
a normal strategy, these features will result in an |Eab| * K! + |Vab| computation requirement and storage need. In 
comparison, for the rotational strategy the algorithm requires a computation cost of about |Eab| * K + |Vab| and the 
storage required is approximately |Eab| * K. Here, to trade space for time, we didn’t express the tensor for associate 
hypergraph as the Kronecker product of the tensors for original graph, which will achieve maximal storage cost 
saving as Mohammadi proposed.

The algorithm incorporating rotational multiplication, which we call Rotational SS-HOPM (R-SS-HOPM), 
was first implemented in a stand-alone version. Further, distributed memory computing has been realized to 

Figure 3.  Illustration of rotational tensor-vector products algorithm. Symbol H in colorized block represents 
element in the HASH for the tensor. Symbol X in colorized block represents element in the HASH for the vector. 
Purple line means the contribution from different tensor elements to the ultimate vector element.
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ensure the feasibility of alignment for larger network, which we called Distributed SS-HOPM. The algorithm was 
implemented with Java APIs of the Spark framework on a cluster of up to 35 nodes (32G memory and 8 cores of 
6700 K CPU). We compared their calculation speed with those of normal strategy on a stand-alone setting using 
selected network pairs. The speed-up ratio of the R-SS-HOPM over the normal one is reported in Fig. 4A (Please 
see Supplementary Data 1 and 2 for usage of the data set). The bar in the first figure is the convergence time of 
the normal SS-HOPM and that in the second figure is the convergence time of the R-SS-HOPM. The bar in the 
third figure is speed-up ratio of the R-SS-HOPM over the SS-HOPM. The R-SS-HOPM achieved an extraordinary 
acceleration. For the selected pairs, the R-SS-HOPM has an average speed-up ratio of 250 and a peak value over 
300.

The speed-up ratio of the DR-SS-HOPM over R-SS-HOPM is reported in Fig. 4B. The bar in the first figure is 
the convergence time of DR-SS-HOPM and that in the second figure is the convergence time of R-SS-HOPM. The 
bar in the third figure is speed-up ratio of DR-SS-HOPM over R-SS-HOPM. From the results, DR-SS-HOPM, 
which takes advantages of distributed memory computing, has a further speed-up ratio of 15 in average over 

Figure 4.  Speed and storage improvement by distributed computing and rotational algorithm and parameter 
impact on algorithm performance. (A) The speed-up ratio of rotational tensor-vector product strategy over 
normal one. The left figure is about convergent time run with normal strategy. Its x-axis represents convergent 
time at unit of millisecond. The middle figure is about convergent time run with rotational strategy. Its x-axis 
represents convergent time at unit of millisecond. The right figure is about speed-up ratio run of rotational 
strategy. Its x-axis represents the corresponding speed-up ratio of rotational strategy over normal one. Their 
y-axis represents 15 different network pairs. (B) The speed-up ratio of distributed rotational tensor-vector 
product method over stand-alone one. The left figure is about convergent time run with distributed rotational 
strategy. Its y-axis represents convergent time at unit of millisecond. The middle figure is about convergent time 
run with stand-alone rotational strategy. Its y-axis represents convergent time at unit of millisecond. The right 
figure is about speed-up ratio of distributed rotational strategy. Its y-axis represents the corresponding speed-up 
ratio of distributed rotational strategy over stand-alone one. Their x-axis represents 6 different network pairs. 
(C) Relationship between α and alignment speed and accuracy. The x-axis is α value and in logarithmic 
coordinates. The first figure is about the alignment score after discretization. Its y-axis represents relative 
alignment score after discretization normalized by the corresponding values at α = 0.0001. The second figure 
is about the convergence time. Its y-axis represents relative convergence time normalized by the corresponding 
values at α = 0.0001. The third figure is about the edge correctness. Its y-axis represents relative edge correctness 
normalized by the corresponding values at α = 0.0001. The fourth figure is about the vertex correctness. 
Its y-axis represents relative vertex correctness normalized by the corresponding values at α = 0.0001. (D) 
Relationship between λ and alignment speed and accuracy. The x-axis is λ value. The first figure is about the 
alignment score after discretization. Its y-axis represents relative alignment score after discretization normalized 
by the corresponding values at λ = 0.9. The second figure is about the convergence time. Its y-axis represents 
relative convergence time normalized by the corresponding values at λ = 0.9. The third figure is about the edge 
correctness. Its y-axis represents relative edge correctness normalized by the corresponding values at λ = 0.9. 
The fourth figure is about the vertex correctness. Its y-axis represents relative vertex correctness normalized 
by the corresponding values at λ = 0.9. The letters in legend of C and D represents 15 different network pairs. 
Please see Supplementary Data 2 for the network pairs used in these figures.
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R-SS-HOPM and a peak value of 80. Such advantages will continue to increase as the mode of association hyper-
graph increases. So, R-SS-HOPM can satisfy the requirement of calculation at a genome-scale.

Since some metabolic reactions will encompass many metabolites, most genome-scale metabolic networks 
will have a large order. In aiding of the rotational multiplication strategy, the Distributed Rotational SS-HOPM 
becomes the most efficient and fast method to successfully treat such alignment tasks. We successfully aligned 
the complete metabolic networks of Escherichia coli (eco01100) and Saccharomyces cerevisiae (hah01100) which 
cannot be achieved by other methods in a short time.

Impact of α and λ on alignment accuracy and convergence speed.  A number of parameters can 
impact the performance of the algorithm. We tested their effects on the alignment speed and accuracy. Each 
network pair used for this purpose include one big network and one small network (details in Supplementary 
Data 1 and 2). The small network is a part of the big network, the network alignment is similar to self-alignment. 
This process is instructive given that correct vertex/edge matching is known before mapping and enables us to 
assess accuracy in a manner that is impossible when aligning hypergraphs with different sources. In these tests, 
alignment speed is measured by convergence time of the process. Alignment accuracy is quantified by various 
measures, including alignment score, edge correctness (EC) and vertex correctness (VC)12. Alignment score is 
the matching score of objective function in Eq. 4. EC indicates the percentage of edges from a smaller hypergraph 
that are correctly aligned to the edges in another hypergraph. VC similarly measures the fraction of nodes with 
correct alignment.

First, we tested the effects of the shift parameter α (please see Method section). An output alignment vector 
will be generated by iterative power multiplication on an input vector during each round of iteration. The algo-
rithm will use both the output vector and the input vector to generate a vector as the new input vector. α repre-
sents the fraction of the old input vector retained in the new input vector. α is just like a sort of step size, less α 
means larger step size. The addition of the positive shift parameter α leads to a definite convexity of the objective 
function and ensures that the power method can converge30. In a preliminary investigation, we found that α near 
zero typically produced high-quality alignment, whereas α near one, which means nearly no optimization, caused 
large iteration steps and was not applicable to our algorithm. Thus, for each of the selected data, we changed α 
according to a list of (0.0001, 0.001, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8) and recorded the convergence 
time and alignment accuracy with λ = 0.9 and the same random x0. The convergence time and accuracy for 
each α were normalized by the corresponding values at α = 0.1. Figure 4C presents the curve of α’s impact for 
each pair of networks. The alignment scores, ECs and VCs vary as α increases from 0 to approximately 1 and 
exhibits the same trend. A step response line shape is displayed and the highest value is achieved when α is less 
than 0.1. The convergence time exhibits a stable profile when α is between 0 and 0.05. When α becomes greater 
than 0.1, the convergence time increased dramatically for each network. This finding indicates that α generally 
increases both convergence speed and alignment accuracy. Why an increased in α impacts the alignment accu-
racy? Increased α means the convergence will be difficult to achieve. As such, in a real iteration, the numerical 
process will terminate at suboptimum. In the following calculation, α = 0.01 was used.

We then tested the impact of the balance factor λ on the convergence speed and alignment accuracies. The 
similarity score itself is dimensionless, so it is hard to weight the impact of vertices and edges in directing the 
optimization process (please see Method section). The factor λ has been introduced to adjust the weight of the 
two components. In final formula, hyperedge similarity was multiplied by (1 − λ) while hypervertex by λ. Higher 
λ lead to increasing weight of hypervertex in alignment score. So, this parameter will directly change the objective 
score and thus the direction of optimization process.

For each of the selected pairs, given x0 and α = 0.01, we recorded changes in the convergence speed and align-
ment accuracy for λ values in a list from 0 to 0.9 with a step of 0.1. The alignment score was normalized by the 
corresponding values at λ = 0.9 Fig. 4D shows that the alignment score increases significantly as λ increases. This 
occurs because the similarity scores of enzymes based on hierarchical taxonomy are significantly smaller than the 
CID similarity scores between compounds. Increased λ leads to decreased enzyme score fractions and increased 
metabolite score fractions, indicating a gradually increased total score.

For all the alignments, the curves of EC and VC versus λ looks two-valued and there is a threshold of λ for 
the curve. When λ is less than the threshold, EC and VC are relatively low. When λ becomes greater than the 
threshold, the alignment reaches relatively high EC and VC values. Meanwhile, increase of λ cause the drop of 
alignment speed of all networks. The reason for such phenomenon is because one pair of enzymes will give birth 
to a great deal of non-diagonal elements with equivalent values through the combination of the two sets of metab-
olites. This results in a large fraction of equivalent non-diagonal elements in the tensor, which greatly reduces the 
ability to identify correct alignments. Thus, it is difficult to converge to a high-quality alignment when λ is less 
than the threshold and non-diagonal elements exert a dominant influence on the alignment result. Conversely, 
this could explain why increased λ results in good alignment. This feature suggests that metabolite matching 
outperforms enzyme matching in determining the ultimate alignment result in current setting. In the following 
part, λ was set to 0.9.

In addition, many different score function can be used to align enzymes and metabolites33,34. Therefore, the 
value of λ is only a relative value and must be adjusted for different purposes.

Impact on stationary point by initial vector selection.  To a certain degree, the ultimate stationary 
points depend on initial values. To accurately approximate the global optimum, the impact of initial values on 
stationary points has been carefully explored with multiple rounds of parallel optimization using a random x0 as 
the initial point. The non-negativity of hypergraph tensor ensures the non-negativity of both the initial point and 
the optimum. In addition, a preliminary test shows that a uniform vector will always achieve an optimum with 
very high alignment accuracy. So, we generate the initial x0 by adding a non-negative random vector to a uniform 
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vector xu. The fraction of the uniform component is controlled by coefficient β. In the following calculation, β 
ranges from 0 to 0.9 in a step of 0.1. For each β, 30 initial points were randomly generated as x0. For each network 
pair, the discretized score was normalized by the corresponding value based upon xu.

Figure 5A shows the relationship between x0 and the distribution of alignment accuracy. Specifically, the x-axis 
represents values of the L1-norm of (x0–xu) ranging from 0 to 1, which actually represents the distance from x0 to 
xu, whereas the y-axis represents the alignment accuracy. Each dot is a stationary point of a single optimization 
process. The shape of the dots presents a downward trend. The alignment accuracy (regardless of whether EC, VC 
or alignment score is considered) always peaks when the L1-norm approaches zero. And, it decreases sharply as 
x0 moves away from xu. This finding suggests that optimization processes starting from xu converge to the approx-
imated maximum xm in the space near xu given that this stationary point is a satisfactory approximation of the 
global optimum in all feasible space. So, a uniform vector is the preferred initial point candidate.

Figure 5.  Property of the stationary points after convergence. The data for these figures are coming from 6 
network pairs. (A) Relationship between initial vector selection and alignment score after discretization. X-axis 
shows the value of L1-norm of (x0–xu), which actually means the distance from initial vector to uniform vector. 
Y-axis shows the relative values of score after discretization, edge correctness and vertex correctness, which are 
normalized by the corresponding maximal scores for a same network pair. Red, green and blue dots represent 
the value of score after discretization, edge correctness and vertex correctness, separately. (B) Relationship 
between alignment score before discretization and alignment score after discretization. X-axis shows the relative 
value of score before discretization normalized by the corresponding maximal score for a same network pair. 
Y-axis shows the relative value of score after discretization normalized by the corresponding maximal score for 
a same network pair. (C) Performance of the algorithm on noisy network. Y-axis shows the relative values of 
edge correctness and vertex correctness normalized by the corresponding maximal scores for a same network 
pair. Red line is edge correctness and green line is vertex correctness from of average of different network pairs. 
Shaded gray area represents the error generated by a local polynomial regression fitting of the data by stat_
smooth function of gglot2. Please see Supplementary Data 2 for the network pairs used in these figures.
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We also studied the relationship between the objective function score and its discretized counterpart. This 
relationship is represented by the scatter plots in Fig. 5B. The horizontal and vertical coordinates of the scatter 
plot are all relative values normalized by the corresponding maximal score. Figure 5B shows that the vast majority 
of optimization with different initial points converges to stationary points with a very close score before discre-
tization. However, although the scores before discretization are very close for each optimization, the scores after 
discretization and thus the alignment result differ significantly. The shapes of the dots indicate that the trans-
formation from original score to discretized score exhibits a one-to-many relationship. This finding suggests 
that there are multiple maximums with similar importance spread across the space of a score before discretiza-
tion, and few of these maximums map to the maximum in the space of a score after discretization. Therefore, a 
well-chosen initial point such as xu is necessary to achieve a satisfactory approximation of the global optimum. 
For other experiments, xu is chosen as the preferred initial point.

The robustness of hypergraph-based method.  We performed self-alignment with noise to assess the 
robustness of hypergraph-based method. The similarity score of each component in the association hypergraph 
was modified by simulated noise. The noise intensity was set at 5%, 10%, 15%, 20% and 25% of the mean intensity 
of the original alignment35. The true alignment is known because the networks are constructed using the same 
set of nodes.

The manner in which the alignments score varies as noise is shown in Fig. 5C. With the least noise, most align-
ments achieve a high matching quality. As the noise intensity increases, our method allows for a relatively slow 
decrease in matching quality. The performance suggests that it is robust to the presence of noise in the network.

The alignment between the genome-scale metabolic network of Escherichia coli MG-1655 
and Halophilic archaeon DL31.  To assess the biological relevance produced by our method, we aligned 
the genome-scale metabolic networks of Escherichia coli MG-1655 (eco01100) and Halophilic archaeon DL31 
(hah01100), both of which were obtained from KEGG PATHWAY module36.

The basic statistics of the alignment are listed in Table 1. The hah01100 network encompasses 537 reactions 
and 559 metabolites. Overall, 100% of the reactions were aligned, and 79.14% were accurately aligned. In addi-
tion, 100% of the metabolites were aligned, and 83.04% were accurately aligned. In comparison, the eco01100 
network encompasses 923 reactions and 794 metabolites. Overall, 58.17% of the reactions were aligned and 
46.05% were accurately aligned. In addition, 70.40% of the metabolites were aligned, and 58.56% were accurately 
aligned. A complete view of the alignments and their details are presented in Fig. 6A. Since most of the enzymes 
and metabolites aligned themselves correctly, we focused on the biological relevance of the missed match or gap.

For eco0110 of Escherichia coli MG-1655, 498 enzymes and 329 metabolites were not aligned or cor-
rectly aligned to any of those in hah01100 of Halophilic archaeon DL31. A considerable proportion of the 
unaligned reactions and metabolites could be grouped together by their linkages, forming several sep-
arate pathways with clear biological function. There is no correct hit in hah0110 for enzymes includ-
ing ATP:D-xylulose 5-phosphotransferase, D-xylose aldose-ketose-isomerase, sedoheptulose-7-phosphat
e:D-glyceraldehyde-3-phosphate glycolaldehyde transferase, D-xylose xylohydrolase, L-ribulose-5-phosphate 
4-epimerase, L-ribulose-5-phosphate 3-epimerase, 3-dehydro-L-gulonate-6-phosphate carboxylyase, 
ATP:L-ribulose 5-phosphotransferase, beta-D-Fructose 6-phosphate:D-glyceraldehyde-3-phosphate gly-
colaldehyde transferase, sedoheptulose-7-phosphate:D-glyceraldehyde-3-phosphate glyceronetransferase, 
D-Ribulose-5-phosphate 3-epimerase and for metabolites including L-ribose, L-arabinose, D-xylose, D-xylulose, 
D-xylulose-5-phosphate, L-ribulose-5-phosphate, L-xylulose-5-phosphate. As shown in Fig. 6B, these enzymes 
and metabolites form parts of a sub-network responsible for non-oxidative pentose phospahte exchange and 
pentose and glucuronate interconversions, which mean that hah01100 do not possess such pathway. As such, for 
hah01110, some of the function of the pentose phosphate pathway was compensated for by its substitutes, such as 
the 2-deoxyribose 5-phophate aldolase (DERA) pathway and the 6-deoxy-5-ketofructose-1-phosphate (DKFP) 
pathway.

As shown in Fig.  6C, another such pathway is 2-C-methyl-D-erythritol-4-phosphate pathway or 
1-deoxy-D-xylulose 5-phosphate pathway (MEP/DOXP pathway). This pathway is an alternative leading to the 
formation of isopentenyl pyrophosphate and dimethylallyl pyrophosphate. Thus, the alignment suggests that the 
hah01110 archaea possesses only the mevalonate pathway for its isoprenoid ether lipid production.

In addition, a number of cofactor pathways such as Vitamin B6, Vitamin B12 and biotin, as well as lipopoly-
saccharide biosynthesis pathway, have been found to be not fully aligned in eco01100 and thus to be partly miss-
ing in hah01100. These alignments show that hah01100 use modified versions of the pathways or it is inefficient 
in corresponding cofactors de novo synthesis and cell wall blocks producing, if hah01100 represents a complete 
annotation for the genome.

For hah01100 of Halophilic archaeon DL31, 112 enzymes and 94 metabolites were not aligned or correctly 
aligned to any of those in Escherichia coli MG-1655. There is no correct hit for enzymes of 5,10-Methenyl 

Network
Reaction 
Number

Metabolite 
Number

Match Ratio of 
Reaction

Accurate Match 
Ratio of Reaction

Match Ratio 
of Metabolite

Accurate Match 
Ratio of Metabolite

hah01100 537 559 1 0.7914 1 0.8304

eco01100 923 794 0.5817 0.4605 0.7040 0.5856

Table 1.  The basic statistics of the alignment between Escherichia coli MG-1655 and Halophilic archaeon DL31.
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Figure 6.  Alignment results for biosynthesis pathway of secondary metabolites between Escherichia coli 
MG-1655 and Halophilic archaeon DL31. The aligned networks are eco01110 and hah01110 from KEGG. 
Red dot represents unaligned metabolites, yellow dot represents missed aligned metabolites and green 
dot represents aligned metabolites. Red triangle represents unaligned reactions, yellow triangle represents 
missed aligned reactions and green triangle represents aligned reactions. The line represents the inclusion of 
metabolites in a reaction. (A) The whole alignment between eco01100 and hah01100. The curve represents 
the alignment relationship between the components. (B) An unaligned connected sub-network for non-
oxidative pentose phospahte exchange and pentose and glucuronate interconversions in eco01100. R01067: 
D-Fructose 6-phosphate:D-glyceraldehyde-3-phosphate glycolaldehyde transferase. R01432: D -xylose 
aldose- ketose- isomerase. R01433: D-xylose xylohydrolase. R01529: D-Ribulose-5-phosphate 3-epimerase. 
R01639: ATP:D-xylulose 5-phosphotransferase. R01641: sedoheptulose-7-phosphate:D-glyceraldehyde-3-
phosphate glycolaldehyde transferase. R01761: L-Arabinose aldose-ketose-isomerase. R01827: sedoheptulose-
7-phosphate:D-glyceraldehyde-3-phosphate glyceronetransferase. R01830: beta-D-Fructose 6-phosphate:D-
glyceraldehyde-3-phosphate glycolaldehyde transferase. R03244: L-ribulose- 5-phosphate 3 - epimerase. 
R02439: ATP: L- ribulose 5 phosphotransferase. R05850: L-ribulose-5-phosphate 4-epimerase. R07125: 
3-dehydro-L-gulonate-6-phosphate carboxy-lyase. (C) An unaligned reaction combination in hah01100, which 
is related to MEP/DOXP pathway pathway. R00277: Pyridoxamine-5′-phosphate:oxygen oxidoreductase. 
R00278: Pyridoxine 5-phosphate:oxygen oxidoreductase. R01708: Pyridoxine:NADP+ 4-oxidoreductase. 
R01710: Pyridoxamine:oxygen oxidoreductase. R01711: pyridoxine:oxygen oxidoreductase. R00173: pyridoxal-
5′-phosphate phosphohydrolase. R00174: ATP:pyridoxal 5′-phosphotransferase. R02493: ATP:pyridoxal 
5′-phosphotransferase. R02494: pyridoxamine-5′-phosphate phosphohydrolase. R05838: pyridoxine 
5′-phosphate synthase. (D) An unaligned connected sub-network in eco01100, which is related to methane 
metabolism. R05633: CTP: 2-C-Methyl-D-erythritol 4-phosphate cytidylyltransferase. R05634: ATP:4-(Cytidine 
5′-diphospho)-2-C-methyl-D-erythritol 2-phosphotransferase. R05637: 2-Phospho-4-(cytidine 5′-diphospho)-
2-C-methyl-D-erythritol CMP-lyase. R05688: 1-Deoxy-D-xylulose-5-phosphate isomeroreductase. R08689: 
(E)- 4-hydroxy- 3-methylbut -2-en-1-yl-diphosphate: oxidized ferredoxin oxidoreductase. R10859: (E)-4-
hydroxy-3-methylbut-2-en-1-yl diphosphate:oxidized flavodoxin oxidoreductase.
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tetrahydro methanopterin 10-hydrolase, 5,10-Methylene tetrahydro methanopterin:coenzyme-F420 
oxidoreductase and metabolites of 5,10-Methylene tetrahydro methanopterin, Reduced coenzyme F420, 
5-Methyl-5,6,7,8-tetrahydro methanopterin, Coenzyme F420, 5,10-Methenyltetrahydromethanopterin, 
5-Formyl-5,6,7,8-tetrahydro methanopterin in methane metabolism (in Fig. 6D). This indicates that the eco01110 
is incompetent in methane biosynthesis and utilization and does not possess a full ability to grow on methane.

Most unaligned components are isolated and spread over the network and some of them belong to KEGG 
pathway of microbial metabolism in diverse environments (rn01120). It is not surprising in that as one extremo-
phile, Halophilic archaeon DL31 inhabit extreme habitat with high salt stress and other distinctive nutrition 
requirement and environmental stress.

In a word, our alignment reveals the difference in nutrition requirement and metabolic capacity between 
eco01100 and hah01100 in details. Regardless of incomplete genome annotation, this will be a short reflection 
of their natural habitat and evolutionary history. Meanwhile, most of the results are also evidenced by rigorous 
experiments37, which in turn demonstrate the value of our method.

Discussion
A hypergraph is a powerful tool with more profundity and applicability than a graph. Most complex relationships 
in the real world can be represented by hypergraphs. Therefore, it has increasing practical significance for extend-
ing the alignment of the metabolic network from a graph-based method to a hypergraph.

We adopted a power iteration method as the optimization strategy given its briefness and efficiency. Numerous 
modified versions have been generated during its evolution, such as the shifted power method or adaptive power 
method. In the power method without a shift, the iteration will always be rapid but will occasionally fail to con-
verge. In contrast, sometimes the convergence rate is relatively slow for the adaptive method and the normal 
shifted power method with a large shift parameter. Thus, a compromise that satisfies both sides involves utilizing 
a small and fixed shifted parameter.

The greatest challenge of hypergraph alignment is the implementability of the entire process. Although the 
power method itself is relatively simple, it has not been successfully applied for large-scale and high-order biolog-
ical networks such as metabolic networks in the real world. This limitation originates from the existence of too 
many elements in association with the hypergraph tensor. In constructing the association hypergraph, an align-
ment between any two hyperedges will produce association hyperedges with a number close to the factorial of the 
order. An alignment of two hyperedges includes both the alignment between two hyperedges and the alignment 
between the hypervertices belonging to each of the hyperedges. The number of possible alignments is close to a 
factorial of the order between the two sets of hypervertices.

Furthermore, since current eigen-pair enumeration methods are only accessible for super-symmetric tensors, 
we must permutate the subscripts of the association hyperedge to fill in the corresponding tensor. This process 
also leads to the explosive growth of the tensor elements. Consequently, the resultant tensor exhibits amazing 
memory consumption, and tensor-vector multiplication is extremely time-consuming for large-scale networks.

To this end, various efforts have been devoted to overcome these limitations. One effort involves implementing 
our algorithm within the architecture of distributed memory computing. This method possesses good scalability, 
and its ability can be enhanced with an increase in computing resources. It is suitable for the hypergraph with 
massive components, but not very high-order massive components. Compared with the stand-alone algorithm, 
the maximal speed-up ratio has reached the value of 80 by utilizing the full resources in this paper. However, for 
higher-order problems, the method will be difficult.

Another effort is to improve the algorithm performance using subscript rotational tensor-vector multiplica-
tion. This method is appropriate for speed acceleration and storage reduction of a high-order network. It could 
increase algorithm speeds by 250-fold while saving memory by tens of thousands-fold.

A joint method combining both of these efforts can achieve a speed-up ratio of 1000 and solve the problem 
that could not be addressed exclusively by either the stand-alone rotational method or distributed computing.

Several parameters have been examined to understand their influences on algorithm performance. α is one 
of the most dominant parameters. This parameter impacts the convexity of the objective function and then the 
convergence speed of the algorithm. α also affects the stationary point of the algorithm in our test. In practice, an 
α between 0.0001 and 0.01 is the preferred choice.

Another important parameter is λ. Strictly, λ is the parameter of the objective function instead of our algo-
rithm. Its role is to balance the relative weight of the metabolites (hypervertex) over enzymes (hyperedge). In this 
paper’s test, λ exerts a great influence on the speed as well as alignment result. A larger λ indicates more weight of 
the metabolites, a faster convergence rate and a higher alignment score. The smaller the λ, the larger the weight 
of enzymes. Since enzymes (non-diagonal elements) have a very flat shape due to the equivalence of their values, 
the algorithm is not easy to reach a good stationary point when enzymes dominate the alignment. It is relatively 
difficult for an optimization with a small λ to converge. Although the weight of metabolites and enzymes is 
determined mainly by the specific structure and topology of the analyzed networks, the metabolites would have a 
stronger impact on alignment, from the formula of optimization algorithm itself. It is because that only if all the 
metabolites belonging to one enzyme (diagonal elements corresponding to one non-diagonal elements) correctly 
aligned, the algorithm wills generate an alignment of this enzyme. Additionally, the selection of similarity score 
function will also impact the alignment and interfere with λ. For instance, sequence homologous score of enzyme 
usually have a large value and will often let enzyme dominate the alignment. So, the influence of λ is complicated.

In essence, current power methods cannot guarantee the identification of global optima—they can only 
achieve a sufficient approximation of global optima. So, the challenge is how to ensure that the algorithm con-
verges to such approximations. The choice of the initial vector itself has little influence on the alignment score, 
they give similar alignments with good approximation. However, our hypergraph alignment problem is subject 
to 0–1 constraints and must discretize the corresponding solution vector to obtain the ultimate alignment result. 
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The discretized results are very sensitive to the stationary points before discretization. A little change in the align-
ment before discretization will lead to very different alignment result. In practice, the uniform vector is capable 
of converging to a very good approximation. Therefore, the uniform vector should be a preferred candidate for 
initial value selection.

Another possible method for achieving a satisfactory approximation of the global optimum might involve 
performing multiple rounds of parallel optimization using random x0. The alignment with the best score could be 
considered as an approximation of the global optimum. The number of samplings for achieving a global optimum 
may be associated with the size of the network itself. However, it is difficult to describe the relationship between 
the sampling number and the distance from the obtained optimal point to global optimum or the relationship 
between the sampling number and the probability to obtain the global optimum. The issue of how to determine 
an appropriate sampling number remains an open question.

As an example, an alignment among the metabolic networks of hah01100 and eco01100 was performed. 
The alignment difference was clarified in terms of enzymes and metabolites. Numerous significant biologically 
relevant differences were observed in non-oxidative pentose phospahte exchange and pentose and glucuronate 
interconversions pathway, MEX/DOXP pathway and some cofactor pathways. This numerical alignment has an 
excellent fit to the experimental results, which underscores the accuracy and power of this method.

Conclusions
This study describes the background and a methodological framework for using hypergraphs to represent 
metabolic networks and tensors to align the networks. A hypergraph is suitable for intuitively, accurately and 
comprehensively describing metabolic networks. Association hypergraphs can be used to represent all possible 
alignments of the networks, whereas the corresponding tensor can store the similarity scores of the associa-
tion hypergraph. This method provides an intuitive, accurate and comprehensive mathematical framework for 
the alignment of metabolic networks. A shifted symmetric higher-order power method was implemented on a 
spark-based computation cluster to solve the problem, significantly increasing the convergence rate up to 80-fold. 
A rotational tensor-vector product algorithm was introduced to accelerate the optimization by an average of 
250-fold. The parameters have been simulated to determine their influence on alignment performance. In par-
ticular, the impact of the initial value on the convergence point has been tested to identify an accurate approx-
imation of the global maximum. For the first time, this method achieved a genome-wide metabolic network 
alignment at both the metabolite level and the enzyme level. Similar to previous methods based upon a simple 
graph, a wide range of broad biological significance can be obtained using this hypergraph-based approach. In 
addition, it provides numerous valuable insights into bio-molecular networks. First, this method can access the 
driving force of chemical logic of organic reactions through the chemical evolution of metabolic network. Second, 
this method can incorporate the chemical information of enzymes and structural changes of compounds to offer 
new way defining reaction class and module, such as those in KEGG. Third, as a vertex-focused treatment, our 
method can supply novel structural and functional annotation for ill-defined molecules. Because this framework 
is compatible with numerous mathematical methods applicable to the tensor eigenvector problem, we believe it 
will form a set of tools with extensive applicability to metabolic network alignment and provide more in-depth 
insight into biological systems.

Methods
Association hypergraph representation of metabolic network alignment.  A metabolic network 
containing m reactions and n metabolites can be accurately represented by hypergraph G(V, E) (although this 
study did not consider the direction of the reaction, the reaction direction can be naturally represented in a 
directed hypergraph). Generally, such a hypergraph G is a pair G(V, E) where V is a set of elements called ver-
tices and E is a set of non-empty subsets of V called hyperedges. In this hypergraph, the set E = {ej, j = 1, …, m} 
represents enzyme reactions in the metabolic network, whereas V = {vi, = 1, …, n} represents metabolites in the 
metabolic network. The metabolic network can be represented by stoichiometric matrix S, in which a row corre-
sponds to a metabolite and a column corresponds to a reaction. The element of S is the stoichiometric coefficient 
of a metabolite in a reaction with positive value standing for product and minus value standing for reactant. The 
stoichiometric matrix S can also be transformed into hypergraph matrix G after binarization of the stoichiometric 
coefficient. The order of hypergraph K is defined as the number of compounds of the reaction connected to the 
most compounds.

All of the possible alignment results between two hypergraphs Ga = (Va, Ea) and Gb = (Vb, Eb) can be enumer-
ated by constructing an association hypergraph Gab of the two hypergraphs (Fig. 2A,B). The construction rule is 
that each vertex Vab corresponds to a pair of vertices of the two hypergraphs while each hyperedge 



ea b a b a b, , , K K1 1 2 2
 

corresponds to a pair of hyperedges in the two hypergraphs38. The order of the association hypergraph can be 
expressed as max {Ka, Kb}.

However, the alignment of the components becomes more complicated in the hypergraph. Since different 
enzymes may have different numbers of compounds, an alignment may occur between hyperedges with different 
orders (containing different numbers of compounds). This phenomenon necessitates the presentation of align-
ments between different numbers of vertices, such as the alignment between 



ea a a, , , m1 2
 and 



eb b b, , , n1 2
. To allow for 

the alignment of hyperedges with different orders, we introduce a null vertex, N, into each hypergraph. So, in the 
association hypergraph, vertices such as Va Ni

 and VNN are generated to represent alignments including null verti-
ces, which actually means components deletions or insertions in an alignment.

We then introduce the tensor H to represent the association hypergraph39. For simplicity, we define the tensor 
H that corresponds to the association hypergraph as super-symmetric because the similarity of a hyperedge does 
not depend on the order of the vertices of the hyperedge.
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The order of H is K, and the dimension of H is consistent with the vertices of the association hypergraph. The 
elements of H, 



hh h h, , , K1 2
 represent the hyperedges of the association hypergraph. When the subscript of a tensor 

element indicates a half-empty vertex such as Vh Ni
, it may represent an alignment between hyperedges with differ-

ent numbers of vertices. When the subscript of a tensor element indicates a completely null vertex such as VNN the 
orders of the two matching hyperedges are smaller than the order of the hypergraph. The function S acts as a 
degree of similarity measurement between the two hyperedges 



ea a a, , , K1 2
 and 



eb b b, , , K1 2
. Elements in which all 

subscripts of h are equal, i.e., elements on the tensor trace, represent the similarity measurements between the 
vertices of the two hypergraphs.

The values of the elements in the association hypergraph are the similarity measurements between the cor-
responding elements. For similarity among the vertices, we used a compound (metabolites) similarity score for 
which numerous metrics are available40,41. Specifically, we selected the similarity score calculated by ChemMine 
tools, which have an R interface to recognize the CID number of the compounds42. When a similarity score is 
missing for a compound pair, the value is set as an average of all compound pairs (please see Supplementary 
Data 3). For similarity between hyperedges, the specific values can be determined using hierarchical taxonomy or 
sequence similarity33,34,43,44. We used hierarchical taxonomy in this study. Briefly, we firstly determine the lowest 
class in the hierarchy shared by the EC number of the two enzymes. For example, considering Enzyme (1.1.1.1) 
and Enzyme (1.1.1.2), the lowest class is (1.1.1.-). Then, we calculate the similarity score as the inverse of the 
numbers of all enzymes belonging to this class.

We introduce the parameter λ ranging from 0 to 1 to balance the weights between the vertices and hyper-
edges34. The hyperedge similarity was multiplied by a factor of (1 − λ), whereas that of the hypervertex was λ. This 
parameter will directly affect the direction.

Formalization of hypergraph matching.  The alignment of two metabolic hypergraphs can be repre-
sented using the matrix X {xi = 0, 1 | xi ∈ X}44. The dimension of X is na * nb, which represents the vertices in the 
two hypergraphs. After the transformation of this matrix, we obtain a binary vector X. The elements of X are 
arranged in accordance with the sequence of the vertices of the two networks =x 1a bi j

 represents the matching 
between the ith vertex of Ga and the jth vertex of Gb. =x 0a bi j

 represents no matching between the ith vertex of Ga 
and the jth vertex of Gb. Then, the score of any alignment is a tensor product that can be represented by the fol-
lowing formula:

= ⊗ ⊗ ⊗S x H x x x( ) (2)K1 2

Thus, the hypergraph matching problem can be considered as a vector xm that maximizes the tensor product 
under the above constraints, which is formalized as follows:

∑ ∑

=
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= =
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Algorithm solving hypergraph matching.  Currently, the solutions to the hypergraph matching prob-
lem of Eq. (3) all seek the optimal values of the equation first and then discretize these values via a greedy algo-
rithm27,34,45. Despite relaxation, this problem remains a NP-hard problem, and we can only seek an optimal 
approximate solution in the actual calculation27,31,45. These approaches seek the maximum Z-eigenvector and the 
eigenvalue of this tensor. Given that the tensor is supersymmetric, this approach is equivalent to identifying the 
best symmetric rank-1 approximation of a symmetric tensor46,47, and the problem can then be solved using tensor 
power iterations based on spectral matching48. Here, we used the shifted symmetric higher-order power method 
(SS-HOPM), which was introduced by Kolda et al.30. Specifically, after the constraints of Eq. (3) are relaxed to 
2-norm constraints, Eq. (4) can be obtained:

γ

. . ⊗ ⊗ ⊗ = γ =−s t H x x x x x x
max

, 1 (4)k
T

1 2 1

This algorithm sets an initial value that satisfies xT x = 1 and then performs the following repeated iterative 
processes as Algorithm 1:

α α′ = ⊗ ⊗ ⊗ = + − ′ ′+ − + + +x H x x x x x x x, (1 ) / (5)n n n K n n n n n1 1 2 1 1 1 1 2

where α is a shift parameter that affects the convergence speed and ranges from 0 to 1. This procedure converges 
to a stationary point, which is a good approximation of the global optimum.

Moreover, the stationary points obtained with this method depend on the initial value to a certain degree. The 
initial value is generated as the following:

β β= − ∗ + ∗x x x(1 ) (6)r u0

where x0 is the initial point, xr is a random vector and xu is a uniform vector.
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In addition, the iterative result of this step is a continuous value. Therefore, discretization must be per-
formed to convert the result into a binary permutation matrix, and we used the Kuhn-Munkres method for the 
discretization49.

Implementation of the algorithm with reduced storage and accelerated speed.  Considering the 
super-symmetry of the tensor, an efficient calculation strategy was designed to compute the tensor-vector product 
to achieve memory reduction and calculation acceleration. The scheme is displayed in Algorithm 2.

Because of the scarcity of the high-dimensional tensors, the data storage was organized into a HASH struc-
ture. A parallel version of the algorithm was implemented within the spark environment. The original HASH of 
the association hypergraph was split into small pieces and stored separately on different cores. The tensor-vector 
product has been calculated on this structure within each single core. Two key parts of the distributed algorithm 
are the representation of the higher-order tensor and the iterated multiplication of the tensor and vector. The 
tensor is packaged in JavaPair RDD, in which the key is the combination of the nonzero elements in the tensor 
and the value is the corresponding tensor value. In generating the RDD of Tensor, sc. parallelize was used to 
create the RDD of a possible combination of a compound and reaction pair. Then, mapPartitionsToPair was 
used for incremental encoding of key-values in the corresponding partition. Consequently, a repartition based 
on the partitionBy method was implemented by a remainder operation on the key code using the partition num-
ber as the module. Through this repartition operation, the distribution of key-values is roughly uniform among 
each partition. This optimization prevents data congestion on an individual worker, which typically leads to an 
OutOfMemoryError exception or slow computation. The algorithm ignored the intermediate low-order tensor 
to avoid data shuffling among nodes and reconstructed the ultimate vector with information from each node.

Data set.  The metabolic networks used in this study were obtained from the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway database using a KEGG API. Specifically, we obtained the pathways eco00010 
(31 reactions), eco01110 (242 reactions) and eco01100 (923 reactions) of Escherichia coli, sce00010 (27 reactions) 
of Saccharomyces cerevisiae, hah01110 (168 reactions) and hah01100 (537 reactions) of Halophilic archaeon, and 
randomly knocked out certain reactions in the pathways. To construct randomly knockout pathways, we label 
the enzymes in the pathway with positive integer and randomly choose the integer, then delete the corresponding 
enzyme from the pathways. This gives birth to a series of different networks including eco00010-01 (21 reactions), 
eco00010-02 (15 reactions), eco00010-03 (9 reactions), eco00010-04 (6 reactions), sce00010-01 (21 reactions), 
sce00010-02 (15 reactions), sce00010-03 (12 reactions), hah01110-01 (100 reactions). Please see Supplementary 
Data 1 and 2 for more specific usage of the data set in the calculation36.

Algorithm 1.  Higher-Order Power Method.

Algorithm 2.  Rotary tensor-vector product for super symmetric tensor.
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Data Availability
All data generated or analysed during this study are included in this published article and its supplementary 
information files.
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