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Abstract: Objective: To develop and validate magnetic resonance (MR) imaging-based radiomics
models for high-risk endometrial cancer (EC) prediction preoperatively, to be able to estimate deep
myometrial invasion (DMI) and lymphovascular space invasion (LVSI), and to discriminate between
low-risk and other categories of risk as proposed by ESGO/ESTRO/ESP (European Society of
Gynaecological Oncology—European Society for Radiotherapy & Oncology and European Society
of Pathology) guidelines. Methods: This retrospective study included 96 women with EC who
underwent 1.5-T MR imaging before surgical staging between April 2009 and May 2019 in two
referral centers divided into training (T = 73) and validation cohorts (V = 23). Radiomics features
were extracted using the MODDICOM library with manual delineation of whole-tumor volume on
MR images (axial T2-weighted). Diagnostic performances of radiomic models were evaluated by area
under the receiver operating characteristic (ROC) curve in training (AUCT) and validation (AUCV)
cohorts by using a subset of the most relevant texture features tested individually in univariate
analysis using Wilcoxon–Mann–Whitney. Results: A total of 228 radiomics features were extracted
and ultimately limited to 38 for DMI, 29 for LVSI, and 15 for risk-classes prediction for logistic
radiomic modeling. Whole-tumor radiomic models yielded an AUCT/AUCV of 0.85/0.68 in DMI
estimation, 0.92/0.81 in LVSI prediction, and 0.84/0.76 for differentiating low-risk vs other risk classes
(intermediate/high-intermediate/high). Conclusion: MRI-based radiomics has great potential in
developing advanced prognostication in EC.

Keywords: radiomics; endometrial cancer; magnetic resonance imaging

1. Introduction

Medical imaging plays an essential role in clinical management of cancer patients to
support diagnosis or to assess a clinical stage. Until recently, the traditional practice of
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radiology was centered largely on subjective visual interpretation by radiologists based
on their training and experience. However, in this emerging era of precision medicine, the
mere description of tumor extent may be insufficient when providing more objective clini-
cally relevant information. Advances in high-throughput computing have facilitated the
development of processes for conversion of biomedical images into robust and validated
biomarkers; this practice is termed “radiomics” [1]. Radiomics is an advanced image anal-
ysis technique that converts diagnostic images into quantitative data, extracting features
from specific regions of interest of selected volumes. These features can be correlated with
clinical or histopathological factors, allowing a noninvasive characterization of tumors and
offering information about underlying tumor heterogeneity and aggressiveness.

Endometrial cancer (EC) is the most common gynecological malignancy in industri-
alized countries and represents the sixth-most diagnosed cancer in women [2]. Conven-
tionally, postoperative clinicopathologic findings such as tumor histology, stage of disease
according to International Federation of Gynecology and Obstetrics (FIGO) [3], grade of
histological differentiation, and lymphovascular space invasion (LVSI) are the key prognos-
tic factors in EC. A risk classification including LVSI was proposed in 2016 [4]. Recently, the
ESGO-ESTRO-ESP (European Society of Gynaecological Oncology—European Society for
Radiotherapy & Oncology and European Society of Pathology) published updated guide-
lines for risk group determination in EC, integrating both clinicopathologic variables and
molecular diagnostics [5], classifying patients into five risk classes (low risk, intermediate
risk, high-intermediate risk, high risk, advanced/metastatic). Different surgical and adju-
vant therapeutic strategies have been recommended for these different risk groups [5–7].
Therefore, the correct placing of EC within this prognostic stratification framework allows
the most appropriate and individualized treatment. Magnetic resonance imaging (MRI) has
a pivotal role in pretreatment assessment of EC, being highly specific in evaluation of deep
myometrial invasion (DMI), cervical stromal involvement, and lymph node metastasis [8].
Recently, radiomic tumor profiling based on MRI has been proposed as a tool for accurate
diagnosis, preoperative risk stratification, or assessment of treatment response in several
cancer types, such as cervical cancers [9–11]. Despite promising performances of this field
in clinical practice, only a few studies have explored MRI-based radiomic tumor features in
endometrioid EC and linked these to an aggressive phenotype [12–14]. Thus, the aim of this
study is to create and validate a radiomics model based on staging MRI in patients affected
by EC for the prediction of DMI and LVSI, which to date represent the most relevant
histopathological prognostic factors in decision-making on adjuvant therapy in early stages
of EC. We also developed and validated a radiomics MRI-based model able to differentiate
low-risk EC from the other ECs, as proposed by the ESGO/ESTRO/ESP evidence-based
guidelines [5].

2. Materials and Methods
2.1. Study Design and Population Selection

This is a two-center retrospective observational study. The Ethical Committee of
reference approved the study. The study population included women diagnosed with EC
and surgically treated at Fondazione Policlinico Universitario “A. Gemelli” IRCCS of Rome,
Italy (Center 1) and at Gemelli Molise Spa, Campobasso, Italy (Center 2) from April 2009
to May 2019. Inclusion criteria were: (i) patients with histological diagnosis of EC and
(ii) patients who had a preoperative staging 1.5-T MRI and availability of digital images in
DICOM format. Exclusion criteria were as follows: (i) uterine carcinosarcomas, atypical
hyperplasia, ambiguous histology (such as synchronous cervical and endometrial cancer)
and (ii) patients without available MR images or with images deemed of insufficient quality
to visualize the endometrial lesion (e.g., artefacts). Patients recruited in Center 1 were
included as the training set, whereas patients enrolled in Center 2 were classified as the
external validation cohort. Patients of Center 1 were retrospectively identified through
specific queries on institutional RedCap databases (electronic data capture tools hosted
at https://redcap-irccs.policlinicogemelli.it/ (accessed on 1 June 2019)), whereas patients

https://redcap-irccs.policlinicogemelli.it/
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of Center 2 were retrospectively identified from the database of the local department of
gynecological oncology. Preoperative staging pelvic 1.5-T MRI exams (available in digital
form and stored in the institutional PACS systems) of patients who had been selected
for study were screened for quality assurance by an expert radiologist to be selected for
radiomics analysis. All the included patients underwent surgery in local institutions by
trained gynecologic oncologic surgeons, and the applied surgical approach was based on
both patient and disease characteristics. Surgical specimens were assessed by a dedicated
oncologist pathologist in each institution, and the presence of DMI (≥50%), LVSl, cervical
stromal invasion, lymph node metastases, and tumor histologic subtyping and grading
were confirmed microscopically. Clinical data, histopathological parameters and FIGO
stage were collected. For patients selected from Center 1, information was obtained from
Redcap, whereas for patients selected from Center 2, information was obtained from
patients’ medical records. According to ESGO/ESTRO/ESP guidelines [5], low-risk EC was
defined as endometrioid EC with myometrial invasion <50%, tumor grades 1–2, negative
or focal LVSI, and no extrauterine invasion. The definition of prognostic risk groups was
obtained even if the molecular classification was unknown, as the interval of the recruitment
time did not guarantee availability of the molecular assay for the study populations.

2.2. MR Imaging

In both centers, all MRI imaging studies were acquired according to local institutional
diagnostic protocols and consisted of a 1.5 T MR scan (Signa Excite; GE Healthcare, Little
Chalfont, United Kingdom) using an eight-element pelvic phased-array surface coil. The
pelvic MR imaging protocol in the training and validation sets included T2-weighted
imaging (WI) in the axial, sagittal, and axial oblique planes; Diffusion Weighted Imaging
(DWI); and T1-W postcontrast images (Table 1).

Table 1. Acquisition parameters of the MRI sequences employed to observe endometrial tumors.

Parameter Sequence Acquisition
Plane

Repetition
Time/Echo
Time (ms)

Matrix
Field of

View
(cm)

Sections: Number,
Thickness (mm),

Spacing (mm)

b Value
(s/mm2)

T1-weighted Spin-echo Axial 470/3 448 × 288 24 30; 4; 0.5

T2-weighted

Fast
Recovery
Fast spin

echo

Axial, sagittal,
oblique axial *

4000–
4500/85 384 × 256 24 30; 4; 0.5

Diffusion
Weighted
Imaging

Echo-planar
imaging

Sagittal,
oblique axial * 5000/69 128 × 128 28 30; 4; 0.5 0, 800

DCE
T1-weighted

imaging †

Three-
dimensional

gradient
recalled echo

Sagittal,
oblique axial * 7/2 320 × 224 28 128; 3;

* The oblique axial plane was perpendicular to the endometrial cavity, resulting in a short-axis view. † DCE
imaging was performed after administration of 0.1 mmol/kg of body weight of gadolinium chelate [ProHance
(Gadoteridol)]. Images were acquired at multiple phases of contrast enhancement in sagittal and oblique axial
planes (the protocol always includes precontrast sagittal and axial oblique and postcontrast at 80 s in the sagittal
plane and 180 s in the oblique axial plane).

2.3. Image Analysis

The endometrial primary tumors were manually delineated using the free, open-source
software application ITKSNAP (www.itksnap.org, v. 3.8.0 (accessed on 1 July 2019)). The
segmentations were performed by two radiologists with expertise in gynecological imaging
(having 10 and 4 years of experience in pelvic MRI reading, respectively), and the cases
were randomly assigned between the two operators. The radiologists, who were aware
of the diagnosis of endometrial cancer but blinded to clinical and pathologic outcomes of

www.itksnap.org
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patients, manually segmented tumor regions of interest (ROI) for each case. An ROI was
manually drawn along the margin of the visible gross tumor on the axial plane T2-WI along
the tumor boundary on each slice for each tumor (Figure 1).
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Figure 1. Examples of manual segmentation of endometrial tumors observed by MRI using an Axial
Fast Spin Eco T2-weighted image acquisition sequence. (A,B) Images show an intermediate signal
intensity lesion (asterisk) causing more than 50% myometrial invasion (arrow) in a patient with
high-risk endometrial cancer before (A) and after (B) image segmentation. (C,D) Images show a
patient with a low-risk endometrial tumor (asterisk) with less than 50% myometrial invasion (arrow)
before (C) and after (D) image segmentation.

The ROIs were manually delineated along the lesion boundaries, obtaining whole-
tumor data. Tumor contour was defined as the area of intermediate signal intensity on
T2-WI that was different from normal adjacent low-signal-intensity myometrium (Figure 2).
Although not used for segmentation, DWI- and T1-WI-acquired postcontrast injection
series were available to the readers for visual inspection support segmentations in case they
were needed. The segmented images were then exported to MODDICOM, an R library
specifically designed to perform radiomics analysis [15]. To remove any eventual bias due
to the different spatial resolution, all the images were resampled to a mean value of spatial
planar resolution equal to 0.548 × 0.548 mm2 before features extraction. All radiomics
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features were extracted using MODDICOM, fully compliant with the Image Biomarker
Standardization Initiative recommendations [16]. The original MRI file and the correspond-
ing ROI segmentation masks were simultaneously uploaded and double checked by an
independent operator to ensure anatomical consistency. The following families of features
were taken into account: intensity-based statistical, morphological, and textural features
(grey-level co-occurrence features, run length features and size zone features).
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Figure 2. Outline of the project workflow consisting of whole-volume manual tumor segmentation
on T2-weighed images, radiomic tumor feature extraction, and construction of radiomic signatures
for prediction of selected outcomes in EC patients. The radiologist defined ROIs on T2-WI to extract
intratumoral radiomic features; radiomic signatures were derived based on the whole-tumor masks
(whole-tumor radiomics). Least absolute shrinkage and selection operator (LASSO) was applied for
prediction modeling.

2.4. Statistical Analysis

Sample size calculation was based on the primary objective. Of the different objectives
of this study, this one requires the largest number of patients to ensure the stability of
the prediction model. Simulation studies such as Peduzzi et al. [17] demonstrated that
logistic regression models require 12–15 events per predictor to produce stable estimates,
as confirmed also by the TRIPOD statements [18]. The analysis was performed after
segmentations test/retest, aiming to assess features reproducibility. The radiomics features
were extracted also from Laplacian of Gaussian (LoG) and wavelet-filtered images for noise
removal and pattern enhancing. The radiomics analysis methods are reported in details
hereafter:

(1) Features reproducibility and univariate analysis. For the univariate analysis, the
features space dimensionality was reduced by a Pearson correlation test by setting
a correlation threshold of 0.90 in order to remove collinear features. In addition to
features correlation analysis, features reproducibility analysis was carried out in order
to identify features strongly dependent on slight variations in the contouring and thus
less reproducible. This features reproducibility assessment was done via intraclass
correlation coefficient (ICC) analysis. Based on the 95% confidence interval of the
ICC estimate, values less than 0.5, between 0.5 and 0.75, between 0.75 and 0.9, and
greater than 0.90 are indicative of poor, moderate, good, and excellent reliability,
respectively. Features with poor reliability were excluded from the subsequent steps
of the analysis. After having selected the contour-stable features and reduced the
dimensionality of feature space, the remaining features were tested for association
with the outcome using the Wilcoxon–Mann–Whitney test against the considered
binary outcome (i.e., MI > 50%; LVSI positive; low risk class), setting the significance
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level to a p-value < 0.05. The number of significant test results was then compared to
the expected number of type I errors to account for multiple testing [19].

(2) Features outcome and predictive models. Logistic regression models were trained and
tested to identify radiomics signatures able to predict each considered clinical outcome.
The models were trained starting from features significant at the univariate analysis
and further refined through cross-validation AIC-based stepwise selection and logistic
least absolute shrinkage and selection operator (LASSO) selection, with respect to
each considered clinical outcome variable. The area under the curve (AUC) of the
receiver operator characteristic (ROC) was used to evaluate the predictive accuracy of
the radiomics models developed. The sample performance metrics were estimated
from cross-validation ROC AUC curves and classification matrix statistics on the
testing set (sensitivity, specificity, positive predictive value, negative predictive value,
accuracy) and assessed on the external dataset. For the LASSO radiomic signatures
derived in the training cohort, optimal cutoffs were identified from the ROC curves
using the Youden Index.

3. Results

Ninety-eight patients examined at Center 1 were identified for the training set. An
overview of patients’ characteristics is reported in Table 2. To identify predictive models
to be used in the clinical setting, we decided to consider exclusively the endometrioid
histotype for the analysis. We excluded serous/clear cell histotypes (19 patients) as they
are considered high-grade tumors regardless of other prognostic factors and are already
categorized in high-risk classes. For the final analysis, two patients with metastatic EC were
excluded due their overall low number. Four patients had low-quality MR images and
were excluded from radiomic analysis due to technical problems. A total of 73 patients was
finally considered for the training set (Figure 3). Twenty-six patients examined at Center 2
were selected for the external validation set (Table 2). Among them, 23 had available digital
MR images. Surgical staging included hysterectomy with bilateral salpingo-oophorectomy
for all the patients; lymph nodal assessment includes pelvic lymphadenectomy and accom-
panying paraaortic lymphadenectomy or sentinel lymph node.

Table 2. Clinical and histological characteristics for patients with endometrial cancer, included in the
training set and validation set.

Training Set Validation Set

n. patients 98 n. patients 26

Age—years (mean) 62 Age—years (mean) 58

Median tumor diameter (mm) (range) 36 (3–95 mm) Median tumor diameter (mm) (range) 28 (15–60 mm)

Grading: Grading:

G1 9 G1 11

G2 50 G2 10

G3 38 G3 5

Not available (NA) 1 Not available (NA) 0

Histology: Histology:

Endometrioid 79 Endometrioid 25

Non-endometrioid
(serous/clear cell) 19 Non-endometrioid

(serous/clear cell) 1

Myometrial invasion: Myometrial invasion:

<50% 48 <50% 16

≥50% 50 ≥50% 10
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Table 2. Cont.

Training Set Validation Set

Tumor diameter: Tumor diameter:

<2 cm 86 <2 cm 6

2 cm 11 2 cm 17

NA 1 NA 4

LVSI: LVSI:

No 44 No 14

Yes 43 Yes 6

NA 11 NA 6

Cervical stromal invasion: Cervical stromal invasion:

No 71 No 20

Yes 27 Yes 6

Nodal metastases: Nodal metastases:

No 52 No 22

Yes 22 Yes 4

NA 24

Adnexal involvement: Adnexal involvement:

No 88 No 22

Yes 10 Yes 4

Vaginal/parametrial involvement: Vaginal/parametrial involvement:

No 94 No 24

Yes 4 Yes 2

FIGO staging: FIGO staging:

IA 40 IA 13

IB 20 IB 3

II 8 II 2

IIIA 4 IIIA 1

IIIB 4 IIIB 1

IIIC 20 IIIC 5

IVA 0 IVA 0

IVB 2 IVB 1

For the training set, postoperative histologic assessment revealed myometrial invasion
<50% in 36 patients (49%), myometrial invasion ≥50% in 37 patients (51%); for the validation
set, myometrial invasion <50% was observed in 14 patients (61%), while myometrial
invasion ≥50% was reported in 9 patients (39%). Among 73 patients of the training set, 53
of them had their LVSI status with LVSI negative in 26 patients (49%) and LVSI positive in
27 patients (51%). Among 23 patients of the validation set, LVSI was available in 18 patients
with LVSI negative in 12 patients (67%) and LVSI positive in 6 patients (33%).

Applying the 2020 ESGO/ESTRO/ESP risk assessment system with unknown molec-
ular classification [5], the 73 patients of the training set presented the following distribution
for classes of risk: 18 (25%) low risk and 55 (75%) intermediate/high-intermediate/high
risk. The 23 patients of the validation set presented the following classes of risk distribution:
10 (43%) low risk and 13 (56%) intermediate/high-intermediate/high risk.
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A total of 228 radiomics features were extracted from T2-W MR images. The features
selected during the training phase were used for the final radiomics analysis, and they
were 38 for the DMI dataset, 29 for the LVSI dataset, and 15 for the risk class dataset. The
most significant radiomics feature for the prediction of DMI was “F_ F_cm.info.corr.1”
(p = 0.0003). The most significant radiomics feature for the prediction of the presence of
LVSI was “F_cm.info.corr.1” (p = 0.01). The most significant radiomics feature for the
prediction of the risk class in the cohort was “F_szm_2.5D.szlge” for the low risk (p = 0.01)
(Figure 4).
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Figure 4. Radiomic signature. The endometrial tumor is delineated by a red area on T2-weighted
images in two different patients with a histological diagnosis of endometrial cancer (EC); low risk
ECs are defined as stage IA endometrioid, grade (G) 1–2, and lymph vascular space invasion (LVSI)
negative; high-intermediate risk ECs are identified as stage IB endometrioid, G 3, regardless of LVSI
status. The reported radiomic features (F) are the most significant for the prediction of histopatholog-
ical factors such as deep myometrial invasion and LVSI and for the discrimination of low-risk ECs.
The diagram also shows possible correlations and applications of radiomic signatures and clinical
factors in EC.
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In prediction of DMI, the performance was AUC 0.85 on the internal cohort. The model
showed the following values: Sensitivity 0.67, Specificity 0.89, Positive Predictive Value
(PPV) 0.86, Negative Predictive Value (NPV) 0.72, and Accuracy 0.78 [95% CI 0.67–0.86].
Optimal Cut-Point according to Youden index was 0.69. In the validation set, the ra-
diomics model for predicting DMI showed an AUC value of 0.68 with Accuracy of 0.69
[95% CI 0.47–0.86], Sensitivity of 0.66, Specificity of 0.71, PPV of 0.60, and NPV of 0.76
(Table 3).

Table 3. Performance and Accuracy metrics of Radiomics Models in Training and Validation sets for
predicting DMI and LVSI and discriminating low-risk group versus the other risk groups.

Radiomics
Models

Training Set Validation Set

Sensitivity
(%)

Specificity
(%)

PPV
(%)

NPV
(%)

Accuracy
(95% CI) AUC Sensitivity

(%)
Specificity

(%)
PPV
(%)

NPV
(%)

Accuracy
(95% CI) AUC

DMI
prediction 0.67 0.89 0.86 0.72 0.78

(0.67–0.86) 0.85 0.66 0.71 0.60 0.76 0.69
(0.47–0.86) 0.68

LVSI
prediction 1.00 0.77 0.81 1.00 0.89

(0.77–0.95) 0.92 0.83 0.83 0.71 0.90 0.83
(0.58–0.96) 0.81

Low-risk dis-
crimination 0.64 0.93 0.73 0.89 0.86

(0.76–0.93 0.84 0.60 1.00 1.00 0.76 0.82
(0.61–0.95) 0.76

Considering the full dataset, the radiomics model achieved the best diagnostic perfor-
mance for prediction of LVSI, with AUC 0.925 on the internal cohort. In estimation of LVSI,
the radiomics model also showed the highest value of Sensitivity (1.00) and an NPV of 1.00,
with Specificity, PPV, and Accuracy of 0.77, 0.81, and 0.89 [95% CI 0.77–0.95], respectively.
Optimal Cut-Point according to Youden index was 0.35. In the validation set, the radiomics
model for predicting LVSI achieved AUC 0.81, with Accuracy of 0.83 [95% CI 0.58–0.96],
Sensitivity of 0.83, Specificity of 0.83, PPV of 0.71, and NPV of 0.90 (Table 3).

In the training set, the radiomics model for predicting the low-risk EC group (stage I, MI
< 50%, LVSI negative, endometrioid histotype) vs the other risk groups (intermediate/high-
intermediate/high risk) showed AUC 0.84. The model showed a risk prediction of low-grade
EC with a value of Sensitivity 0.64, Specificity 0.93, PPV 0.73, NPV 0.89, and Accuracy
0.86 [95% CI 0.76–0.93]. Optimal Cut-Point according to the Youden index was 0. 41. The
radiomics model to predict low-risk showed AUC 0.76 in the validation set with Accuracy
of 0.82 [95% CI 0.61–0.95], Sensitivity of 0.60, Specificity of 1, PPV of 1, and NPV of 0.76
(Table 3).

The ROC curves for all the models in training and in validation sets are shown in
Figure 5.
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4. Discussion

This study showed that MRI-based whole-tumor radiomics analysis yielded medium-
to-high diagnostic performance for prediction of high-risk surgico-pathological features in
EC, as the presence of DMI and LVSI. Furthermore, we explored the capability of MRI-based
radiomics for preoperative prediction of risk class in EC. The radiomics model developed in
our study showed a moderate-to-good ability to discriminate between low-risk EC and the
other classes, with promising reproducibility and reliability, as confirmed by the external
validation process (TRIPOD 3).

The challenge in treatment planning and prognostication in EC is the preoperative
assessment of risk factors tailoring surgery and subsequent therapy, such as DMI, LVSI and
nodal metastasis. In the evaluation of DMI, standard MRI showed high values of sensitivity
and specificity ranging from 81% to 90% and from 82% to 89%, respectively [20]. However,
standard qualitative MRI evaluation seems to be strongly dependent on reader experience,
with a relatively high interobserver variability [21]. The radiomics model developed in
this study might be helpful in identification of DMI, being consistent with preliminary
studies in EC [12,22–24]. Ueno et al. reached an accuracy of 81% in identification of DMI,
employing eleven features derived from T2-WI, DWI, ADC, and postcontrast images from
pelvic MR scans of 137 patients who underwent surgery for endometrial cancers [12].
Ytre-Hauge and colleagues obtained an accuracy of 78% for DMI detection with a single
texture feature derived from ADC maps [23]. Both reported studies extracted radiomic
features from primary tumor manual segmentations in a single image plane. Ytre-Hauge
et al., however, did not report radiomic modeling and neither Ueno et al. nor Ytre-Hauge
et al. validated their findings on an external validation cohort. In a larger study performed
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on whole tumor segmentations on postcontrast T1-WI, the authors found a moderate
accuracy for predicting DMI, both in the training (AUC 0.84) and the validation sets (AUC
0.74) [25]. In a recent study of 54 patients affected by EC, Stanzione et al. found that their
random forest-based radiomic model was able to predict DMI with an AUC of 0.92 and
0.94 in the training and validation sets, respectively [26], concluding that the radiomics
model could increase radiologists’ performance in interpreting correctly DMI. Despite
being based on different approaches in cohort sizes, imaging sequences, radiomic data
extraction, and statistical methods (Table 4) [27], all the reported studies and our results
confirm a promising role of MRI-based radiomics features as an adjunct tool to the standard
MRI evaluation for DMI, offering clinical benefit in challenging cases, such as anatomic
uterine distortions, leiomyomas, presence of adenomyosis, or small endometrial tumor.
We chose to focus exclusively on T2-WI because T2-WI is an essential component of pelvic
MRI and provides high spatial resolution and tissue-specific contrast, when compared
to DW and DCE imaging. Texture parameters reflect pixel heterogeneity of the T2-W
images, which are influenced by many parameters, including neoplastic cellular infiltration,
cellular and interstitial oedema, and blood vessel density and distribution. We showed that
quantitative T2-W image features have the potential to serve as noninvasive markers for
assessing aggressiveness in EC.

Table 4. Main information about the articles discussed and compared for assessment of radiomics in
endometrial cancer.

Authors Year Study
Design

Number of
Patients Imaging Technique Software Main Conclusions

Ueno et al. [12] 2017 Retrospective 137

T2-WI,
diffusion-weighted

imaging (DWI),
Apparent diffusion

coefficient (ADC) and
T1-W post

contrast images

TexRAD

Texture features (TF)
associated with DMI,

LVSI, and
high-grade tumor

Stanzione et al.
[26] 2020 Retrospective 54 T2-WI PyRadiomics

Radiomics model
increased radiologist

performance for
DMI detection

Y. Han et al. [24] 2020 163 T2-WI and DWI PyRadiomics

Whole-uterine MRI
radiomic features show

potential in
predicting DMI

Ytre-Huage et al.
[23] 2018 Prospective 180 ADC TexRAD

TF independently
predicted DMI, high-risk
histological subtype and

reduced survival

Fasmer et al. [25] 2021 Retrospective 138 T1-W
post-contrast images Python

Medium-to-high AUCs
for prediction of DMI,

lymphnode (LN)
metastasis, FIGO stage,

and poor outcome

Xu et al. [28] 2019 Retrospective 200 T2-WI and T1-W
post-contrast images Python

Model based on radiomic
and clinical features

showed good
discrimination of positive

LN, especially for
normal-sized LN

Bereby-Kahane
et al. [29] 2020 Retrospective 73 T2-WI and ADC TexRAD

TF is of limited value to
predict high grade

and LVSI
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Table 4. Cont.

Authors Year Study
Design

Number of
Patients Imaging Technique Software Main Conclusions

Yan et al. [30] 2021 Retrospective 622
T2-WI, DWI, ADC, and

T1-W post
contrast images

Pyradiomics

Higher diagnostic
performance for

radiomics model than for
radiologists alone to

assess pelvic LN status

Yan et al. [13] 2020 Retrospective 717
T2-WI, DWI, ADC, and

T1-W post
contrast images

Pyradiomics
Radiomics nomogram

shows good performance
in risk prediction

T. L. Lefebvre
et al. [31] 2022 Retrospective 157 T2-WI, DWI, and T1-W

post contrast images Pyradiomics

Three-dimensional
radiomics stratify patients
according to FIGO stage,
high grade, DMI, LVSI

P.P. Mainenti et al.
[32] 2022 Retrospective 133 T2-WI PyRadiomics

Whole-lesion radiomics
showed encouraging

results for the
identification of
low-risk patients

D. Liu et al. [33] 2022 Retrospective 202 T2WI, ADC and T1-W
post contrast images PyRadiomics

Model incorporating
clinical and radiomic

findings predict
5-year survival

LVSI is the single prognostic factor that cannot be preoperatively detected with con-
ventional diagnostic tools, including MRI and endometrial biopsy. Besides being a negative
prognostic risk factor related to reduced PFS and OS, especially for early-stage endometrial
tumors, the evaluation of presence or absence of LVSI is even more necessary to guide
adjuvant therapy in case of inadequate surgical lymph node staging. Prior studies [12,29,31]
in which two- and three-dimensional MRI-based features were used reported lower per-
formance for LVSI prediction. When compared to these previous experiences (Table 4),
our study demonstrated excellent diagnostic accuracy of the radiomic LVSI prediction
model. In particular, 29 features were strongly correlated with LVSI with AUC 0.92 and
with a sensitivity of 1.00 and negative predictive value of 1.00. Considering the cut-point
by Youden index, our radiomics model misclassified only 6 out of 33 patients to positive
LVSI in the training cohort. Notably, our radiomic signatures based on whole-tumor MRI
radiomics yielded similar performance metrics in the validation cohort, suggesting the
generalizability of whole-tumor radiomic profiling in EC. Nevertheless, despite the method-
ological robustness of the analysis, our model still has the potential risk of a certain degree
of overfitting, since we included 53 patients in the final analysis and further validation on
larger cohorts is needed to confirm these observations.

High-risk patients have endometrial tumors with at least one of the following char-
acteristics: DMI, high-grade tumor, non-endometrioid histological subtype (serous and
clear cell), LVSI, extrauterine spread, or nodal involvement. Prognostic stratification based
exclusively on histopathological characteristics is still widely used in many centers where
molecular classification is not yet available [5]. Furthermore, molecular features might not
be available until after hysterectomy. High- and low-risk EC are the two opposite groups
than could be considered for different surgical treatments. Current international guidelines
recommended that patients with high-risk EC should be treated with total hysterectomy,
bilateral salpingo-oophorectomy (THBSO), lymphadenectomy (LA), or adjuvant therapy.
Conversely, LA could be omitted in patients with low-risk EC in which THBSO is the
standard treatment [5]. A recent report developed an MRI- and clinical-based radiomics
nomogram model by combining whole-volume radiomics features extracted from multi-
parametric MRI and clinical parameters in a large multicenter dataset of patients with EC,
with the aim to predict high-risk patients (referring to EC needing lymphadenectomy) [13].
This nomogram achieved good diagnostic performance with an AUC of 0.896 and good net



J. Pers. Med. 2022, 12, 1854 13 of 15

benefit by clinical decision curve analysis for high-risk EC [13]. The ESGO/ESMO/ESP clas-
sification is one of the most routinely used classifications to predict lymph node invasion
and thus to optimize surgical planning. In prediction of ESGO/ESMO/ESP risk groups [5],
our radiomics model obtained good results, with an accuracy of 0.86, a specificity of 0.93
and negative predictive value of 0.89 in the prediction of low-risk EC. Since radiomics
can provide information regarding preoperative risk stratification, standard preoperative
MR images radiomics-based models could be useful in EC to achieve optimal selection
of patients, avoiding overtreatment in low-risk disease [32]. Our findings deserve further
investigation, aiming to increase their performance and to better describe their possible
translational application in daily clinical practice.

This study has nevertheless some limitations. First, its retrospective nature represents
an inevitable source of selection bias and imaging data inhomogeneity. Data were collected
over a long time (2009–2019), and MRI technology has improved with more sophisticated
machinery, different technical parameters, and better image quality. All these aspects
might have impacted the textural radiomic features extraction and subsequent modeling.
Second, the number of patients was relatively low, even if it allowed for a dataset for
further model validation. This also limited the statistical power of testing to assess dif-
ferences in performance. Whole-tumor segmentations were manually delineated instead
of being semiautomatically/automatically segmented, thus making it difficult to avoid
subjective errors, even if segmentation-features dependency has been explored [34,35].
Finally, we focused only on radiomics features extracted from T2-WI, supported by recent
research [36]. The effect of other routine sequences, such as DWI and contrast-enhanced
MRI, were not investigated. However, the integration of this information may represent
a great challenge and it will be taken into account to improve the power of our model in
subsequent investigations.

5. Conclusions

In conclusion, we developed radiomics-based predictive models with encouraging
performances to identify prognostic factors conditioning surgical and adjuvant therapy,
such as DMI and LVSI, the latter not detectable before surgical staging. The same models
applied to the risk classes conferred a good performance in the prediction of preoperative
risk, helping to stratify patients prior to surgery. The next step could be the association of
radiomic and genomic in the radiogenomic analysis, with the goal to associate radiomic
features with the tumor genomic profiling that has recently been introduced to differentiate
endometrial cancer patients into four classes [37].

We believe that radiomics is a field worth continuing to explore in patients with
endometrial cancer, representing a reproducible diagnostic support tool, although further
investigations are necessary to evaluate its performances before its effective release in
clinical practice.
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