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Abstract

Non-typhoidal Salmonella (NTS) is a major global health concern that often causes blood-

stream infections in areas of the world affected by malnutrition and comorbidities such as

HIV and malaria. Developing a strategy to control the emergence and spread of highly inva-

sive and antimicrobial resistant NTS isolates requires a comprehensive analysis of epidemi-

ological factors and molecular pathogenesis. Here, we characterize 11 NTS isolates that

caused bloodstream infections in pediatric patients in Siaya, Kenya from 2003–2010. Nine

isolates were identified as S. Typhimurium sequence type 313 while the other two were S.

Enteritidis. Comprehensive genotypic and phenotypic analyses were performed to compare

these isolates to those previously identified in sub-Saharan Africa. We identified a S. Typhi-

murium isolate referred to as UGA14 that displayed novel plasmid, pseudogene and resis-

tance features as compared to other isolates reported from Africa. Notably, UGA14 is able

to ferment both lactose and sucrose due to the acquisition of insertion elements on the

pKST313 plasmid. These findings show for the first time the co-evolution of plasmid-medi-

ated lactose and sucrose metabolism along with cephalosporin resistance in NTS further

elucidating the evolutionary mechanisms of invasive NTS phenotypes. These results further

support the use of combined genomic and phenotypic approaches to detect and character-

ize atypical NTS isolates in order to advance biosurveillance efforts that inform countermea-

sures aimed at controlling invasive and antimicrobial resistant NTS.
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Author summary

Non-typhoidal Salmonella (NTS) has been associated with life-threatening bacteremia in

sub-Saharan Africa where co-morbidities such as HIV and malaria are highly prevalent.

Children under the age of 5 are especially vulnerable to invasive NTS infections. The

emergence and spread of multi-drug resistant invasive NTS isolates have limited the avail-

ability of effective treatment options. Understanding the molecular mechanisms that

drive the evolution of invasive and antimicrobial resistant NTS strains is key to mitigating

their impact on human health. In this study, we obtained 11 NTS isolates from the blood-

streams of children in Siaya, Kenya and performed both genotypic and phenotypic char-

acterization compared to antimicrobial sensitive NTS strains. One strain, named UGA14,

displayed a unique plasmid makeup compared to the other 10 isolates, which encoded for

cephalosporin resistance as well as novel metabolic features allowing it to metabolize both

lactose and sucrose. Not only was UGA14 multi-drug resistant but its unique metabolic

profile made it indistinguishable from Escherichia coli on brilliant green agar indicating

the failure of traditional culture-based techniques to inform diagnosis and treatment deci-

sions. These findings highlight the importance of comparative genotypic and phenotypic

analyses to understand the driving mechanisms of invasive and drug-resistant pathogens

and support the development of effective countermeasures.

Introduction

Non-typhoidal Salmonella (NTS) infections are of global concern, causing symptoms ranging

from limited gastroenteritis to life-threatening bacteremia [1]. Invasive NTS infections are

associated with a mortality rate of 20–30% in children below 5 years of age in sub-Saharan

Africa, including rural Kenya, which is the epicenter of the study presented here [2,3]. While

there are over 2500 Salmonella enterica serovars, Typhimurium and Enteritidis are the two

that are frequently transmitted from animals to humans in most parts of the world [4]. NTS

causes a high burden to the developing world due to the severity of illness (especially in young

children) and the ease of transmissibility [5]. The severity of illness is further exacerbated by

the high incidence of extensive antimicrobial resistance (AMR) in NTS [6,7], especially in sub-

Saharan African countries such as Kenya [8,9]. NTS is more prevalent in immunocompro-

mised individuals, and risk factors include extremes of age, alteration of the endogenous

microbiota of the intestine (e.g. as a result of antimicrobial therapy or surgery), diabetes,

malignancy, rheumatological disorders, reticuloendothelial blockade (e.g. as a result of malaria

and sickle-cell disease), HIV co-infection, malnutrition, and therapeutic immunosuppression

of all types [10–15]. Approximately 5% of children with NTS infections develop life-threaten-

ing bacteremia [16]. In cohorts of African children, HIV infection is associated with a 3.2-fold

increase in the odds of children presenting with invasive NTS [17]. However, the molecular

mechanisms underlying the evolution of invasive and drug-resistant NTS isolates in children

with co-morbidities are still unclear. The high prevalence of multi-drug resistant NTS–defined

as resistance to the first line antibiotics chloramphenicol, ampicillin and cotrimoxazole–often

requires use of second line antibiotics [18]. Ciprofloxacin and ceftriaxone are now recom-

mended for treatment of invasive NTS infections [19,20]. However, resistance to both cipro-

floxacin and ceftriaxone have been emerging in NTS [4,21–23].

Recent genome sequencing projects have tracked the emergence and global spread of S.
Typhimurium and S. Enteritidis providing mechanistic insights into the epidemiology and

evolutionary pressures of NTS [24–27]. These studies have shown that the invasive S.
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Typhimurium ST313 lineage has undergone genome degradation that appears to facilitate its

invasive phenotype and highlight the rapid evolution and spread of AMR in these organisms

[28–31]. However, studies also reveal that a genotypic approach to pathogen characterization

does not provide a complete assessment of virulence potential or antimicrobial susceptibility

[32,33]. Analyses of both genotype and phenotype have provided more accurate information

regarding the capacity of a pathogen to cause invasive disease [34,35].

In this study we characterized NTS bloodstream isolates from pediatric patients hospital-

ized in Siaya, Kenya between 2000 and 2011 where the childhood mortality rate is ~20% in

children up to 12 months old [36]. The region displays a high disease burden recording the

highest prevalence of HIV (21% of adults) in Kenya in 2018 [37], 27% of children <15 years of

age were infected with malaria in 2015 [38], and ~4% of them acquired an invasive NTS infec-

tion [39]. The evolutionary drivers of invasive and multi-drug resistant NTS in the presence of

such co-morbidities is complicated. Here we describe both genotypic and phenotypic analysis

aimed at identifying novel virulence and AMR determinants associated with invasive NTS.

The outcomes of investigations like this combined with other studies supports improved anti-

microbial stewardship, development of targeted countermeasures, and enhanced

biosurveillance.

Materials and methods

Ethics statement

The National Ethical Review Committee of the Kenya Medical Research Institute and the Insti-

tutional Review Boards of the University of New Mexico (IRB CR00005628) and Los Alamos

National Laboratory (IRB 13–08) approved this study. All the parents or legal guardians of the

children provided written informed consent in their language of choice (Dholuo, Kiswahili or

English) before enrollment into the study.

Study area and design

Samples were collected at the Siaya County Referral Hospital (SCRH), a rural health facility in

Siaya County, equatorial western Kenya, as part of an investigation to determine the burden of

endemic pathogens on childhood morbidity and mortality between 2003–2009. SCRH is

located in a Plasmodium falciparum holoendemic transmission area with increased pediatric

malarial admissions, despite recent anti-malarial interventions [40]. Severe malarial anemia

(SMA: hemoglobin <5.0 g/dL with any density malaria parasitemia) is the primary clinical

manifestation of severe malaria in children under 5 years, peaking in children aged 7–24

months [41,42] with 53% of all the malaria-related deaths in hospitalized children under the

age of 3 years due to SMA [43].

Study participants were recruited from the pediatric ward at the SCRH, Nyanza Province,

western Kenya. Parents/guardians whose children (aged 3–36 months) presented at SCRH

with symptoms of infectious diseases were approached for enrollment. They received an expla-

nation of the study and HIV counseling was provided from a professionally trained counselor.

Inclusion criteria included presentation at SCRH with suspected infectious disease; presence

of fever� 37.5˚C (axillary); age 0–48 months.; parent/guardian able and willing to sign

informed consent and enroll child; able to attend study appointments (over 14 days); distance

to hospital� 25 km. Exclusion criteria included presence of fever < 37.5˚C (axillary);

age> 48 months.; refusal by parent/guardian to provide informed written consent; hospitali-

zation required for injury and/or accident (suspected non-infectious cause); parent/guardian

unwilling and/or unable to attend follow-up visit (day 14); distance to hospital> 25 km. Since

HIV-1 promotes anemia in children with P. falciparummalaria [44], only HIV-1 negative
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children were included in the present study. HIV-1 status was determined by two rapid sero-

logical antibody tests and HIV-1 proviral DNA PCR tests as previously described [44]. Chil-

dren were treated according to the Ministry of Health, Kenya guidelines. All blood samples

were obtained upon presentation at hospital prior to any treatment interventions.

Bacterial cultures

Bacterial cultures were performed as previously described [39]. Briefly, blood cultures were

performed for all children at enrollment in which ~1.0 mL of venipuncture blood was col-

lected aseptically and directly inoculated into the pediatric blood culture bottle (Peds Plus,

Becton-Dickinson) that were incubated in an automated BACTEC 9050 system (Becton-

Dickinson), for 5 days. Positive cultures were examined by Gram staining and sub-cultured

on blood agar, chocolate agar or MacConkey agar plates based on the Gram stain results.

Bacterial isolates were identified according to standard microbiologic procedures as

described previously [39]. According to the Kenya Ministry of Health national guideline

[45], empirical antimicrobial therapy was initiated for all children with suspected bacterial

infection using oral and/or injections which included combination of cloxacillin/ampicillin,

chloramphenicol, ciprofloxacin/norfloxacin/nalidixic acid, ceftriaxone, gentamicin, penicil-

lin, metronidazole or doxycycline. Children with severe malnutrition were treated with pen-

icillin/gentamicin plus metronidazole. Antibiotic therapy was reviewed according to the

results of the blood cultures.

Antimicrobial susceptibility testing

The minimum inhibitory concentration (MIC), or lowest concentration that prevents growth,

of various antibiotics was determined for Salmonella isolates and control organisms by disc

diffusion and Etest methods [46].

Disc Diffusion. Antibiotic susceptibility patterns of the bacterial isolates were determined

using disk diffusion (Kirby Bauer) methods performed according to the CLSI guidelines,

where antibiotic resistance was defined as resistance of a microorganism to an agent to which

it was previously sensitive [47]. Bacterial isolates were tested against disks of ampicillin/sulbac-

tam (SAM, 10/10 μg), meropenem (MEM, 10 μg), piperacillin/tazobactam (TZP, 100/10 μg),

cefaclor (CEC, 30 μg), cefpodoxime (CPD, 10 μg), ceftriaxone (CRO, 30 μg), ceftizoxime

(ZOX, 30 μg), cefepime (FEP, 30 μg), nalidixic acid (NAL, 30 μg), ciprofloxacin (CIP, 5 μg),

levofloxacin (LEV, 5 μg), azithromycin (AZM, 15 μg), clarithromycin (CLR, 15 μg), chloram-

phenicol (CHL, 30 μg), oxytetracycline (OTE, 30 μg), tetracycline (TET, 30 μg), and doxycy-

cline (DOX, 30 μg). Control Escherichia coli and Staphylococcus aureus strains were run

concurrently with the test organisms. Isolates with intermediate or full resistance as compared

to clinical breakpoints were considered resistant (Table 1).

Etest. S. Typhimurium strains ATCC 13311, UGA10 and UGA14 were grown on LB agar

plates for 16–18 hours at 37˚C at which point a single colony was used to inoculate 1 mL of

each of the following media conditions: 1) Mueller Hinton broth (MHB, Sigma 70192); 2)

MHB pH 5.5; 3) 1X M9 minimal media (Sigma M6030) supplemented with 0.1% casamino

acids (Sigma 2240) and 0.3% glycerol (Sigma G5516) pH 7.4 (buffered with 100 mM Trizma

base, Sigma T1503); and 4) M9 minimal media pH 5.5 (buffered with 100 mM MES hydrate).

M9 minimal media was made at 1X (Sigma M6030) supplemented with 0.1% casamino acids

(Sigma 2240) and 0.3% glycerol (Sigma G5516). MHB and M9 minimal media at pH 5.5 was

buffered with 100 mM MES hydrate (Sigma M2933) and pH adjusted with 10% HCl (Fisher

Scientific 357016). MHB is unbuffered and reaches pH 7.4 after autoclaving. M9 minimal

media at pH 7.4 was buffered with 100 mM Trizma base, Sigma T1503) and pH adjusted with
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10% HCl. Agar (BD Difco BD281230) for plates was added to media at 1.7%. All media was

autoclaved prior to use. Overnight cultures were diluted to a 1.0 MacFarland turbidity stan-

dard (bioMérieux 70900) in 1X PBS (Sigma D8662), spread using a sterile cotton swab as

instructed by the manufacturer on agar plates of each media condition, Etest strips were

applied and plates were incubated at 37˚C for 16–20 hours [46]. The Etest strips were pur-

chased from bioMérieux and stored at –20˚C until use: Ampicillin/Sulbactam 2/1 (412250),

Ceftriaxone (412300), Ciprofloxacin (412310), Colistin (537340). Values given are

mean ± standard deviation. Etests were repeated in at least 2–4 independent experiments.

GraphPad Prism version 8 was used to perform a mixed-effects analysis with Tukey’s multiple

comparison test to compare MICs from various media conditions to the standard antimicro-

bial susceptibility testing media condition of MHB (pH 7) with �P< 0.05, ��P< 0.01,
���P< 0.001.

Whole genome sequencing, assembly and annotation

The draft genomes were generated by the Los Alamos National Laboratory (LANL) Genome

Science Group using Illumina technology [48]. Depth-of-coverage statistics for Illumina data

are summarized in S1 Table. Short-insert paired-end libraries were constructed and

sequenced on the HiSeq instrument. Data quality was assessed and the data files were filtered

and trimmed with FaQCs, version 1.3 [49] and then assembled with Velvet, version 1.2.08 [50]

and with IDBA, version 1.1.0 [51]. For UGA14, an additional PacBio [52] long read library

was constructed and sequenced on the RS II instrument generating 1,869 Mbp of draft data

Table 1. Antimicrobial susceptibility testing of Salmonella UGA isolates by disk diffusion.

β-lactam cephalosporin quinolone macrolide tetracycline

β-LIc 2nd 3rd generation 4th fluoro. -like

Antibiotic a: SAM MEM TZP CEC CPD CRO ZOX FEP NAL CIP LEV AZM CLR CHL OTE TET DOX

Disk Content (μg): 10/10 10 100/10 30 10 30 30 30 30 5 5 15 15 30 30 30 30

Clinical Breakpoint (R

�) b:

11 19 17 14 17 19 21 21 13 15 13 18 ND 12 ND 11 10

Strain ID UGA9 7 29.5 24 23 26 30.5 31 32 17.5 31 28 12.5 7 20 18.5 17 11

UGA10 7 33 27 25 25 33 33 32 22 33 28.5 16 7 24 23 22.5 13

UGA11 7 27.5 23 24 26 29 33 31 25 34 31 16 8.5 7 NT 27 20

UGA12 7 30 27 24.5 26.5 33.5 33.5 32 25 34.5 32 16.5 9 10 25 26 19.5

UGA13 7 30 27 23.5 27 34.5 34.5 30 7 30 26 17.5 12 7 22 27 19.5

UGA14 7 29 21 7 7 7 13 9 23.5 30 34 17 10 7 NT 10 13.5

UGA15 18 26.5 24 21 24 26 34 29.5 22.5 35 32 15 10.5 7 NT 25 18

UGA16 21.5 31 24 28.5 25.5 32.5 32.5 31 24 31.5 28.5 16 10 24 24 25 20

UGA17 7 30 23.5 24 26 33 33 31.5 25 33.5 28 17 12 7 24 27 18.5

UGA18 7 30.5 27 25 30.5 37.5 37.5 35 25 33.5 31 17 13 7 7 7 8.5

UGA19 7 28 22 22 24.5 29 34.5 30 23.5 31.5 28 16.5 8 7 NT 26 19.5

a Antimicrobial susceptibility testing performed using disk diffusion on Mueller Hinton agar: SAM, ampicillin/sulbactam; MEM, meropenem; TZP, piperacillin/

tazobactam; CEC, cefaclor; CPD, cefpodoxime; CRO, ceftriaxone; ZOX, ceftizoxime; FEP, cefepime; NAL, nalidixic acid, CIP, ciprofloxacin; LEV, levofloxacin; AZM,

azithromycin; CLR, clarithromycin; CHL, chloramphenicol; OTE, oxytetracycline; TET, tetracycline; DOX, doxycycline
b Clinical Breakpoints reflect diameter (mm) of zones of inhibition surrounding antibiotic disk; R, resistant. Clinical Breakpoints for Enterobacteriaceae were derived

from CLSI document M100-S23 (M02-A11) except for FEP derived from EUCAST Table v. 7.1, valid from March 13, 2017 (none listed in CLSI). No clinical breakpoints

were listed in either document for OTE for Enterobacteriaceae (ND, not determined). AZM breakpoints are for S. Typhi [112].
c β-lactamase inhibitor

Light grey: resistant; NT, not tested

https://doi.org/10.1371/journal.pntd.0008991.t001
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(349X coverage), and assembled using HGAP, version 2.3.0 [53]. The consensus sequences

from both short read assemblies and long read assembly (long read for UGA14 only) were

computationally shredded and reassembled with Phrap, version SPS-4.24 [54,55] to create a

hybrid assembly and to allow some manual editing with Consed [56]. Annotation of assembled

genome sequences was carried out with the genome annotation workflow within the EDGE

Bioinformatics platform [57]. Putative phase islands were identified using PHAST (PHAge

Search Tool) [58] and Islandviewer [59]. The circular genome diagram was drawn using DNA-

plotter [60]. The whole genome sequences have been deposited in GenBank under the acces-

sion numbers listed in Table 2.

Genome comparison

All closely related NTS isolates were first identified using megablast searching against Gen-

Bank and were further compared with the related S. Typhimurium strains D23580, ST313,

ATCC 13311, and S. Enteritidis CMCC 50041. To obtain a list of orthologs from bacterial

genomes, an open source protocol that determines bidirectional best hits was used [61]. The

process considers orthologs as genes g and h, if h is the best BLASTP hit for g and vice versa,

and E values were�10–15. A gene is considered strain specific if it has no hits with an E value

of 10–5 or less. Browsing of genome comparisons at the nucleotide level was carried out using

the Artemis Comparison Tool (ACT) [62].

PhaME version 1.0.5 [63] was used to generate the genome alignments, extract all SNPs at

conserved positions, and infer the phylogenetic tree. Briefly, raw reads were mapped to S.
enterica subsp. enterica serovar Typhimurium str. SL1344 (NC_016810.1) [64] using BWA

v0.7.17-r1188, followed by construction of alignment, removal of polymorphic sites using gub-

bins v2.4.1, and then reconstruction of maximum likelihood phylogenetic tree with 100 boot-

straps using IQ-TREE v1.6.12. The built-in model test of IQ-TREE was invoked using -m
TEST option, which picked K3P+ASC as the best fit model.

Treefiles were annotated with iTOL v4 to include strain ID numbers, bootstrapping sym-

bols, and tree scale as substitutions per variable site [65]. The resulting file was further edited

Table 2. Whole genome sequencing analysis.

Strain ID Size GC Content No. of Contigs No. of CDS No. of RNAs NCBI Accession No.

D23580a 4,996,447 51.9 2 5118 110 NC_016854, NC_013437

ATCC 13311b 4,831,756 52.1 2 4829 107 CP009102, CP009103

UGA9 4,940,531 52.2 40 5026 88 NHRC00000000

UGA10 5,027,081 52.2 46 5167 93 NHRB00000000

UGA11 4,951,952 52.2 44 5066 94 NHRA00000000

UGA12 4,955,481 52.2 47 5055 91 NHQZ00000000

UGA13 4,952,855 52.2 43 5051 89 NHQY00000000

UGA14c 5,352,626 51.9 5 5481 110 CP021462, CP021463, CP021464, CP021465, CP021466

UGA15 4,951,782 52.2 49 5060 89 NHQX00000000

UGA16 4,701,989 52.1 25 4749 96 NHTP00000000

UGA17 4,964,591 52.2 49 5074 94 NHQW00000000

UGA18 4,867,195 52.2 37 4984 85 NHTO00000000

UGA19 4,955,665 52.2 49 5068 89 NHQV00000000

a including plasmid pSLT-BT (accession no. NC_013437)
b including plasmid pSTY1 (accession no. CP009103)
c genome completed in this work, including 4 plasmids

https://doi.org/10.1371/journal.pntd.0008991.t002
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in Adobe Illustrator to discriminate lineages, and add features such as a legend, geographical

locations, and respective references.

Phenotype microarray analysis

S. Typhimurium strains ATCC 13311, UGA10 and UGA14 were grown on nutrient agar plates

for 18 hours at 37˚C. A single colony swab of culture from each strain was re-suspended in the

appropriate medium for each plate and adjusted to 85% transmittance measured using a Bio-

log turbidimeter. The recommended inoculating fluids, IF-0a and IF-10a were used with Bio-

log Redox Dye D. These cultures were diluted 1:100 in the appropriate medium and Biolog

phenotypic microarray plates PM1 through PM20 were inoculated with 100 μL per well. Plates

were incubated at the 37˚C in the OmniLog incubator and substrate utilization/chemical sensi-

tivity was monitored every 15 minutes for 48 hours. Bacterial respiration was assessed within

each well by monitoring color formation resulting from reduction of the tetrazolium dye, and

color intensity was expressed in arbitrary units (AU). Kinetic data was analyzed using Omni-

log-PM software (OL_PM_Par1.20.02, Dec. 08, 2005).

Statistical analyses and heatmap generation

The area under the growth curves (AUC) were computed by summing all OmniLog values at

all time points using the opm package and the R programming language [66]. AUC values of

selected phenotypes were plotted in a heatmap using the Morpheus tool (https://software.

broadinstitute.org/morpheus). High growth (AUC) was represented by yellow blocks while

blue blocks represented low growth.

Membrane permeability

The membrane permeability of S. Typhimurium ATCC 13311, UGA10 and UGA14 isolates

was determined using the BacLight Bacterial Membrane Potential Kit as per the manufacturer

instructions (Life Technologies, catalog no. B34950). Briefly, bacterial strains were grown over-

night at 37˚C shaking in nutrient broth. 1 μL of stationary phase culture was transferred to 1

mL of sterile-filtered phosphate buffered saline (PBS). Then 10 μL of the DiOC2(3) dye was

added, as recommended by the manufacturer. The assay was verified using the protonophore

carbonyl cyanide m-chlorophenyl hydrazone (CCCP). Cells were incubated with dye for 30

min at room temperature, and then analyzed on a BD FACSAria flow cytometer (Becton Dick-

inson), with emission filters suitable for detecting red (PE-Texas Red) and green (FITC) fluo-

rescence. Ten thousand events were recorded at a medium flow rate. Gating of stained cell

population and analysis of flow cytometry data were performed in BD FACSDiva software

(Becton Dickinson). The ratio of red to green fluorescence intensity was calculated as an indi-

cator of membrane potential. Values given are the mean of nine biological replicates ± stan-

dard error of the mean. GraphPad Prism version 8 was used to perform a one-way ANOVA

with Dunnett’s multiple comparison test to compare ATCC 13311 + CCCP, UGA10 and

UGA14 to ATCC 13311 (���P< 0.001).

Zeta potential measurements

Overnight cultures were started as described in Etest section above. Since media composition

(salt concentration and pH) can affect zeta potential, [67], 0.5 mL of each culture was washed

in 1X PBS and resuspended in 1 mL 0.1X PBS diluted in sterile nanopure water to minimize

media influence on these measurements. We also report conductivity measurements to show

that salt concentration has been normalized by this procedure. The Zeta potential was
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measured on a Malvern Zetasizer Nano ZS90 device (Malvern) at room temperature 25˚C.

Zeta potential standards were obtained from Malvern (DTS1235, –42 mV ± 4.2 mV) and used

according to the manufacturer’s instructions. Measurements were performed in Zetasizer

folded capillary cells (DTS1070, Malvern) in triplicate reads (n = 3). Values given are

mean ± standard deviation. Zeta potential assays were repeated on at least two separate occa-

sions. GraphPad Prism version 8 was used to perform a two-way ANOVA with Tukey’s multi-

ple comparison test to compare UGA strains 10 and 14 to the antimicrobial susceptible strain

ATCC 13311 (�P< 0.05, ��P< 0.01, ���P< 0.001).

Results

Genotypic analysis

We obtained 11 bloodstream NTS isolates from pediatric malaria patients in Siaya, Kenya that

were isolated as a part of a comorbidity study described previously (Table 3) [39,68]. Initial

whole genome sequencing was performed using Illumina technology on all 11 isolates, which

identified nine S. Typhimurium (labeled UGA9, 10, 11, 12, 13, 14, 15, 17, 19) and two S. Enteri-

tidis (UGA16, 18) isolates with a depth of sequencing typically greater than 300X (Table 2 and

S1 Table). Phylogenetic analyses based on whole-genome single-nucleotide polymorphisms

(SNPs) was performed to compare these isolates to those described in previous studies by others

(Fig 1 and S2 Table). The SNP tree in Fig 1 compares the UGA isolates identified in this study

with invasive isolates from other studies [69–71]. The nine S. Typhimurium UGA strains in this

study all belong to lineage II showing only 30 SNPs between UGA14 and the D23580 strain iso-

lated from a bloodstream infection in Malawi in 2004 [28]. This observation is consistent with

previous findings that lineage II strains replaced the previously dominant lineage I strains across

Africa [28,72]. In order to accurately reconstruct the genome across long repetitive stretches, S.
Typhimurium UGA14 was supplemented with long-read PacBio RS technologies. After hybrid

assembly, we obtained a complete genome of 5,352,626 bp in size with a 4.9 Mbp chromosome,

two large plasmids and two small plasmids (Fig 2 and Table 4). The genome size and presence

of four plasmids is consistent with that of D23580 [28,73]. However, despite the nearly identical

chromosome, there were significant differences in the plasmid composition.

Plasmids

The largest plasmid identified in UGA14 was similar (81% query coverage, 99% sequence identity)

to the pKST313 plasmid identified by Kariuki et al. [21] except that it was ~50 kb larger in size at

Table 3. Non-typhoidal Salmonella clinical isolates.

Strain ID Isolate # Serovar

UGA9 022-04B Typhimurium

UGA10 224–09 Typhimurium

UGA11 366–04 Typhimurium

UGA12 159-04B Typhimurium

UGA13 376–09 Typhimurium

UGA14 709–09 Typhimurium

UGA15 547–09 Typhimurium

UGA16 215–09 Enteritidis

UGA17 159-04A Typhimurium

UGA18 271–09 Enteritidis

UGA19 654–05 Typhimurium

https://doi.org/10.1371/journal.pntd.0008991.t003
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352,906 bp and referred to as pKST313-UGA14 (Table 4). This plasmid was determined to be

very similar to the pKST313. In comparison with pKST313, pKST313-UGA14 was found to con-

tain two large gene cluster insertions (Fig 3). The first insertion of 39 kb is homologous to the

chromosome of Enterobacter hormaechei subsp. hormaechei strain 34983 with 94% coverage and

99% sequence identity, containing an intact lac operon and a complete iron(III) transporter sys-

tem. The second insertion of 27 kb appears to be derived from the chromosome of Escherichia
coli strain S43 with 70% coverage and 99% sequence identity, containing enzymes involved in

sucrose metabolism. pKST313-UGA14 also contained an inversion/translocation of 9 kb flanked

by mobile elements. This region harbors a blaTEM-1-strB-strA-sul2AMR gene cluster, which

encodes resistance to penicillins, cephalosporins and aminoglycosides [21]. Interestingly, this plas-

mid was not detected in any of the other UGA isolates sequenced in this study.

Fig 1. A maximum likelihood single-nucleotide polymorphism (SNP)–based phylogeny of S. Typhimurium isolates from Kenya between 2000 and 2011 associated

with invasive disease. The strains that were sequenced as part of this study are represented as UGA followed by a number, and all other strains were previously reported

by the publications indicated in the “Reference” column. Names of genomes from this study are colored in pink, isolates from lineage 1 and lineage 2 identified previously

by Okoro et al. [24] are colored in cyan and purple respectively, and all other genomes are colored in gray. The tree was rooted using the midpoint method in iTOL. The

scale bar indicates number of substitutions per site. Bootstrap support are labeled on branches with black dots whose size correspond to bootstrap support values.

https://doi.org/10.1371/journal.pntd.0008991.g001
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The 115,864 bp pSLT-BT plasmid identified in UGA14 (referred to as pSLT-BT-UGA14) is

a known virulence-associated plasmid essential to systemic invasiveness of S. Typhimurium

(Table 4 and S1 Fig) [74]. Comparison of pSLT-BT-UGA14 with the sequences of pSBLT

(ST313) [21] and pSLT-BT (D23580) [28,73] reveals extensive overall similarity with the

exception of a 19 kb inversion (S1 Fig). This plasmid was observed in all nine S. Typhimurium

UGA isolates (S3 Table). All previously identified resistance determinants associated with this

plasmid were identified− aminoglycoside (aadA1), streptomycin (strA and strB), β-lactams

(blaTEM-1), chloramphenicol (catA1), trimethoprim (dhfr1), and sulfonamides (sul1 and sul2)

[21,28,73,74]. A comparison of UGA14 plasmids pKST313-UGA14 and pSLT-BT-UGA14

Fig 2. Circular representation of the S. Typhimurium UGA14 genome including the chromosome and four plasmids. The outermost four circles indicate start sites

of genes. Starting on the outside, circles 1–2 consist of forward-strand gene products; circles 3–4 consist of reverse-strand gene products (colors represent the following

categories: CDS, blue; tRNA, brown; rRNA; magenta; other, grey); circle 5 shows AMR genes; circle 6 shows mobile gene elements (insertion sequences and prophage

genes); circles 7–9 show homologous regions of blastn search against near neighbors in GenBank (highly similar regions are shown in darker color); circle 8 shows GC

content; circle 9 shows GC bias (G-C/G+C where green indicates values>1 and purple<1).

https://doi.org/10.1371/journal.pntd.0008991.g002

Table 4. UGA14 plasmid characteristics.

ID Plasmid Type Near Neighbor Length (bp)

pKST313-UGA14 IncHI2, IncHI2A pKST313 (accession no. LN794248) 352,906

pSLT-BT-UGA14 IncFII(S), IncFIB(S) pSLT-BT (117047bp) 115,864

pSCP1-UGA14 SCP pSA01AB09084001_4; pPAB19-3 2,576

pSCP2-UGA14 SCP pRGRH0639 1,995

SCP: small cryptic plasmid

https://doi.org/10.1371/journal.pntd.0008991.t004
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shows extensive transfer of virulence and AMR related genes (S2 Fig). The two insertion

regions of pKST313-UGA14 appear to be conserved with an Enterobacter chromosome back-

ground along with mobile gene elements at the flanking regions of both the lactose and sucrose

operons all suggest the acquisition of these regions through horizontal gene transfer (HGT,

Fig 3B) [75]. The corresponding region in pSLT-BT-UGA14 (47,894 to 69,936 bp) is also

located at the flanking region of the strB-strA-sul2 cluster (S2 Fig, grey arrows) and is inverted

relative to pSLT-BT.

The small plasmids (referred to as pSCP1-UGA14 and pSCP2-UGA14) were identified as

small cryptic plasmids (SCPs), which are a class of unusually small, abundant plasmids that

carry little genetic information yet inexplicably maintained at high copy numbers [76]. These

small plasmids were very similar to those identified in D23580, which contained plasmids

pBT2 (2,556 bp) and pBT3 (1,975 bp) [28,73]. UGA14 contained plasmids pSCP1-UGA14

Fig 3. Plasmid synteny between S. Typhimurium UGA14 plasmid pKST313-UGA14 and reference plasmids. Comparisons were made using the Artemis Comparison

Tool (ACT) [62]. (A) pKST313-UGA14 compared to reference plasmid pKST313 [21] with regions of homology indicated in red or blue (inversion), an AMR gene island

indicated with a blue circle (dashed line), direct repeats in pKST313 highlighted in yellow, and loci of insertion and its target site duplication labeled with triangles. (B)

Two inserted regions of pKST313-UGA14 are compared with potential donor organisms, Enterobacter hormaechei strain 34983 and Escherichia coli strain S43.

https://doi.org/10.1371/journal.pntd.0008991.g003
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(2,576 bp) and pSCP2-UGA14 (1,995 bps) as shown in Table 4. Plasmid pSCP1-UGA14 was

determined to be most similar to pPAB19-3 from Escherichia coli strain M9888 with 68% cov-

erage and 92% sequence identity (S3 Fig). Plasmid pSCP2-UGA14 showed no homolog

among any other Enterobacterales in the NCBI NR database and aligned with an uncultured

prokaryote isolate RGRH0639 from a rat gut metagenome with 72% coverage and 92%

sequence identity (S4 Fig). P4 only carries a hypothetical protein and MarR, which is a repres-

sor of the multiple antibiotic resistance (mar) operon [77]. Themar regulon mediates AMR by

activating AcrAB-TolC efflux of some antibiotics, disinfectants and organic solvents, and

down regulating influx through Outer Membrane Protein F (OmpF) [78]. The two SCPs

(pSCP1-UGA14 and pSCP2-UGA14) were identified together in UGA11, 12, 13, 17, and 19

while pSCP2-UGA14 alone was found in UGA9 and UGA10 (S3 Table). Interestingly, UGA15

was the only S. Typhimurium isolate sequenced that did not contain a homolog of either of

these two SCPs.

In the two S. Enteritidis isolates, UGA16 harbors a smaller pSENV plasmid (~60 kb) and

UGA18 harbors two larger plasmids: pSEN-BT (termed pSEN-BT-Siaya, ~85 kb) and p931

(p931-UGA14, ~93 kb). Seven AMR genes were found on the UGA18 pSEN-BT-Siaya. This

observation is similar to the one made in the S. Enteritidis strain D7795 wherein pSEN-BT was

composed of a backbone of pSENV with regions that harbor 9 antibiotic resistance genes and

additional genes associated with virulence and toxin/antitoxin induction systems [79]. Inter-

estingly, UGA18 plasmid p931-UGA14 is very similar to the S. Typhimurium UGA10 plasmid

pSLT-BT-UGA14 with 90% coverage and 98% sequence identity (S5 Fig).

Genome degradation

It has been previously reported that S. Typhimurium strain D23580 has undergone reductive

evolution through pseudogene formation [28,80]. We compared the pseudogene content of

strain UGA14 with D23580 and identified 44 pseudogenes that had previously been reported

in D23580 [28,73]. Interestingly, themacB (STM0942) gene encoding macrolide resistance

[81] was found to be disrupted in D23580 but intact in UGA14. We also identified three pseu-

dogenes in UGA14, all resulting from point mutations encoding early stop codons, that

remained intact in D23580. These occurred in nfsA (NADPH nitroreductase), dgoA (D-galac-

tarate dehydratase) and ccmA (cytochrome c biogenesis ATP-binding export protein). Mis-

sense mutations in nfsA have been associated with nitrofurantoin resistance in S.
Typhimurium [82]. Inactivation of dgoA in S. Typhimurium impacts galactonate metabolism

[83], and mutations in ccmA affect cytochrome biosynthesis in E. coli [84]. We also confirmed

the presence of identical mutations in UGA14 that were previously identified in D23580

including rpoS, katE, bcsG, and sseI [28,73]. Inactivating mutations in genes such rpoS have

been observed in S. Typhimurium following laboratory passaged in minimal media [85]. How-

ever, mutations inmacB, nfsA, dgoA and ccmA have not been observed in S. Typhimurium fol-

lowing passage in LB, Mueller Hinton Broth (MHB) or minimal media conditions. Also, the

macB, nfsA, dgoA and ccmAmutations were not observed in UGA10, which was grown in the

same conditions as UGA14.

Phenotypic analysis

To complement the genotypic analysis, we performed phenotypic characterization of the NTS

isolates in this study to evaluate changes in their ability to grow in various environmental con-

ditions relative to a non-invasive and drug-sensitive reference S. Typhimurium strain ATCC

13311 [86].
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Antimicrobial resistance

NTS isolates from Kenya have displayed resistance to ampicillin, chloramphenicol, sulfameth-

oxazole-trimethoprim, and more recently cephalosporins [21,28]. The antibiotic susceptibility

patterns for the 11 NTS isolates described in this study were determined using disk diffusion

according to the Clinical Laboratory Standards Institute (CLSI) guidelines and antibiotic resis-

tance was defined by clinical breakpoints (Table 1) [47]. S. Typhimurium isolates UGA10 and

UGA14 were further characterized using Biolog phenotypic arrays [87] to validate antimicrobial

resistance changes as compared to ATCC 13311 (Fig 4). 9 out of 11 UGA isolates were resistant

to ampicillin/sulbactam, however, all 11 remained susceptible to meropenem and piperacillin/

tazobactam. Biolog experiments confirmed these observations (Fig 4A and S1 Data). All

Fig 4. Heatmaps of selected Biolog phenotypic array profiles for S. Typhimurium strains. Data are grouped into categories based on their biological roles as either (A)

chemicals and antimicrobials or (B) nutrients. S. Typhimurium reference strain ATCC 13311 (antibiotic susceptible and non-invasive) was compared to isolates UGA10

and UGA14. Each column represents the area under the curve (AUC) values computed by adding all OmniLog values at all time points. All raw AUC data is available in

S1 Data. Blue represents low relative growth in a given condition while yellow represents high growth.

https://doi.org/10.1371/journal.pntd.0008991.g004
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ampicillin-resistant UGA isolates have a homolog of glyoxylase or a related metal-dependent

hydrolase, belonging to the β-lactamase superfamily II, on their chromosome.

Chloramphenicol resistance was observed in 8 of 11 UGA isolates (not UGA9, 10, or 16).

Genome comparison shows UGA11, 12, 13, 15, 17, and 19 each have one copy of catA1 on

plasmid pSLT-BT-UGA14, while UGA18 has one copy of catA2. UGA14 has 3 cat genes with

catB3 and catA1/catI located on pKST313-UGA14, and another copy of catA1 on pSLT-BT-

UGA14. In contrast, the chloramphenicol susceptible isolates UGA9, 10, and 16, all lack the

catA1/catI and catB3 genes. Biolog results confirmed these findings showing a 2- to 3-fold

increase in cellular respiration by UGA14 in the presence of thiamphenicol (an analogue of

chloramphenicol), compared to the chloramphenicol-sensitive S. Typhimurium ATCC 13311

and UGA10 strains (Fig 4A and S1 Data).

The sul1 and sul2 genes encoding sulfonamide resistance were found in 9 out of 10 UGA

isolates (only absent from S. Enteritidis UGA16) although phenotypic assessments of resis-

tance were not performed. Cephalosporin resistance was only observed in UGA14, which can

be explained by the presence of blaCTX-M-15, a type A β-lactamase on pKST313-UGA14 as

described previously by Kariuki et al. [21]. UGA13 was uniquely resistant to nalidixic acid as a

result of two substitutions, D87G and D94G, found in the chromosomal DNA gyrase protein

GyrA which is the target of quinolone antibiotics [88]. S. Typhimurium isolate UGA14 and S.
Enteritidis isolate UGA18 were the only two strains to display tetracycline resistance each con-

taining a plasmid-derived tet gene.

Additionally, there were AMR phenotypes that were not readily explained by the genotypic

analysis. Ampicillin/sulbactam resistance was observed in UGA18, but not in UGA16, when

grown in standard antimicrobial susceptibility testing conditions (MHB) despite both contain-

ing the same gene profile of β-lactamases. No inducible resistance was observed following

growth in any of the media conditions tested (S6A Fig). UGA14 contains the

pKST313-UGA14 mediated aac(6')-Ib-cr gene encoding fluoroquinolone resistance, but no

corresponding resistance was observed when tested by disk diffusion (ciprofloxacin and levo-

floxacin in Table 1). However, in Biolog arrays UGA14 displayed low-level resistance to cipro-

floxacin and lomefloxacin compared to the ATCC 13311 reference strain (S1 Data).

Interestingly, UGA10 which does not carry the aac(6')-Ib-cr gene, outgrows UGA14 under the

highest concentration of ciprofloxacin and lomefloxacin. When tested under various growth

conditions, increased resistance to ciprofloxacin was observed at pH 7 when compared to pH

5.5 for all three strains tested (S6B Fig), which has been observed previously [32]. Together,

these results highlight a discrepancy between genotypic and phenotypic observations that

could impact the treatment efficacy and outcome of invasive NTS infection.

Heavy metal resistance

The pKST313 plasmid identified previously is known to contain genes involved in resistance

to heavy metals including mercury (mer and tni), tellurite (ter), arsenic (ars), and copper (cusS
and pcoE) [21]. The pKST313-UGA14 found in UGA14 similarly contains the heavy metal

resistance genes for arsenic (ars), mercury (mer), copper (cusS) and tellurite utilization (tel).
Biolog data confirmed several of these phenotypes. UGA14 displays a 2.4-fold increase in resis-

tance to sodiumm-arsenite over the S. Typhimurium ATCC 13311 reference strain, and a

5.5-fold increase in resistance over the sensitive UGA10 isolate (Fig 4A and S1 Data). Genes

encoding the tellurite resistance proteins TehB and TehA are found on pKST313-UGA14 as

well as on the chromosomes of UGA14, UGA10, and ATCC 13311. This was confirmed phe-

notypically in the Biolog experiments where all 3 strains display similar metabolic patterns in

the presence of potassium tellurite (S1 Data).
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Membrane permeability

Biolog experiments revealed that UGA14 and UGA10 were highly resistant to ionic solutions

(osmolytes) as compared to the non-invasive reference S. Typhimurium ATCC 13311 strain

(Fig 4B). In order to determine if this phenotype was related to alterations in membrane per-

meability, we directly analyzed the membrane potential of these isolates using the BacLight

bacterial membrane potential kit (Invitrogen). In this assay, the dye diethyloxacarbocyanine

(DiOC2(3)) emits green fluorescence when outside of a cell but aggregates once inside causing

a shift to red emission [89]. Measurements are taken by flow cytometry on the same number

of bacterial cells in a population, and the ratio of red to green fluorescence is determined as an

indicator of permeability of the bacterial membrane. These experiments showed that UGA10

and UGA14 display a 3- to 5-fold reduction in membrane permeability as compared to the ref-

erence ATCC 13311 strain (Fig 5A). UGA10 and UGA14 also displayed a more positive sur-

face charge than ATCC 13311 as measured by zeta potential (Fig 5B). The zeta potential of

antimicrobial sensitive S. Typhimurium strain ATCC 13311 was –12.96 ± 1.27 mV in MHB,

which is consistent with previous reports [90]. UGA10 and UGA14 displayed significantly

more positive zeta potentials of –6.25 ± 0.75 mV and –7.17 ± 0.94 mV respectively (P< 0.001).

Reduced membrane permeability has been linked to antimicrobial resistance [91] as well as

resistance to cationic antimicrobial peptides [92]. When grown in minimal media conditions

at pH 7, like the conditions reflected in Biolog experiments, UGA14 and UGA10 were highly

sensitive to the cationic antimicrobial peptide colistin as compared to the reference strain

ATCC 13311 (Figs 4A and 5C). However, when grown in MHB (both pH 7 and 5.5) as well as

M9 minimal conditions at pH 5.5, we observed a significant increase in MIC to colistin for

both UGA10 and UGA14. This was interesting considering that the surface charge of these iso-

lates was not significantly different following growth in M9 minimal media at pH 7 compared

to pH 5.5 (Fig 5B).

Nutrient utilization

UGA14 has the rare ability for a S. Typhimurium isolate to metabolize lactose and sucrose.

This was identified using Biolog phenotypic arrays (Fig 4B and S1 Data) and confirmed by

growth on brilliant green agar (Fig 5D). Brilliant green agar is often used to easily differentiate

Salmonella from E. coli since the fermentation of either lactose or sucrose will produce acid

causing the media to turn yellow/green [93]. Lactose fermentation is rarely observed in Salmo-
nella since the presence of the lac operon has been shown to inhibit epithelial cell invasion by

repressing flagellar biosynthesis [94]. Similarly, sucrose utilization is observed in less than 10%

of Salmonella strains [95]. Therefore, classically NTS produce white or red colonies on brilliant

green agar while E. coli produce yellow/green colonies making their classification distinct.

Genotypic analysis confirmed the presence of an intact lac operon as well as a sucrose catabo-

lism (csc) regulon on pKST313-UGA14 (Fig 5E and 5F). These results indicate that traditional

microbiological methods for identifying and characterizing NTS isolates from patients may

misdiagnose them as E. coli.

Discussion

Invasive NTS are among the leading cause of bloodstream infections in sub-Saharan Africa,

especially in high risk groups such as children and HIV-infected individuals [96]. The spread

of invasive S. Typhimurium across Africa has been documented in Ghana, Burkina Faso, and

Guinea-Bissau [97], Kenya [21,28,98], Gambia [99] the Democratic Republic of the Congo

(DRC) [22,23,100], Nigeria [100], and Malawi [11,28] with the phylogeography of the spread

presented by Okoro et al. [24]. Emergence and spread of invasive Salmonella has been
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Fig 5. S. Typhimurium isolates UGA14 and UGA10 displayed altered membrane permeability and zeta potential compared to the antimicrobial sensitive

and non-invasive ATCC 13311 strain. Both UGA14 and UGA10 displayed reduced (A) membrane permeability and a (B) more positive zeta potential compared

to the reference strain ATCC 13311. Alterations in zeta potential were independent of growth conditions comprised of either Mueller Hinton Broth (MHB,
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demonstrated globally for S. Typhi, which has been shown to be a highly clonal evolutionary

path [101,102]. Major concerns with the global spread and evolution of NTS include the perva-

sive invasiveness and increasing AMR observed among isolates.

In this study, we have taken an integrative approach to compare both genotypic and pheno-

typic information in clinical samples that caused invasive disease in children in Siaya, Kenya.

Here, 9 of 11 isolates were identified as S. Typhimurium ST313, a newly emerging serovar

associated with invasive disease [33]. Work from other investigators clearly shows that ST313

is becoming human-adapted, losing the ability to utilize some common carbon sources, and

acquiring AMR [21,28–31,98,103]. The existence of pseudogene heterogeneity among S.
Typhimurium is indicative of genome decay which has been observed as pathogens adapt to

their new hosts.

These observations are consistent with the hypothesis that Salmonella evolved through sev-

eral phases due to acquisition of additional pathogenicity elements through HGT [104]. Acqui-

sition of the pKST313 plasmid in NTS isolates has been shown to result in the development of

resistance to third-line antimicrobials [21]. The pKST313-UGA14 identified in this study now

contains lactose and sucrose utilization genes obtained through HGT. Lactose-fermenting Sal-
monella isolates are difficult to identify as NTS and failure to detect them is a threat to both

human and animal health [105]. The continued evolution of the pKST313 plasmid is also evi-

dent in the AMR island shared between pKST313-UGA14 and pSLT-BT-UGA14. A wide

range of AMR genes are represented in this duplication showing that numerous pathways

exist for HGT of these genes across many bacteria in a given geographic area. Both AMR genes

and virulence factors can propagate by these mechanisms, which can result in the emergence

of invasive pathogens against which our current intervention strategies are not effective

[106,107].

All of the isolates we examined contained one or more plasmids with β-lactamase genes. Of

these isolates, those with a β-lactamase on the chromosome predominately contained a penicil-

lin-binding protein (PBP). Isolates with a β-lactamase on a plasmid contained a class A β-lacta-

mase associated with broad-spectrum resistance. S. Typhimurium strain UGA14 contained a

multiple β-lactamase including CTX-M-15 resulting in broad spectrum resistance to β-lactam

antibiotics [21]. Resistance to 3rd generation cephalosporins in Salmonella has been attributed

to the production of extended spectrum β-lactamases (ESBLs) [21]. The majority of invasive

UGA isolates characterized in this study were susceptible to ceftriaxone, which therefore

remains a viable treatment for invasive Salmonella infections. Further, only half of the isolates

were susceptible to chloramphenicol, which indicates a reemergence of antibiotic susceptibility

which has been observed by others [108].

Our study also identifies NTS isolates that display reduced cationic peptide sensitivity,

which has been correlated with an increased sensitivity to the human innate immune system

(i.e., human defense peptides) as an indicator of reduced virulence [92,109]. However, cationic

peptide resistance has been shown to be required in Salmonella only during gastrointestinal

infection, and not during bloodstream infections, indicating that although these UGA isolates

unaltered at pH 7) or minimal media made with M9 salts supplemented as described in the Materials and Methods section (M9 Minimal) adjusted to either pH 5.5

or 7. (C) The minimum inhibitory concentration (MIC) of colistin is significantly reduced in minimal media conditions as compared to standard MHB

susceptibility testing conditions. Uniquely for a Salmonella strain, UGA14 (D) displays growth on brilliant green agar indicating fermentation of lactose and/or

sucrose, (E) contains an intact lac operon, and (F) contains a plasmid-mediated sucrose regulon. S. Typhimurium ATCC 14028 (labeled “14028” in (D)) is a highly

virulent reference strain [113] that lacks the ability to ferment lactose and sucrose. Values plotted are mean ± standard deviation. Membrane permeability

represent the average of nine independent experiments each recording 10,000 events. Zeta potential represent the average of triplicates from three independent

experiments. MIC determinations represent the average of 2–4 independent experiments. Statistical significance was determined for UGA10 and UGA14 values

compared to the reference strain ATCC 13311 with �P< 0.05, ��P< 0.01 and ���P< 0.001.

https://doi.org/10.1371/journal.pntd.0008991.g005
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can survive in blood during bacteremia, they would likely display reduced virulence when

administered via the gastrointestinal route [110]. Management and mitigation of AMR

through deliberate policy choices in antimicrobial availability and use may be a worthwhile

pursuit [111]. Investigating the molecular basis of invasive NTS infections helps to elucidate

the mechanism by which enhanced virulence and AMR evolve and support the development

of accurate and effective countermeasures.
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