
CYTOSKELETON

The mother of all actins?
New insights into the structure of filaments made of crenactin, a

homolog of actin found in archaea, shed light on how the cytoskeleton

might have evolved.
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T
here was a time when most scientists

believed that eukaryotes had cytoskele-

tons and that bacteria and archaea did

not. This view changed in the early 1990s when

a bacterial protein – that was later identified as a

tubulin homolog – was shown to form a ring-like

structure that is essential for bacterial cells to

divide (Bi and Lutkenhaus, 1991;

Mukherjee and Lutkenhaus, 1994). It has since

been discovered that bacteria and archaea carry

homologs for all the components of the eukary-

otic cytoskeleton – actin, tubulin and intermedi-

ate filaments (Shih and Rothfield, 2006). What

is more, we now know that many of these homo-

logs form complex filamentous structures and

fulfill similar roles to the cytoskeleton of eukar-

yotes. This indicates that the cytoskeleton most

likely evolved further back in the history of life

on Earth than originally thought.

The first eukaryotic cells are thought to have

originated after an archaeal cell engulfed an

ancient bacterium and the two established a

symbiotic relationship (Rivera et al., 1998;

Yutin et al., 2008). An archaeon called Pyrobac-

ulum calidifontis is believed to be one of the

closest living relatives of the ancestral archaea

involved in this event (Guy and Ettema, 2011),

and has been studied by many researchers. A

key component in the cytoskeleton of P. calidi-

fontis – a protein called crenactin – is a homolog

of actin. While crenactin is only ~20% identical

to eukaryotic actin, of all the proteins found out-

side of the eukaryotes, it is the one that is most

closely related to actin (Ettema et al., 2011).

Two years ago, Jan Löwe, Thierry Izoré and

colleagues at the MRC Laboratory of Molecular

Biology reported that the crystal structure of

crenactin was similar to that of eukaryotic actin

in many respects (Figure 1). However, while

actin forms double-stranded filaments, crenactin

appeared to form only single-stranded helices

(Izoré et al., 2014). Using electron cryo-micros-

copy, another group later reported that crenac-

tin also forms single-stranded helices in solution

(Braun et al., 2015).

Now, in eLife, Löwe and colleagues – includ-

ing Izoré as first author – have used electron

cryo-microscopy to further investigate the struc-

ture of crenactin filaments (Izoré et al., 2016).

However, contrary to the previous reports, Izoré

et al. now show that crenactin filaments are

more similar to actin filaments than previously

thought. Indeed, both form parallel, double-

stranded filaments with a similar helical arrange-

ment, and the individual subunits in a crenactin

filament interact like those in an actin filament.

Izoré et al. note that the earlier studies used

salt concentrations much higher than the con-

centrations that P. calidifontis needs to grow.

Although the salt concentration inside this bac-

terium is not known so far, they suggest that this

could have interfered with how the filaments

formed and could thus explain the discrepancy

between the previous and new results. The dou-

ble-stranded filaments also seem to be more

stable than the single-stranded crenactin
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filaments. This meant that Izoré et al. could, for

the first time, study crenactin filaments in

enough detail to be able to distinguish their

finer features.

The strong resemblance between actin and

crenactin suggests that actin has looked much

like it does today since early on in the evolution

of eukaryotes. Interestingly, actin is required for

phagocytosis, the process by which a eukaryotic

cell engulfs a bacterium. As mentioned above, it

is thought a similar mechanism gave rise to the

first eukaryotes (Yutin et al., 2009), and the

presence of a working actin-like cytoskeleton in

the ancestral archaea would certainly support

this idea.

The gene encoding crenactin is part of a

group of five genes called the arcade cluster

that are found within the genomes of the Cren-

archaeota (Ettema et al., 2011). This is the

group of archaea to which P. caldifontis belongs

and which gives crenactin its name. In P. caldi-

fontis, three proteins encoded by other genes in

the arcade cluster – called arcadin-1, -3, and -4 –

localize with crenactin filaments inside cells, hint-

ing that they might interact. In contrast, arcadin-

2 does not co-localize with filaments

(Ettema et al., 2011).

Izoré et al. also report that the C-terminal

region of arcadin-2 strongly interacts with indi-

vidual crenactin proteins, effectively sequester-

ing them and preventing them from

Figure 1. Crenactin is a member of the actin superfamily. Representative structures of individual proteins (in the

non-polymerized conformation) belonging to each family illustrate the overall similarity between the proteins. The

domains of life where homologs for these proteins have been identified are listed in the first column (distribution),

and the properties of filaments made of each protein are listed in the second column (filament characteristics). The

tree diagram was modified from Ettema et al. (2011). The structures use the following PDB entries: 1J6Z (actin),

5LY3 (crenactin), 4A62 (ParM), 5LJK (MamK) and 4CZL (MreB).
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polymerizing to form filaments. In turn, this

explains why arcadin-2 has a different distribu-

tion pattern to the other arcadins. Izoré et al.

then went on to show, using X-ray crystallogra-

phy, that a fragment of arcadin-2 encompassing

its C-terminal portion folds into a helix and binds

to crenactin. The binding site corresponds to a

site on actin that is used by eukaryotic proteins

involved in disassembling filaments.

Further experiments showed that arcadin-1

interacted very poorly with the individual crenac-

tin proteins. However, considering its distribu-

tion in the cell, it is still possible that arcadin-1

prefers to interact with filaments rather than

individual proteins.

Izoré et al. report that the structure of arca-

din-1 does not look like any other known protein

structure, meaning that it represents a new pro-

tein fold. They also note that the primary

sequence of arcadin-2 is unlike that of any actin

regulator known to date. This suggests that

while the actin cytoskeleton might predate the

first eukaryotes, its regulation has been invented

independently during evolution. The fact that

several, evolutionarily-unrelated proteins use

similar mechanisms to fine-tune the polymeriza-

tion state of actin provides further support for

this idea.

All in all, the discoveries of Löwe, Izoré and

colleagues highlight the remarkable level of

complexity in the cytoskeletons of non-eukar-

yotes. Moreover, the continuous development

of microbiology guarantees that this picture is

going to become ever more complex. Hopefully,

these advances will bring us even closer to

understanding the evolution of the cytoskeleton.
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