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A B S T R A C T   

This paper introduces a mobile cloud-based predictive model for assisting Parkinson’s disease 
(PD) patients. PD, a chronic neurodegenerative disorder, impairs motor functions and daily tasks 
due to the degeneration of dopamine-producing neurons in the brain. The model utilizes 
smartphones to aid patients in collecting voice samples, which are then sent to a cloud service for 
storage and processing. A hybrid deep learning model, trained using the UCI Parkinson’s Tele-
monitoring Voice dataset, analyzes this data to estimate the severity of PD symptoms. The 
model’s performance is noteworthy, with accuracy, sensitivity, and specificity metrics of 96.2 %, 
94.15 %, and 96.15 %, respectively. Additionally, it boasts a rapid response time of just 13 s. 
Results are delivered to users via smartphone alert notifications, coupled with a knowledge base 
feature that educates them about PD. This system provides reliable home-based assessment and 
monitoring of PD and enables prompt medical intervention, significantly enhancing the quality of 
life for patients with Parkinson’s disease.   

1. Introduction 

Parkinson’s Disease (PD) is mainly caused by the gradual decay of dopamine secreting neurons which results in motor abilities 
degeneration and abnormal brain activities [1]. Studies suggest that people mainly at a higher age are more vulnerable to PD, as only 
about 4 % of people below 50 are diagnosed with PD. There are various symptoms of PD like slowed movement, rigid muscles, change 
in speech, writing variation, etc. as shown in Fig. 1. Though this disease’s root factor is unknown, researchers have predicted that 
specific mutation genes and toxic chemical exposure are causes of this disease [2]. This disease severely affects the quality of life of a 
person by affecting regular motor and non-motor activities. It also hinders their social interaction by affecting their speeches. As PD 
treatment is expensive, the financial condition of the patient worsens as well. The most common motor activity that gets affected is the 
quality of speech and, at times, difficulty in speaking. These activities do not affect all persons at the same stage but worsen over time 
like voices getting softer, whispery, or hoarse with time. The voice generally becomes a kind of monotone and lacks the general ups and 
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downs, which causes difficulty in understanding for the listeners. 
The changes in the voice of the patient are identified by analyzing the patient’s voice data. The voice becomes stuttered and gets 

more affected as the disease gets severe. There are different scales developed for assessing the stage of PD [3]. Among them, the Unified 
Parkinson’s Disease Rating Scale (UPDRS) is the most widely used scale [4]. The UPDRS is evaluated by different metrics like 
assessment of behavior, mood, and assessment of daily activities like speaking, swallowing, cutting food, drawing, handwriting, and 
medical monitoring-based motor assessment. Through speech variations of patients, it is possible to analyze the progress of this disease 
by applying modern technology-based frameworks involving predictive analytics, cloud computing, and mobile healthcare. 

1.1. Related works 

Inspired by recent information technologies, proper observation of PD-related health metrics along with appropriate assessment 
model development can be done to regulate its severity level. A lot of research has been done for the detection of PD but not much has 
contributed to the severity analysis. All these works have mainly used machine learning as a tool. In a survey by Das et al. [5] on the 
application of diagnosing the disease by different classification techniques, neural networks performed as a better classifier than 
decision tree and regression. Genain et al. [6] used a Bagged decision tree to predict the severity of the disease from the voice signals of 
the patients and found an improvement of 2 % accuracy. Maleket et al. [7] used a dataset containing 40 features and selected 9 most 
suitable features based on Local Learning Based Feature Selection (LLBFS) to classify Parkinson’s into four major labels namely 
Healthy, early, Intermediate, and advanced based on UPDRS score. The use of dynamic machine learning algorithms to identify the 
severity of tremors and Dyskinesia was studied in Ref. [8]. Cole et al. [8] used wearable sensors to extract the required data. To further 
improve the data collection, Angeles et al. [9] have developed a sensor system to record kinetic data from the arm that can assess 
symptom severity changes during Deep Brain Stimulation Therapy. Nilashiet al. [10] developed a new hybrid intelligent system by 
combining a fuzzy inference system and support vector machine (SVM) based regression to predict PD progression. Chen et al. [11] 
have proposed a new diagnostic system for the detection of Parkinson’s Disease using principal component analysis (PCA) for the 
extraction of features and Fuzzy k-nearest neighbors (KNN) for the classification. Polat [12] proposed a model using Fuzzy C means 
(FCM) clustering and KNN for the detection of Parkinson’s Disease. Åström and Koker [13] used a Parallel feed-forward Neural 
network to detect Parkinson’s Disease and then the predicted output was compared against a rule-based system to make the final 
decision. Li et al. [14] suggested using a fuzzy-based nonlinear method where PCA is used to extract the features and SVM helps in the 
prediction of the PD. Hariharan et al. [15] have suggested an intelligent system using clustering feature reduction and classification 
methods for the diagnosis of PD. Indira R. et al. [16] proposed a machine learning algorithm that helps in the automatic detection of PD 
through the voice samples or speech of the person. Here the model used fuzzy C means clustering and pattern recognition-based 
approach to differentiate between a healthy and a PD affection person and achieved an accuracy of 68.04 %, 75.34 % sensitivity, 
and 45.83 % specificity. Tsanas et al. [17] have used feature selection, random forest, and support vector machines to detect PD and 
achieved a classification accuracy of 99 % using only 10 dysphonia features. Shahbakhi et al. [18] also suggested that PD can be 
predicted using a Genetic Algorithm (GA) and SVM. Das et al. [19] made a comparative analysis between Neural networks, Data 
Mining Neural analysis, Regression analysis, and Decision Trees and achieved an accuracy of 92.9 %, 84.3 %, 88.6 %, and 84.3 % 
respectively on Parkinson’s data. The detection of Parkinson’s Disease was based on statistical software suite (SAS) software. Ene M. 
et al. [20] proposed a probabilistic neural network (PNN) to distinguish between a healthy and a Parkinson Disease disease-affected 
person. Three types of PNN are used in the classification process namely: incremental search (IS) Monte Carlo search (MCS) and Hybrid 
Search (HS). The accuracies are found between 79 % and 81 % for the undiagnosed patients. Wu S et al. [21] have proposed various 

Fig. 1. Common Symptoms of Parkinson’s disease.  
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techniques like regression, decision tree, and neural network analysis to analyze the dataset of Parkinson’s Disease and calculate the 
probability of error. The error probability by Logistic regression, classification, and neural network was 5.15 %, 8.47 %, and 23.73 % 
respectively. Yadav, G. et al. [22] proposed two classifiers like statistical classifiers and a support vector machine to distinguish be-
tween a healthy and Parkinson affected person. Support Vector Machine provides a classification accuracy of 76 %, sensitivity of 97 %, 
and specificity of 13 %. All these comparative studies are evaluated using University of California at Irvine (UCI) telemonitoring-based 
voice dataset. Fourteen main features of the voice signal were extracted, based on F0 (fundamental frequency or pitch), jitter, shimmer, 
and noise-to-harmonics ratio. The performance of different classification algorithms on Parkinson’s data is provided in Tables 1–3. 

Apart from the discussed existing works, some of more latest technological advancements in the context of Parkinson’s disease 
assessment are also observed. In Ref. [24], T. Exley et al. performed a two-stage feasibility analysis on Parkinson’s disease. An 
out-of-the-box quiet standing feature was evaluated to estimate the UPDRS-III score that relates to the severity level of motor risks. 
Secondly, using this additional feature for the detection of motor symptoms. R. Kaur et al. [25] discussed the impact of a vision-driven 
prototype to predict Parkinson’s disease (PD) gait dysfunction and multiple sclerosis (MS). Here a data-oriented model was presented 
to categorize walking style in multiple sclerosis patients as well as patients with Parkinson’s disease, which may be found across 
various walking subjects. In another work, M. Ullrich et al. [26] compared various data aggregation methods and predictive models for 
the estimation of fall risks utilizing gait metrics defined from regular recordings or unlabeled gait validations. Random forest achieved 
the optimum balanced accuracy of 74 %. Similarly S. Mazilu et al. Another research [27] studied skin-conductance and electrocar-
diography on 11 persons who had freezing of Gait issues and observed visible variation in the data readings before the gait freezing in 
comparison to usual walking. Later an anomaly-enabled method was designed to predict freezing of gait from vital skin-conductance 
attributes. A prediction accuracy of 71.3 % among 184 gait freezing data having a mean of 4.2 s before the freeze round was noted. A 
four-step automated Parkinson’s disease assessment model driven by mixed emotional facial expressions was proposed by W. Huang 
et al. in Ref. [28]. At first, facial scans comprising six main expressions are synthesized through an adversarial learning approach. Then 
an efficient screening technique is designed to analyze synthesized image quality thereby selecting the superior quality scans. It is 
followed by training the raw face scans of PD patients, good quality images, and the normal facial scans from publicly available 
datasets applying a deep attribute extraction method with a face expression classifier. At last, this system-trained model was used to 
retrieve different expression features to differentiate a PD patient from a normal person. Table 4 summarizes the pros and limitations of 
the relevant works conducted in the PD analysis. 

As discussed, various existing literature are available in context to PD risks assessment but still some visible limitations are there. 
Most of the existing models were trained with a very small dataset and the accuracy of prediction is reasonable. Even if a few models 
generated good accuracy, their interfacing with the user is complex. There exists no model that provides a more personalized diagnosis 
of PD symptoms in patients. also the models lack alert notification functionality to close contacts of the elderly patients in emergency 
scenarios. Moreover, most of the models lack real time validation in clinical settings. Our proposed model aims to overcome these 
limitations by introducing a novel and effective smart phone operated PD detection tool which is more reliable, robust and easy to use 
for users. It is tested with different datasets which make sit more generalizable and scalable. Here not only the patients will be notified 
but also alert will reach their close contacts if any discrepancy arises. The proposed model also provides high security with proper 
clinical validation. 

1.2. Motivation and contributions 

As the people affected with Parkinson’s Disease have symptoms like vocal and speech impairments it is possible to track the 
progression of this disease by analyzing the voice signals. A predictive approach comprising phases like pre-processing, feature 
retrieval, and classification for Parkinson’s Disease analysis can be employed. However, the effectiveness of the classifier depends on 
the feature extraction method used. Also, another vital issue faced in predicting PD risks through voice signals is the selection of a 
suitable classification model that can operate with semi-structured voice data. Traditional classification methods like Decision Tree 
(DT), Support Vector Machine (SVM), and Naive Bayes (NB) give reasonable outcomes but with compromised efficiency. However, 
deep learning techniques have been seen to perform significantly better in handling less structured data like audio and voice instances. 

Table 1 
Accuracy analysis of existing relevant works on Parkinson’s dataset [23].  

Machine learning Data description Accuracy 

fuzzy C- means Speech signal dataset 68.04 % 
SVM Age and voice recording 76 % 
SVM Speech signal dataset 85.29 % 
Nested SVM Speech dataset 93.5 % 
Neural network (NN) classifier Speech signal dataset 92.9 % 
PNN Voice recording dataset 92.9 % 
Bayesian Naive Classifier (BNC) Video recordings 74.31 % 
Linear discriminant analysis (LDA) Gait patterns 95 % 
Decision Tree Recorded speech signals 95 % 
Random Forest Voice dataset 90.26 % 
Multi-Layer Perceptron (MLP) Audio Input 93.22 % 
Fuzzy entropy Voice recording 84.52 % 
KNN Speech dataset 93.3 %  
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These deep neural networks use multiple input layers integrated to build feature selection and classification models. Also, with the 
constant growth of smart sensors, cloud resources, and ubiquitous computing online access from smartphones has accelerated the 
emergence of telemedicine approaches to track critical symptoms and physiological signals. Embedded sensory units with powerful 
processors in advanced smartphones make them efficient and cost-effective. With this evolution in mobile technology and deep 
learning techniques, it is technically feasible to extend monitoring of PD risks from usual medical centers oriented analysis to the 
remote home-enabled ambiance and determine its severity level in patients. 

The main contributions of the research work include the following.  

1. We present a novel deep learning-based mobile cloud-driven telemonitoring healthcare model ‘PD-DETECTOR’ to assess the 
severity level of Parkinson’s disorder at an early phase. 

Table 2 
Sensitivity analysis of existing relevant works on Parkinson’s dataset [23].  

Machine learning Data description Sensitivity 

fuzzy C- means Speech signal dataset 75.34 % 
SVM Age and voice recording 34 % 
SVM Speech signal dataset 70.12 % 
ANN PD dataset 87.5 % 
Nested SVM Speech dataset 90.53 % 
SVM Magnetic resonance imaging (MRI) 90 % 
GA-SVM classifier microarray dataset 92 %  

Table 3 
Specificity analysis of existing relevant works on Parkinson’s dataset [23].  

Machine learning Data description Specificity 

fuzzy C- means Speech signal dataset 45.83 % 
Nested SVM Speech dataset 93.83 % 
SVM Speech signal dataset 92.8 % 
SVM Magnetic resonance imaging (MRI) 85 % 
GA-SVM classifier Microarray dataset 95 %  

Table 4 
Previous works details in context to PD assessment  

Previous works Advantages Limitations 

Das et al. [5] Comparison of different classifiers was cohesively done and the 
evaluated performance was satisfactory. 

The model was restricted to few classifiers only and it was tested on 
only one dataset. 

Genain et al. [6] The model was tested upon two different data samples with multiple 
classifiers to compute the PD severity level and it resulted in an 
increase in accuracy rate. 

The model suffered from overfitting as less less records were 
considered for evaluation and it lacked any clinical validation. 

Cole et al. [8] The smart model intended to track the severity degree of PD 
symptoms by using machine learning algorithms and sensors. 
The error rate was quite less. 

The developed model was not so generalizable and scalable. Also 
clinical validation of the model was lacking. 

Nilashiet al. [10] The model used data preprocessing along with an integration of 
clustering and classification. Remote motioning of patients was 
feasible. 

A predetermined PD dataset was used and a fixed data records for 
training a cluster was used. Also the computational delay was quite 
high. 

Polat [12] The model is an offline deployed approach which uses a clustering 
method to map a linearly non separable data to a separable set 
thereby enhancing class label performance. It uses two different 
datasets. 

The model is not so robust and reliable for personalized PD diagnosis. 
Also there is no provision to send notification to close contacts. 

Indira R. et al. 
[16] 

The model is an automated PD detection method using speech or 
voice data and applying cluster analysis with pattern recognition on 
the dataset. 

The accuracy of prediction can be improved while the model’s 
scalability and reliability can be enhanced by using more advanced 
mobile healthcare technology. 

Chakraborty 
et al. [19] 

The model is capable to capture and learn inter-dependencies among 
sequential data samples. 
Also it can deal with complicated patterns in continuous data of PD 
risks. 

The model suffers from overfitting mainly when dealing with 
restricted datasets. 

Ene M. et al. 
[20] 

Objective of the study was to validate the efficiency of probabilistic 
model in PD detection and it involved varying features based 
attributes. 

The model lacks generalization of data samples and is also not secure 
and easy to use. 

Yadav, G. et al. 
[22] 

The main purpose is to develop an effective machine learning model 
using speech dataset for symptoms determination of PD disease. 

The model is not clinically validated and security of the model is 
unknown.  
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2. The model supports an interactive telemonitoring detection system designed to remotely monitor the patients’ PD risk level by 
analyzing the voice data collected through smartphones. Moreover, early-stage PD risk level is notified to patients and corre-
sponding caretakers with recommendations.  

3. A cooperative amalgam of min-max normalization and correlation coefficient feature selection-based dataset optimization is used. 
While min-max normalization standardized the voice samples, correlation coefficient feature selection eliminated less relevant 
features.  

4. The model was evaluated in a resource-constrained setting and it generated reliable outcomes. While the computed accuracy, 
sensitivity, and specificity metrics were 96.2 %, 94.15 %, and 96.15 respectively, the overall computational delay recorded in 
smartphones was only 13 s thereby delivering optimum performance. 

The rest of the paper is organized as follows. Section II discusses the problem formulation and system model. Section III presents the 
proposed PD-Detector model for Parkinson’s disease assessment. Implementation analysis and outcomes are further highlighted in 
Section IV. The work is concluded in Section V. 

2. Problem formulation and system model 

This section presents the formulation of the problem, the PD dataset used in the study, and the system model of the proposed 
Parkinson’s disease assessment framework. 

2.1. Problem formulation 

The main issue of the existing works is the lack of a robust and reliable easy to use framework for PD disease assessment. Patients 
have to rely on regular physical visits to healthcare centers for treatment. But recently technology has made significant advancements 
in the healthcare sector. Telehealth service is the latest innovation to capitalize upon. The purpose of this work is to develop and 
provide a more personalized and accurate model to facilitate reliable usage of the model by Parkinson’s patients for accurate outcomes 
based on voice data received from patients. Motivated by the existing problem, we develop a novel mobile-based deep learning model 
for Parkinson’s disease assessment using voice data of patients. The voice data samples are trained with a DNN model. Later using a 
patient’s voice, the severity level of Parkinson’s disease is detected and the outcome is communicated through the smartphone. If the 
risk is high then the report is also sent to the patient’s close people and medical experts if recommended by the patient through cloud 
storage. Apart from this, information and the latest news related to Parkinson’s disease are continuously broadcast to patients 
regularly. 

2.2. Dataset used 

The developed DNN-based predictive model takes the Parkinson’s disease dataset as input. The dataset is publicly available at the 
University of California at Irvine (UCI) repository [29]. The data consists of a wide variety of voice modulations of 31 individuals 

Table 5 
Features and UPDRS scores of the Parkinson’s telemonitoring dataset  

Feature Label Description 

MDVP:Fo(Hz) Mean vocal fundamental frequency 
MDVP:Fhi(Hz) Highest vocal fundamental frequency 
MDVP:Flo(Hz) Lowest vocal fundamental frequency 
MDVP:Jitter (%) Measures of variation in fundamental frequency 
MDVP:Jitter (Abs) 
MDVP:Jitter:RAP 
MDVP:Jitter:PPQ 
Jitter:DDP 
MDVP:Shimmer Several measures of variation in amplitude 
MDVP:Shimmer (dB) 
Shimmer:APQ3 
Shimmer:APQ5 
Shimmer:APQ11 
Shimmer:DDA 
NHR Measures of ratio of noise to tonal components in the voice 
HNR 
RPDE Nonlinear dynamical complexity measure 
D2 
DFA Signal fractal scaling exponent 
PPE Nonlinear measures of fundamental frequency variation 
Spread1 
Spread2 
Status Health status of person (low) - Parkinson’s, (high) - healthy  
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among which 23 are affected with Parkinson’s diseases denoted in Table 5. Every column denotes a specific voice variation while every 
row represents one of the 195 tone samples among those individuals. The purpose of the dataset is to distinguish between people 
affected with Parkinson’s disease from the healthy ones. 

2.3. System model 

This section discusses the proposed mobile-driven intelligent detection model for Parkinson’s risk in patients. In this research, 
authors developed and evaluated a mobile cloud-based predictive healthcare framework for Parkinson’s disease home-based moni-
toring and assessment. The model assesses users’ performance by capturing voice sample data using the smartphone, identifying key 
symptoms, and estimating symptom severity based on the captured data. Relying upon the detected outcome, alert notification and 
disease risk awareness information are communicated not only to the user but also to the user’s close people and the selected pre-
defined medical experts if the severity level is high. In this model, the system architecture consists of the deep neural network (DNN) 
based predictive approach, and the smartphone functionality is integrated into the model. The proposed DNN-based predictive 
methodology for predicting Parkinson’s disease severity is outlined in Fig. 2. The proposed framework is used in a node with Intel Core 
i5-5200U CPU @2.20 GHz and 8 GB RAM. The Python library, TensorFlow implements the Deep Neural Network. 

At first voice instances of patients affected with PD are gathered for processing. This dataset which consists of recordings from 42 
patients is collected from an open source UCI repository and it is in ASCII.csv form. The reliability of these voice samples is determined 
by applying Wiener filtering method which is a low pass filter and it reduces the mean square error between the desired filtered voice 
sample and the voice sample with noise. Further the filtered voice samples are subjected to a noise cancellation approach which uses a 
noiseless background sample and the target voice sample. It then compares the two samples where the irrelevant background noise is 
detected and removed through suitable adjustment of the filter parameters that are suited to variation in the noisy settings. 

The aggregated noise free data is initially normalized and thus organized into columns and tables thereby resembling a relational 
database to decrease the redundancy and enhance integrity of data to make it more consistent. Min-max normalization is used to 
normalize it within the 0–1 domain range as depicted in equation (1). 

Norm(d)=
d − min(d)

max(d) − min(d)
(1)  

Where d denotes the value of the attribute while min(d) and max(d) represent the minimum and maximum values of that attribute 
respectively. 

The normalized dataset is subjected to feature selection using the correlation coefficient method. It primarily determines the 
features which exhibit a high association with the class label. Let us assume that every feature constitutes a value set {p1, p2, … …, pk} 

Fig. 2. Process flow of the hybrid DNN model.  
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for instances 1 through k at vector P while the respective labels may be denoted as {q1, q2, … …,qk} saved at vector Q. Thus here the 
correlation coefficient (CoefPQ) for every feature may be determined as shown in equation (2). 

CoefPQ =

∑k

i=1
(pi − pʹ)(qi − qʹ)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑k

i=1
(pi − pʹ)2

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑k

i=1
(qi − qʹ)2

√ (2) 

Equation (2) generates a value in the range [− 1,+1] where +1 gives the highest correlation, 0 gives zero correlation and − 1 gives 
the minimum correlation with the class label. Student’s t-distribution statistics is used to compute p-values for mapping of correlations. 
Features with p-values less than 0.05 in the correlation coefficient vector are chosen. 

After the feature selection process, training of the model happens with Deep neural networks (DNNs). It uncovers complex patterns 
in the voice PD data samples using a back-propagation procedure by applying the error function, which is the net difference between 
actual output and predefined output value expected to update the internal weight values. During the training phase, the labeled voice 
data is the input to the model and it possesses two parts. While the first part contains information regarding all attributes of the PD data 
domain, the second part possesses information regarding association to a specific target. Post training phase, the loss function is 
determined and it computes the error between the model’s outcome and the predefined target expected. DNN has many adjustable 
weights with labeled samples used for training, and these weights are adjusted to enhance the model’s efficiency. The gradient vector is 
calculated for better adjustment of the weight vector. Adam is the optimization method used to update the network weights in the 
training phase. This method utilizes first and second gradients for computing individual dynamic learning rates for various network 
weight values. 

Another method called regularization is applied to decrease the generalization error to enhance the performance of the model using 
testing voice data by penalizing the weight vectors of nodes. This technique restricts the model’s functionality by adding a metric 
penalty with the loss function. The L2 metric penalty called weight decay is widely used for this purpose. This L2 regularization re-

trieves the weight near to origin by adding a term ϕ(θ) = ‖w‖
2

2 with the loss function. This term concerning L2 is denoted in equation (3). 

Cost function= loss +
β

2m
∗
∑

‖w‖
2 (3)  

Where β represents a regularization parameter whose value is to be optimized for optimal performance. 
In this work, we employ a deep learning model that consists of five hidden layers where the first three layers contain 64 neurons, 

and the last two layers contain 32 neurons as depicted in Fig. 3. To normalize the input data at each layer batch-normalization is used. 
Batch normalization also helps to coordinate the updation of weights in each layer by diminishing the internal covariance shift 
problem that takes place due to back-propagation. The details of the deep learning model are illustrated in Fig. 3. Due to the presence 
of multiple hidden layers, deep learning models are prone to overfitting. In overfitting, the training error decreases but the test error 
does not decrease. To avoid overfitting the deep learning model, we have added dropout layers with every hidden layer. The role of a 
dropout layer is to randomly ignore or drop the output of some neurons in that layer. This helps to regularize the data and thereby, 
mitigating the problem of overfitting. It has been observed that without the dropout layers, the accuracy of the same deep learning 
model drops by 3–4%. 

In the case of Total-UPDRS, the range of score lies in between [5.0377, 54.992] while for Motor-UPDRS, the range is specified in the 
domain [5.0377,39.511]. Here the training and testing samples are created by partitioning the normalized data in the ratio of 80:20. 
Also, the training and testing set is built separately for both Total-UPDRS and Motor-UPDRS scores, thereby retaining these values as 
output in their respective directory. ‘High’ and ‘Low’ represent the output class labels. The predefined domain values for the metric are 
highlighted in Table 6. 

Thus the model develops an input pipeline and iterates over the input voice samples providing random shuffling over the samples to 

Fig. 3. Proposed DNN model.  
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create randomness. The DNN model after being successfully trained performs evaluation as well as prediction of new voice samples 
into its corresponding risk label. The parameter tuning values are represented in Table 7. 

The evaluation of the developed DNN-based prediction model is performed using statistical error rates like mean absolute error 
(MAE) and root mean square error (RMSE). From these values, the coefficient of determination (R2) is computed. The corresponding 
evaluation metrics are represented by equation (4) to equation (6). 

MAE=
1
k
∑k

i=1

⃒
⃒qʹ́

i − qi
⃒
⃒ (4)  

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑k

i=1
(qʹ́

i − qi)
2

k

√
√
√
√
√

(5)  

R2 =1 −

∑
(qi − qʹ́

i)
2

∑
(qi − qʹ

i)
2 (6)  

where qi, q’i, and q’i are respectively the actual value, predicted value by the method, average of [q1, q2, …, qk], and n denotes the 
entire number of samples. 

3. Proposed PD-Detector model for Parkinson’s disease assessment 

This section highlights the proposed smartphone-based PD-Detector model. The developed model presents a mobile application of a 
deep neural network-driven predictive model for Parkinson’s disease risk assessment. Embedding a predictive learning model onto a 
smart phone application needs robust mapping to a mobile enabled template. In this study, TensorFlow Lite which is a version of 
TensorFlow framework is used to execute the DNN model on the mobile app. It facilitates several modules and interfaces required to 
compile and execute any machine learning model on smart phone. Training the DNN based predictive model in a smart phone 
application is an uphill task since it needs extensive computational resources which these smart phones are unable to facilitate. Also, 
the predictive analytics based libraries rarely have in-built APIs to access the framework embedded on mobile device storage. Thus, a 
client server model is deployed here such that the DNN model is trained and located at cloud server end. The mobile application ‘PD- 
Detector’ is the client here and its requests which are the input to the model are accepted by server. The outcome is predicted by the 
model and is communicated to the mobile app as its response. The mobile end acts as an interface to accept input parameters and to 
display outcome. The processing tasks are performed by the cloud server. The mobile app communicates with server through XML 
template. 

Here, the mobile device is connected to the cloud server using mobile cloud technology which operates by redirecting between data 
on smart phone and that on the cloud. It permits an user to execute the ‘PD-Detector’ app on his smart phone by sending requests on 
smart phone to cloud over world wide web. The smart phone should have compatibility with the cloud to be accessible and the cloud’s 
mobile application is to be installed on the user’s phone. By opening the app and uploading relevant details to user’s private cloud 
interface, the cloud interface can be enabled to access for remote processing. 

The designed intelligent DNN-based predictive model for Parkinson’s disorder detection among elderly citizens integrates into a 
reliable and secured mobile healthcare prototype, as illustrated in Fig. 4. 

The user is well equipped with a working smartphone is a minimum prerequisite. The model exclusively takes into account the 
voice samples of users as the dataset. The voice sample of the elderly user can be captured on his smartphone at the desired time. The 

Table 6 
Severity Class range  

Severity Level Total-UPDRS Motor-UPDRS 

High Above 25 0–25 
Low Above 20 0–20  

Table 7 
Setting and tuning of parameters  

Parameters Values 

Optimizer Adam 
Learning Rate 0.002 
Activation function ReLu 
Loss function Mean Absolute Error (MAE) 
Dense hidden layers with neurons in each layer 6 with 64, 64, 64, 32, 32, and 1 
Regularization method with value at each layer Dropout layer 
Batch size 10 
Epochs 200  
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newly recorded test voice data is transmitted to the centralized cloud data repository for storage and processing. The model constitutes 
a cloud database that stores numerous voice data instances with the labeled severity level, which together act as the training dataset. 
The DNN-driven analytics unit is trained to utilize this dataset. Also, the data records of a specific user are made available in the cloud 
over a predefined period of 3 years which can be later used for analysis as well as generation of his health report concerning Par-
kinson’s symptoms. The test voice sample is carried by the data control handler to the DNN-driven data analytics unit. The handler is 
an application program routine that forms a user-defined interface between the cloud database and the analytics unit. The voice data is 
validated in the analytics unit which determines whether the user is affected with Parkinson’s risks or not. The predicted outcome is 
communicated to the user and he gets an alert message on his smartphone. Thus the cloud application is responsible for processing the 
received voice sample through a pipeline thereby estimating the severity level of PD risk and this result is communicated to the user’s 
smartphone. Also if the predicted risk level is severe then his family members or his close people as well as consulting doctors are 
instantly notified. Whenever any testing of a new voice sample takes place, the ‘Awareness and Reminder Unit’ is auto-activated. This 
unit provides various information related to PD risks and the concerned user is notified about every aspect of Parkinson’s disease like 
symptoms, causes, precautions, recent PD-related news and events, dos & and don’ts along with clinical remedies available. This helps 
in alerting the elderly user regarding the disease risks so that accordingly his health diet and lifestyle can be taken care of at the right 
time. Apart from this, all information and analytical outcomes are stored in the cloud repository that may be used to track disease test 
history. If any serious ambiguity or deviation from the normal pattern is detected in the generated report then a text alert notification 
will reach the chosen medical expert of the user. The privacy of user’s data is ensured at the mobile app phase as well as at the data 
communication level. The user is required to log in to the mobile app on his smartphone to carry out the risk detection test and scan test 
history. Application level information is available only on the concerned user’s mobile space and this data is dropped from the local 
device once it is sent to the cloud. The mobile app is not configured to retain and show any user-related identity details. 

The important functionalities provided by the developed m-healthcare predictive model for Parkinson’s risk detection are discussed 
here. The mobile app is made up of different operational interfaces. ‘User Log-In’ as shown in Fig. 5(a) is the first interface where 
registered users need to log in to the app using their ID and password. Then only they can evaluate themselves using PD tests. First-time 
users must register once to utilize its service. 

After the user has successfully logged on to the app, he is directed to the ‘Test and Upload’ interface which provides different vital 
features as depicted in Fig. 5(b). Users can take note of their last visit-related information. Also, he can view all the previous test details 
and its outcome. Also, a separate link is provided to generate the previous reports if needed. At the bottom, a new voice sample can be 
uploaded using the upload button link. Upon successful uploading, a message “Upload Success” will appear on his smartphone, as 

Fig. 4. Proposed m-healthcare model for intelligent Parkinson’s disease assessment.  
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shown in Fig. 5(c). Then in a quick time, the result will be generated as an alert box notification, as illustrated in Fig. 5(d). The DNN- 
driven analytics unit is responsible for processing and evaluating the prediction outcome. This will notify the user regarding the level of 
severity of PD risk detected for both Motor-UPDRS and Total-UPDRS. This is followed by a short message service (SMS). If the severity 
level is “High” then phone notification alert will be delivered to both family members and consulting medical experts. But if the 
detected risk is “Low” then only family members get the SMS alert. Also, whenever the predicted result is generated simultaneously, 
the ‘Awareness and Reminder Unit’ interface is enabled which is presented in Fig. 5(e). This unit is a kind of informative module that 
makes the user aware of various symptoms, therapies available, and the latest innovations and news related to PD worldwide. The last 
interface shown in Fig. 5(f) called ‘Report Generator’ acts as a health report retrieval unit. Here the user can select the desired year and 
month to download the corresponding PD risk reports for further analysis. 

Fig. 5. (a)Fig. 5(b) Fig. 5(c) Fig. 5(d)Fig. 5(e) Fig. 5(f).  
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The sound quality from smart phone may get affected by some hardware and software elements like the phone speaker, the 
amplifier and the equalizers and tuning of audio output. The proposed model has taken addition steps to address the concern. A simple 
rule recommended during voice recording using a smart phone is to place the phone’s speaker around 8–12 inches distance from 
mouth at a downward angle of 45◦ in airplane mode. The recording is supposed to be taken in a closed environment away from any 
external vibrations. Further, the noisereduce algorithm of python library is used to restrict noise from the voice recordings of user. It 
computes the signal’s spectrogram and forecast a noise limit of every frequency corresponding to that signal. This limit value de-
termines a mask that restricts noise less than the frequency changing limit. Also, the sampling frequency of the recorded voice samples 
are adjusted to 48000 samples per second and then through PyAudioAnalysis library, the voice data can be analyzed where audio 
quality can be enhanced by equalization and compression functionalities. 

4. Experimental analysis 

In the developed m-healthcare model for Parkinson’s risk detection, the DNN model is trained using the telemonitoring voice data 
samples. Then it is ready to predict a new test voice data which can be visualized in the smartphone of the user. Eventually, the 
predictive model analyzes the prediction performance of the disease risks by predicting Motor and total UPDRS scores. The perfor-
mance of the proposed DNN model is validated by experimenting multiple times to give optimal outcomes. 

The impact of changing batch size is demonstrated in Table 8 and it is noted that with batch size 10, the model showed the highest 
efficiency in both the Motor and Total-UPDRS. For batch size 16, the R2 value for Motor and Total-UPDRS is 0.9721 and 0.9632, 
respectively. The r-squared (R2) metric for Motor and Total-UPDRS is quite good when the batch size is 16 or 20 but the best result is 
recorded with batch size 10. Also, any subsequent increase in batch size does not improve the model’s performance. 

Table 9 highlights the impact of altering the dense layers count as well as the dense layers neurons keeping the batch size 10. As per 
the observation, with an increase in neurons in dense layers 2 from (1, 20) to (160, 1), R2 also increases. Also when the dense layers rise 
to 3 with a neuron configuration variation of (64, 32, 1) to (320, 160, 1), the R2 metric for Motor-UPDRS increases from 0.9547 to 
0.9762. At the same time, for Total-UPDRS, it decreases from 0.9652 to 0.9456. But when dense layers are incremented to 4 and neuron 
count is also increased in the configuration (128, 64, 32, 1), the R2 value performs best with 0.9741 and 0.9722 respectively for the 
Motor and Total-UPDRS. Further, with dense layers 5, evaluation of (80, 40, 20, 10, 1) configuration proved to be better as compared 
to other 4 dense layers structures. This verifies that this configuration is optimal. 

The classification accuracy of different computational techniques as outlined in Table 1 was validated and the result is highlighted 
in Fig. 6. A relatively low accuracy was tested with the fuzzy C-Means model, while the developed DNN model showed the highest 
accuracy rate of 96.2 % on the voice dataset. Other models that generated good accuracy outcomes include multilayer perceptron 
(MLP) with 95 %, linear discriminant analysis (LDA) with 95 %, Nested SVM (93.5 %), and KNN (93.3 %). 

The sensitivity analysis was undertaken with some comparative methods, as discussed in Table 2. The outcome of the comparison is 
shown in Fig. 7. An optimum sensitivity score of 94.15 % was recorded with the DNN model, which is much better than other models 
taken into consideration. Classification with the SVM model also provided a relatively high value while fuzzy C-Means got the least 
sensitivity value. 

Similarly, a comparative analysis of different existing computational models concerning specificity metrics was undertaken. The 
methods for comparison are outlined in Table 3. The outcome of the comparison is shown in Fig. 8. While an optimum specificity score 
of 96.1 % was noted with the DNN model, the lowest value of 45.83 % was recorded with fuzzy C-Means. 

Figs. 9 and 10 shows the model’s convergence for the Motor and Total-UPDRS. It is observed from the result that in the training 
phase of Motor-UPDRS, the model converges around 350 epochs. Also, the smooth convergence of the loss in the validation phase with 
the training phase indicates that the model has been tuned properly. In the case of Total-UPDRS, the model converges around 200 
epochs, as shown in Fig. 10. 

The execution time latency analysis was carried out considering different comparative models. Latency analysis provided a fair idea 
of the response time of the model’s performance. It was observed that the response period of the DNN model was only 27 s as compared 
to other computational methods. Among other methods used, classification models involving SVM were found to be quite slow in 
detecting Parkinson’s risks. The overall outcome is shown in Fig. 11. 

The model is tested against different PD datasets to determine its generalization and diverse utilization of its efficiency. Five distinct 

Table 8 
Effect of varying batch size on Error rates  

Batch size Measure MAE RMSE R2 

4 Motor-UPDRS 0.032 0.0543 0.9594 
Total-UPDRS 0.046 0.0603 0.9429 

8 Motor-UPDRS 0.0284 0.0394 0.9623 
Total-UPDRS 0.0305 0.0431 0.9491 

10 Motor-UPDRS 0.0248 0.0362 0.9884 
Total-UPDRS 0.0291 0.0407 0.9845 

16 Motor-UPDRS 0.0279 0.0412 0.9721 
Total-UPDRS 0.0316 0.0466 0.9632 

20 Motor-UPDRS 0.0265 0.0415 0.9744 
Total-UPDRS 0.0307 0.0464 0.9635  
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datasets used in previous papers are applied here and its outcome is summarized in Table 10. As observed form the analysis, the model 
performed extremely well with almost all datasets delivering an optimum result. 96.2 %, 94.15 %, 96.15 % and 95.2 % are the 
computed mean accuracy, precision, recall and f-score respectively. 

The model is further evaluated in clinical settings with consultation with medical experts to determine its utility. A free medical 
awareness camp for Parkinson disease assessment was set up for 10 continuous days to make people alert of the disease and free check 
up of PD patients was held. In the camp, our model was also introduced to patients and got validated too. Many patients especially 
elderly citizens voluntarily came forward in the process to get a check up. Around 12 medical experts conducted the diagnosis of the 
patients. A comparison study was made between patients correctly diagnosed by medical experts and that by the PD-DETECTOR 
model. It was observed that the outcome of diagnosis was almost identical with both procedures. 79 patients were correctly detec-
ted with PD risks by experts while the model accurately detected 71 patients as PD patients. In fact in few days like day 5 and 7, the 
model outperformed experts in correctly detecting the disease. The overall results is outlined in Fig. 12. 

In another analysis a shown in Table 11, an opinion of the available 12 medical experts were taken into consideration regarding the 
model’s usage after the completion of the medical camp. Based upon the experience they had with the model’s applicability, 7 metrics 

Table 9 
R2 performance for a varying number of neurons in dense layers with a batch size of 10  

Number of Dense Layers Number of neurons in dense layers Measure R2 

2 20, 1 Motor-UPDRS 
Total-UPDRS 

0.9098 
0.9311 

80, 1 Motor-UPDRS 
Total-UPDRS 

0.9392 
0.9488 

160, 1 Motor-UPDRS 
Total-UPDRS 

0.9433 
0.9567 

3 64, 32, 1 Motor-UPDRS 
Total-UPDRS 

0.9547 
0.9652 

160, 80, 1 Motor-UPDRS 
Total-UPDRS 

0.9648 
0.9568 

320, 160, 1 Motor-UPDRS 
Total-UPDRS 

0.9762 
0.9456 

4 32, 16, 8, 1 Motor-UPDRS 
Total-UPDRS 

0.9417 
0.9546 

64, 32, 16, 1 Motor-UPDRS 
Total-UPDRS 

0.9694 
0.9685 

128, 64, 32, 1 Motor-UPDRS 
Total-UPDRS 

0.9741 
0.9722 

5 40, 20, 10, 6, 1 Motor-UPDRS 
Total-UPDRS 

0.9698 
0.9675 

80, 40, 20, 10, 1 Motor-UPDRS 
Total-UPDRS 

0.9751 
0.9712 

120, 60, 30, 16, 1 Motor-UPDRS 
Total-UPDRS 

0.9705 
0.9697  

Fig. 6. Accuracy analysis of the DNN-based classification model with other existing models.  
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like reliability, preciseness and others were there for evaluation with three class labels (high, moderate and low). The results were 
promising. The mean metrics score obtained for high, moderate and low were 6.5, 3.5 and 1.8 respectively. Metrics like reliability and 
navigation achieved the maximum score of 8 while a very less experts gave ‘low’ scores to the metrics under evaluation. 

Thus the benefits of the model from the clinical usability perspective is immense. The model can be an useful tool for early detection 
of PD symptoms in patients. It can enable personalized remote diagnosis during emergencies without visiting clinical centers regularly. 
Also it can have a good check on the misdiagnosis rate of the disease. Hence, overall the model can assist the medical experts in their 
treatment providing a more fast, reliable and cost effective diagnosis. 

5. Conclusion 

Parkinson’s disease (PD) is a global health issue for elderly citizens on a huge scale. Different computationally intelligent models 

Fig. 7. Sensitivity analysis of the DNN-based classification model with other existing models.  

Fig. 8. Specificity analysis of the DNN-based classification model with other existing models.  

Fig. 9. Convergence analysis of DNN model for the Motor-UPDRS data.  
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Fig. 10. Convergence analysis of the DNN model for the Total-UPDRS data.  

Fig. 11. Response time latency analysis of the DNN model with others.  

Table 10 
PD-DETECTOR performance analysis with different PD datasets   

Accuracy Precision Recall F-Score 

Frid et al. [30] 95.7 % 94.1 % 95.2 % 94.6 % 
Rasheed et al. [31] 95.9 % 94.6 % 95.3 % 94.9 % 
Gunduz et al. [32] 94.4 % 92.9 % 93.7 % 93.2 % 
Karabayir et al. [33] 96.8 % 95.5 % 96.2 % 95.9 % 
Zhang et al. [34] 96.1 % 94.7 % 95.6 % 95.2 % 
PD-DETECTOR 96.2 % 94.15 % 96.15 % 95.5 % 
Mean 95.85 % 94.32 % 95.35 % 94.88 %  

Fig. 12. Comparison of accurate diagnosis of PD patients by experts and PD-DETECTOR.  
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can be applied for the effective distinction between normal and Parkinson-affected patients. With advances in mobile ubiquitous 
technologies, smartphone-based frameworks can also be designed for the effective determination of Parkinson’s health risks. The 
research work undertaken in this study deploys a m-healthcare-driven predictive model for assessing Parkinson’s disease risks in 
elderly citizens. In this research work, the authors presented a DNN-driven predictive model to detect the degree of severity of PD. The 
developed DNN approach generated an optimum accuracy of 96.2 % as compared to other existing techniques. Similarly, the sensi-
tivity and specificity scores of 94.15 % and 96.15 respectively were generated after implementing the model. The overall convergence 
of the proposed model was also quite smooth in the context of epoch count. When the model was integrated into a smartphone, the 
response time of the model upon testing a new voice sample was also determined to be just 13 s. Also, it was determined that the 
classification for motor UPDRS score was better when compared with the classification for total UPDRS score. Thus, it may be inferred 
that this is a better parameter for assessing the level of severity. Therefore, the proposed DNN-based predictive method using m- 
healthcare can be robust and scalable and very reliable and precise in predicting the UPDRS score for Parkinson’s risk assessment. 
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