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Abstract 

Background:  Patients who exceed their expected length of stay in the hospital come at a cost to stakeholders in 
the healthcare sector as bed spaces are limited for new patients, nosocomial infections increase and the outcome for 
many patients is hampered due to multimorbidity after hospitalization.

Objectives:  This paper develops a technique for predicting Extended Length of Hospital Stay (ELOHS) at preadmis-
sion and their risk factors using hospital data.

Methods:  A total of 91,468 records of patient’s hospital information from a private acute teaching hospital were used 
for developing a machine learning algorithm relaying on Recursive Feature Elimination with Cross-Validation and 
Extra Tree Classifier (RFECV-ETC). The study implemented Synthetic Minority Oversampling Technique (SMOTE) and 
tenfold cross-validation to determine the optimal features for predicting ELOHS while relying on multivariate Logistic 
Regression (LR) for computing the risk factors and the Relative Risk (RR) of ELOHS at a 95% confidence level.

Results:  An estimated 11.54% of the patients have ELOHS, which increases with patient age as patients < 18 years, 
18–40 years, 40–65 years and ≥ 65 years, respectively, have 2.57%, 4.33%, 8.1%, and 15.18% ELOHS rates. The RFECV-
ETC algorithm predicted preadmission ELOHS to an accuracy of 89.3%. Age is a predominant risk factors of ELOHS 
with patients who are > 90 years—PAG (> 90) {RR: 1.85 (1.34–2.56), P:  < 0.001} having 6.23% and 23.3%, respectively, 
higher likelihood of ELOHS than patient 80–90 years old—PAG (80–90) {RR: 1.74 (1.34–2.38), P:  < 0.001} and those 
70–80 years old—PAG (70–80) {RR: 1.5 (1.1–2.05), P: 0.011}. Those from admission category—ADC (US1) {RR: 3.64 (3.09–
4.28, P:  < 0.001} are 14.8% and 70.5%, respectively, more prone to ELOHS compared to ADC (UC1) {RR: 3.17 (2.82–3.55), 
P:  < 0.001} and ADC (EMG) {RR: 2.11 (1.93–2.31), P:  < 0.001}. Patients from SES (low) {RR: 1.45 (1.24–1.71), P:  < 0.001)} are 
13.3% and 45% more susceptible to those from SES (middle) and SES (high). Admission type (ADT) such as AS2, M2, 
NEWS, S2 and others {RR: 1.37–2.77 (1.25–6.19), P:  < 0.001} also have a high likelihood of contributing to ELOHS while 
the distance to hospital (DTH) {RR: 0.64–0.75 (0.56–0.82), P:  < 0.001}, Charlson Score (CCI) {RR: 0.31–0.68 (0.22–0.99), 
P:  < 0.001–0.043} and some VMO specialties {RR: 0.08–0.69 (0.03–0.98), P:  < 0.001–0.035} have limited influence on 
ELOHS.

Conclusions:  Relying on the preadmission assessment of ELOHS helps identify those patients who are susceptible to 
exceeding their expected length of stay on admission, thus, making it possible to improve patients’ management and 
outcomes.
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Introduction
When a patient stays more than three times the aver-
age length of stay (LOS) for a given Diagnosis Related 
Group (DRG), the patients will be said to have an 
Extended Length of Hospital Stay (ELOHS). Thus, 
making it imperative that patients are managed effec-
tively in the hospitals to prevent them from exceeding 
their expected length of stay since that will introduce 
more financial burdens on the hospitals, health insur-
ance, and the government [6, 23, 24] as well as causes 
more health complications for patients due to nosoco-
mial infections [22]. There is a widespread variation in 
patients length of stay (LOS) in many public hospitals 
due to some inefficiencies associated with understand-
ing and managing patients effectively from admission to 
discharge. This has resulted in significant cost blowout 
due to lack of hospital bed spaces that resulted in the 
loss of $125 M per annum to service patients overstay-
ing on admission in the State of Victoria Australia [25]. 
This information makes it imperative that hospitals 
seek ways of reducing ELOHS through better knowl-
edge of patients’ clinical and psychosocial features that 
may lead to the identification of high-risk patients and 
make it easier to provide appropriate care.

There are numerous studies on ELOHS, and their asso-
ciated risk factors. Burton et  al. [21] predicted ELOHS 
for patients of percutaneous coronary intervention using 
multivariate Logistic Regression (LR) by taking Nor-
mal Length of Hospital Stay (NLOHS) as patients stay-
ing < 5  days and those staying ≥ 5  days as ELOHS and 
obtained a prediction accuracy (AUC) of 79.9–81.9%. 
Staziak et  al. [16] obtained an accuracy of 80—81% for 
ELOHS prediction of torso trauma patients using clini-
cal and image data with Support Vector Machine (SVM) 
and Artificial Neural Network (ANN) algorithms. Zhang 
et  al. [20] predicted the prospects of ELOHS for adult 
spinal deformity patients undergoing posterior spinal 
fusion surgery to an accuracy of 68–83% using LR, Deci-
sion Tree classifier (DTC), Random Forest (RF), XGBoost 
(XGB), and Gradient Boosting Machine (GBM) by con-
sidering ELOHS as those spending > 9 days in the hospi-
tal. Zolbanin et al. [26] predicted the length of stay (LOS) 
for patients suffering from chronic obstructive pulmo-
nary disease (COPD) and pneumonia with a deep neural 

network algorithm and obtained an accuracy of 86–91% 
for COPD and 74–85% for pneumonia.

Numerous studies on ELOHS have described ELOHS 
as a specific number of days in the hospital that corre-
sponds to the 75th percentile of the studied cohorts [9, 
16, 21] while others chose a particular number of days 
in the hospital as the limit for NLOHS for a combina-
tion of DRGs [30, 31, 35]. Unfortunately, the variability 
in the severity of health conditions with various DRGs 
makes it imperative to consider ELOHS as a DRG-
specific definition requiring specific durations. This 
approach is used in this study to define ELOHS for the 
various DRGs considered.

Even though better management of patients can be 
crafted from numerous conditions that include the DRG, 
patients’ demographic and clinical information, and sev-
eral psychosocial conditions [6–9], patients’ susceptibil-
ity to ELOHS must be known preadmission if they are 
to be better managed. This will allow the hospitals to 
develop requisite patients’ management plans ab  initio 
and forestall using ineffective strategies that may lead to 
ELOHS. Unfortunately, numerous ELOHS and risk fac-
tors prediction models did not consider hospital-specific 
factors and were not designed for preadmission. To this 
end, this study aims to utilize hospital-specific clinical 
and demographic features and documented psychosocial 
attributes of the patients to develop a machine learning 
technique for the ready prediction of ELOHS. The risk 
factors for ELOHS were determined based on the con-
sidered features to facilitate better patient management. 
The study relied on Recursive Feature Elimination with 
Cross-Validation and Extra Tree Classifier (RFECV-ETC) 
to predict ELOHS while using multivariate LR for esti-
mating the risk factors and relative risk (RR) of ELOHS at 
a 95% significant level.

The fact that ELOHS is linked to numerous unpleas-
ant outcomes in hospitalization such as decreased sur-
vival rate, increased time in the intensive care unit 
(ICU), increased number of hospital visits, preadmission 
comorbidities, infections, and complications [6, 8, 9, 33, 
34] makes it imperative to understand patients’ ELOHS 
susceptibility preadmission. To this end, the strategy 
developed in this study will go a long way to promote 
improved patients experience seeing that the chances 
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of developing and implementing contingency plans for 
patients’ care to forestall prolonged hospital stay will be 
executed at admission. The contribution of this study can 
be summarized as:

–	 Design and development of a predictive technique 
for understanding patients’ susceptibility to ELOHS 
preadmission, which allows for the implementa-
tion of best practices in patient care to forestall 
extended hospital stay.

–	 Using a definitive description of ELOHS to iden-
tify patients on admission who may be at risk of 
extended stay rather than adopting a specific LOS 
as the boundary between ELOHS and normal LOS 
as exemplified by numerous researchers [9, 16, 20, 
35].

–	 The use of Recursive Feature Elimination with Cross-
Validation and Extra Tree Classifier (RFECV-ETC), 
to help determine the optimal features that will con-
tribute to ELOHS prediction without overfitting the 
model.

–	 Provision of risk factors and relative risk categorizes 
of the hospital and patient’s demographic and psy-
chosocial characteristics enables reflective practice 
on patients’ management that will be vital for reduc-
ing hospital-acquired complications and infections.

–	 This study provides a better outlook for ELOHS by 
developing a strategy for understanding the prone-
ness of all patients suffering from different DRGs to 
ELOHS on admission.

Methodology
The ELOHS used in this study is defined as 3* average 
length of stay (ALOS) for a given DRG following the 
Independent Hospital Pricing Authority (IHPA) standard 
national pricing model [39]. This specification is based 
on the resource use, diagnosis, and procedure coding for 
different DRGs and follows the “L3H3” trimming method 
and modifications that account for different adjustments 
according to episode severity. The advantage of defin-
ing the ELOHS with the “L3H3” is the ability to clearly 
describe a billing framework that equitably accounts for 
DRGs across hospitals nationally, thus, creating room for 
clinical cost normalization across the hospitals. Impera-
tively, patients, hospitals, and insurance companies are 
treated equitably when it comes to the cost of managing 
patients treated for different episodes.

This study develops a machine learning model for pre-
dicting patients prone to ELOHS preadmission using 
hospital, demographic, and psychosocial features. To 
ensure proper reporting that follows the prescribed 
benchmarks for modelling projects in medical informat-
ics, the technique developed by Cabitza and Campag-
ner [38] was adopted for self-assessment of the work. 
The breakdown of the procedure used for acquiring and 
pre-processing the data used for the study, the modelling 
strategy, and the statistical analysis approach for deter-
mining the risk factors of ELOHS are shown in the fol-
lowing sub-sections.

Data acquisition
De-identified patients’ records were obtained for sepa-
rations between 10/2015 and 12/2020 from a private 
acute teaching hospital in Australia. Data were sourced 
from the Hospital Casemix Protocol (HCP) data extract 
routinely supplied to regulators from the patient 
administration data set. Initially, 91,468 samples com-
prising 73 features were extracted from the data set 
before the pre-processing that eliminates the features 
that have no relevance to the preadmission assessment 
of patients’ ELOHS. This process helped narrow down 
the features to the following hospital-specific param-
eters—visiting medical officer (VMO) specialty, patient 
age, patient gender, admission category (ADC), admis-
sion type, patient care class, Charlson Score, socioeco-
nomic status (SES), and distance to hospital (DTH).

Data processing
Patient records with missing values were dropped from 
the dataset to minimize the impact of replacing miss-
ing values on the model accuracy. The features were 
also categorized into subclasses while the postcodes are 
used for computing the SES and DTH. The Socio-Eco-
nomic Indexes for Areas (SEIFA) from the Australian 
Bureau of Statistics (ABS) [28] are used for classifying 
the patients as low (1–4 decile), middle (5–7 decile), 
and high (8–10 decile) SES. The longitude and latitude 
of the hospital and the patient’s postcode provided the 
information for calculating DTH using the great circle 
distance model of the earth [29] for the Global Position-
ing System (GPS) location. To reduce the influence of 
outliers and extreme values in the model, VMO special-
ties with less than 100 samples were merged as a new 
VMO specialty class called VMO-others. The same pro-
cess was used for admission types and patients religion 
by combining the classes with less than 100 samples to 
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create new classes of the features. For Charlson Score, 
those with a score of 8 and above were merged to cre-
ate a unique subclass (> 8). However, for admission 
category, the classes with less than 200 samples were 
merged to produce a new class. Since all independent 
features are categorical parameters, the various sam-
ples are represented as “1” for a given feature when the 
sample is affirmative for such feature subclass of “0” if 
the condition is negative. For instance, for the Patient 
Age subclass > 90 years, a sample row with a patient of 
age 45 years will have “0” while the row with patient age 
of 91 years will have “1”. The 10 features and their cor-
responding number of subclasses that are used in this 
study to model ELOHS are shown in Table 1.

Prediction of preadmission ELOHS 
To predict the ELOHS of patients’ preadmission 
involves determining the likelihood of a patient exceed-
ing their expected stay by considering the hospital-
specific and psychosocial features itemized in Table  1. 
This is done by training and testing a machine learning 
model using the pre-processed data. The first step is to 
balance the data using the Synthetic Minority Over-
sampling Technique (SMOTE) [27] that ensures that 
the target feature (ELOHS) is of the same size amongst 
those with extended stay (‘1’) and those whose stay was 
within expected limits (‘0’). SMOTE has the potentials 
of reducing the class imbalance problems that include 

poor true positive and negative rates estimation, and 
model underfitting because of the poor learning perfor-
mance of algorithms [1, 2]. As soon as the imbalance 
problem is solved, the next step is to determine the best 
model to use in the modelling of ELOHS by consider-
ing all the features shown in Table  1. Please note that 
the 99 sub-features of all the features are considered at 
this stage. Some of the prominent algorithms used for 
solving health informatics problems relating to ELOHS 
and LOS are tried on the dataset by implementing ten-
fold cross-validation. Implementing cross-validation 
ensures that all the sections of the dataset are used for 
training and testing the model. This practice makes it 
possible to have a better picture of the model’s perfor-
mance because the accuracies of all the fields consid-
ered in the training and testing exercise are considered 
in computing the accuracy of the model. The best 
performing algorithm is determined by comparing 
the accuracy measured as sensitivity, specificity, and 
F1-score. The best algorithm is later used as the base 
estimator Recursive Feature Elimination with Cross-
Validation (RFECV) in a stepwise fashion that con-
sidered different combinations of the features shown 
in Table  1. The algorithms tried at this stage include 
Extra tree Classifier (ETC), XGBoost (XGB), Adap-
tive Booster (ADB), GBM, ANN, RF, Support Vector 
Machine (SVM), and DTC. Since the best algorithm for 
predicting the accuracy of ELOHS amongst the tried 
algorithms is ETC, this study relied on ETC as the base 
estimators for the RFECV. The next section shows the 
strategy for obtaining the optimal features for ELOHS 
prediction using the RFECV-ETC model.

Optimal features selection (OFS) with RFECV‑ETC
The RFECV is a backward elimination method that 
starts with a full set of all features and then removes the 
most irrelevant features one by one based on the vali-
dation scores [3]. This process aims to get the optimal 
number of features that will result in the best model 
accuracy by eliminating the features that have not influ-
enced the accuracy. The procedure for using RFECV-
ETC for predicting the best features combinations and 
the sub-features to obtain optimal accuracy of ELOHS 
is shown in Algorithm 1.

Table 1  Modelling features and their number of classes after 
pre-processing

Features Acronym Number 
of 
classes

VMO specialty VMO 33

Patient age PAG 9

Patient gender PGD 2

Admission category ADC 6

Admission type ADT 15

Patient care class PCC 3

Patient religion PRG 15

Distance to hospital DTH 4

Socioeconomic status SES 3

Charlson Score CCI 9
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Risk factors estimation
The ELOHS risk factors are identified as a way of allowing 
the doctors and other health experts to know the high-risk 
patients who need specific attention because of their like-
lihood of extended stay on admission. Multivariate LR is 
used for computing the relative risk (RR) of ELOHS at a 
95% confidence level with features having P-value ≤ 0.05 

considered as significant risk factors. The appropriateness 
of the multivariate LR is assessed using accuracy computa-
tion that considered the true-positive, false-positive, true-
negative, and false-negative predictions of the model for all 
the data, training data (70%), and testing data (30%). The 
computation of the risk factors and RR is based on the 10 
features considered in the study.
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Results
Descriptive statistics of features
A total of 33,752 records are used from the initial 91,468 
records after the pre-processing. There are 11.54% of 
ELOHS patients, which increased with the age of the 
patients. For instance, patients who are ≥ 65 years are 87%, 

251%, and 491%, respectively, more prone to ELOHS than 
those < 18  years, 18–40  years, and 40–65  years. Female 
patients have a slightly higher (2.12%) ELOHS rate than 
males (10.33%) while patients with Charlson score of 
5–8 have a higher ELOHS rate than others. The higher 
the length of stay (LOS) the higher the rate of ELOHS. 
This is evidence in the rate of ELOHS for health condi-
tions that warranted > 20  days LOS with 71.15% ELOHS 
rate compared with other patients with ≤ 5 LOS (ELOHS 
rate: 0.41%), 6–10  days LOS (ELOHS rate: 19.69%), and 
11–20  days LOS (ELOHS rate: 47.28%). A summary of 
some of the features used in this study and the frequencies 
of the NLOHS and ELOHS are shown in Table 2.

Prediction of ELOHS with RFECV‑ETC
RFECV is a feature selection technique that uses a 
recursive process for ranking features according to 
their importance and uses elimination to exclude 
weak features, dependencies, and collinearities from a 
model to improve the prediction accuracy [40]. By the 
process of cross-validation, the optimal features for 
enhanced performance are identified after dropping the 
insignificant features that are not positively impacting 
the model accuracy. As stated previously, eight algo-
rithms that include GBM, ETC, RF, XGB, ANN, DTC, 
ADB, and SVM are considered in this study in the first 
instance to identify the one that will be most appro-
priate for predicting ELOHS. The result of the tenfold 
cross-validation of SMOTE data measured with recall, 
precision, and F1-score is shown in Table 3 (see Appen-
dix 1 for the characteristics of the various algorithms). 
Since ETC is the best performing algorithm, future 
analysis to determine the optimal features for predict-
ing ELOHS is done with ETC as the base algorithm for 
RFECV.

Since there is a likelihood of improving ELOHS pre-
diction accuracy by relying only on the features and sub-
features that have enhanced correlation with the target 
feature, the stepwise comparison of the features using 
their sub-features in the RFECV-ETC algorithm is shown 
in Table 3 (the mean performance scores and the point of 
optimal features selection for the tenfold cross-validation 
of the trials can be viewed in Fig. 1).

The features considered in the optimal performance 
modelling are marked (√), whereas those that are not 
considered are marked (x). Each of the trials produced 
the optimal number of features to better ELOHS predic-
tion. The modelling attempt (T#10), which considered 
the following input features PAG, PGD, ADC, ADT, PCC, 
PRG, DTC, SES and CCI produced the best accuracy of 
89.3%. This prediction accuracy is comparably higher 
than some of the prediction models for ELOHS carried 

Table 2  Summary of frequencies (%) of some of the features 
considered in the model

Features NLOHS (%) ELOHS (%)

Total population 29,856 (88.46%) 3896 (11.54%)

Patient age

Under_18 1481 (97.43%) 39 (2.57%)

18–40 4127 (95.67%) 187 (4.33%)

40–65 7354 (91.9%) 648 (8.1%)

65 and over 16,893 (84.82%) 3023 (15.18%)

Patient gender

Female 16,912 (87.55%) 2406 (12.45%)

Male 12,943 (89.67%) 1491 (10.33%)

Length of stay (LOS)

 ≤ 5 days 23,428 (99.59%) 96 (0.41%)

6-10 days 4288 (80.31%) 1051 (19.69%)

11–20 days 1609 (52.72%) 1443 (47.28%)

 > 20 days 530 (28.85%) 1307 (71.15%)

Charlson Score

0–1 10,224 (94.05%) 647 (5.95%)

2–4 14,987 (87.46%) 2149 (12.54%)

5–8 3948 (80.67%) 946 (19.33%)

 > 8 696 (81.79%) 155 (18.21%)

VMO (visiting medical officer) specialty

Cardiology 2870 (88.8%) 362 (11.2%)

Colorectal surgery 1434 (87.65%) 202 (12.35%)

Endocrinology 116 (53.21%) 102 (46.79%)

Gastroenterology 1960 (85.07%) 344 (14.93%)

Gynaecology 788 (92.49%) 64 (7.51%)

Haematology 258 (65.82%) 134 (34.18%)

Medical oncology 502 (69.53%) 220 (30.47%)

Nephrology 274 (45.67%) 326 (54.33%)

Neurology 166 (51.88%) 154 (48.13%)

Neurosurgery 2170 (95.51%) 102 (4.49%)

Obstetrics & Gynae 1876 (98.01%) 38 (1.99%)

Orthopaedic surgery 5776 (90.59%) 600 (9.41%)

Distance to hospital (DTH)

 > 20 km 6353 (89.42%) 752 (10.58%)

5-10 km 7688 (88.36%) 1013 (11.64%)

0-5 km 9907 (88.16%) 1330 (11.84%)

10-20 km 5907 (88.05%) 802 (11.95%)

Socioeconomic status (SES)

High 11,416 (77.73%) 3270 (22.27%)

Middle 2607 (88.92%) 325 (11.08%)

Low 2115 (87.58%) 300 (12.42%)
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Table 3  Comparison of prediction accuracy of ELOHS using tenfold cross-validation for ELOHS with all the features

Algorithm Recall Precision F1-score Balanced accuracy ROC AUC​

KNN 0.807 ± 0.045 0.821 ± 0.032 0.803 ± 0.05 0.807 ± 0.045 0.892 ± 0.033

GBM 0.746 ± 0.12 0.77 ± 0.1 0.732 ± 0.136 0.746 ± 0.12 0.876 ± 0.075

DTC 0.818 ± 0.061 0.845 ± 0.054 0.814 ± 0.063 0.818 ± 0.061 0.907 ± 0.054

ADB 0.715 ± 0.104 0.732 ± 0.09 0.703 ± 0.118 0.715 ± 0.105 0.835 ± 0.078

ETC 0.885 ± 0.063 0.9 ± 0.052 0.883 ± 0.066 0.885 ± 0.063 0.952 ± 0.039
SVM 0.723 ± 0.076 0.726 ± 0.072 0.719 ± 0.083 0.723 ± 0.076 0.805 ± 0.07

XGB 0.77 ± 0.11 0.809 ± 0.083 0.755 ± 0.128 0.77 ± 0.11 0.927 ± 0.075

RF 0.859 ± 0.078 0.883 ± 0.061 0.855 ± 0.082 0.859 ± 0.078 0.953 ± 0.053

Fig. 1  The mean performance scores and optimal features selection points for tenfold cross-validation of the RFECV-ETC algorithm for the 
numerous combinations of the features
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out previously as shown in the following references [16, 
20, 21].

Although the optimal feature selection points shown in 
Fig. 1 represent the optimal number of features that will 
guarantee the best prediction of ELOHS for the 10 fea-
tures (99 sub-features) or less with a stepwise combina-
tion of the features (as shown in Table 3), there may be 
the need for a trade-off when the accuracy at the optimal 
features point increases minimally. For instance, in T#1, 
when 31 sub-features are used (Fig. 1- T#1), the accuracy 
was 85.34% and when the optimal solution was found at 
71 sub-features, the accuracy is 86%, which is an increase 
of 0.66%. Since the inclusion of additional 40 parameters 
in the algorithm training will increase the computational 
cost, it may suffice to trade-off the 0.66% extra accuracy 
for fewer parameters especially when the size of the data 
increases disproportionately as expected when the algo-
rithm is deployed into production.

The first 20 most important features of the best-per-
forming trial model (T#10) are shown in Fig.  2. With a 
2.00–7.36% relative importance of these features, they 
have 0.07–5.85 times more importance than the 21–40th 
important features of the model and 1.92–31.41 times 
better than the 41–59th most important features. Even 
though the less important features did not contribute 
much to the accuracy of the model, excluding them will 
reduce the prediction accuracy of ELOHS, and adding 
other features that are not part of the selected optimal 
features will also reduce the prediction accuracy.

Since the RFECV-ETC algorithm relies on tenfold 
cross-validation to predict patients’ ELOHS status, it suf-
fices to show the performance accuracies of the target 
feature of the best performing model (T#10) as another 
way of ascertaining the model’s performance for the 
ELOHS and NLOHS patients. Table  4 summarizes the 
performance of the various folds in the cross-validation 
and how good ELOHS and NLOHS are predicted with 
RFCV-ETC. With an accuracy of 76.12–94.52% across 
the folds for all the target feature (NLOHS and ELOHS) 
and almost even accuracy levels for NLOHS and ELOHS 
for each fold, the RFCV-ETC can be acclaimed to have 
properly modelled ELOHS since there is no substantial 
lapse in prediction accuracy at any section of the dataset.

Risk factors of ELOHS
Table  5 shows the risk factors and relative risk (RR) of 
ELOHS determined at a 95% significant level. The refer-
ence sub-features for the multivariate LR are ADC (PL1), 
ADT (M), CCI (0), DTH (0-5  km), PAG (20–50  years), 
PGD (female), PRG (no religion), VMO (orthopaedic 
surgery), and SES (high). As expected, PAG is the pre-
dominant risk factor for ELOHS with PAG (> 90) {RR: 
1.85 (1.34–2.56), P:  < 0.001} having 6.32% more like-
lihood of ELOHS compared with PAG (80–90) {RR: 
1.74 (1.34–2.38), P:  < 0.001} and 23.3% more suscep-
tible than PAG (70–80) {RR: 1.5 (1.1–2.05), P: 0.011}. 
Patients who are from ADC (US1) {RR: 3.64 (3.09–4.28, 
P:  < 0.001} are 14.8% and 70.5%, respectively, more prone 

Fig. 2  Summary of the 20 best features for the best predictive models (T#10)
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to ELOHS compared to ADC (UC1) {RR: 3.17 (2.82–
3.55), P:  < 0.001} and ADC (EMG) {RR: 2.11 (1.93–2.31), 
P:  < 0.001}. However, patients who fell into the ADC 
(others) {RR: 4.11 (2.71–6.24), P:  < 0.001} are 12.9% and 
94.8%, respectively, more likely to have ELOHS com-
pared to those admitted under the ADC (US1) and ADC 

(EMG) categories. Patients from SES (Low) {RR: 1.45 
(1.24–1.71), P:  < 0.001)} are 13.3% more likely to have 
ELOHS compared to those from SES (middle) {RR: 1.28 
(1.1–1.5), P: 0.002} and 45% more likely than SES (high) 
used as the reference for the SES categories. The remain-
ing risk factors such as CCI, DTH and some VMO spe-
cialties such as breast surgery, cardiology, endocrine 
surgery, etc., have a limited likelihood of influencing 
ELOHS since their RR are < 1.

The accuracy of the multivariate LR used for estimating 
the risk factors and RR of the features is computed with 
ROC AUC shown in Fig. 3.

Following the information in Table  5, the severity of 
the risk factors of ELOHS is grouped as patient features, 
DRG specialty and hospital-based features in Table 6. For 
the patients’ features, PAG (> 90) is the most profound 
risks factor with 6.32—2983% more likelihood of con-
tributing to ELOHS compared to the other risk factors 
shown in Table 7. The risk factors associated with ADC 
(US1, others, UC1, EMG) have higher risk severities than 
the rest of the hospital-based features contributing to 
ELOHS. The risk of ELOHS associated with the various 
DRGs are comparatively lower than those associated with 
patients and hospital-based features and may have less 
likelihood of triggering ELOHS for patients treated for 
different health conditions.

Table 5  Prediction accuracy of ELOHS and NLOHS with RFECV-ETC algorithm for the best model (T#10)

Folds Class Precision Recall F1 Score BACC​ AUC​

1 NLOHS 0.7 0.91 0.79 0.7612 0.8135

ELOHS 0.87 0.61 0.72

2 NLOHS 0.79 0.89 0.84 0.8297 0.8707

ELOHS 0.88 0.77 0.82

3 NLOHS 0.95 0.94 0.94 0.9442 0.9761

ELOHS 0.94 0.95 0.94

4 NLOHS 0.94 0.89 0.91 0.913 0.9619

ELOHS 0.89 0.94 0.92

5 NLOHS 0.94 0.95 0.95 0.9452 0.9807

ELOHS 0.95 0.94 0.94

6 NLOHS 0.94 0.9 0.92 0.9216 0.962

ELOHS 0.91 0.94 0.92

7 NLOHS 0.94 0.91 0.93 0.928 0.9712

ELOHS 0.91 0.95 0.93

8 NLOHS 0.94 0.73 0.82 0.8443 0.9375

ELOHS 0.78 0.95 0.86

9 NLOHS 0.94 0.91 0.93 0.9271 0.9722

ELOHS 0.91 0.94 0.93

10 NLOHS 0.94 0.87 0.91 0.9108 0.9562

ELOHS 0.88 0.95 0.91

Fig. 3  Receiver operating characteristic (ROC) area under the curve 
(AUC) for the multivariate logistic regression used for determining the 
risk factors and relative risks
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Table 6  Summary of the risk factors of ELOHS for all patients showing the relative risks (RR) and P-values obtained from a multivariate 
logistic model (* are significant features at 95% level)

Parameters Size RR (95% CI) P-value Parameters size RR (95% CI) P-value

VMO specialty Admission type

Orthopaedic surgery 3379 Ref. M 11,943 Ref.

Breast surgery 380 0.19 (0.14–0.28)  < 0.001* AS 3892 0.84 (0.73–0.95) 0.008*

Cardiology 3313 0.25 (0.22–0.28)  < 0.001* AS2 2494 1.99 (1.73–2.29)  < 0.001*

Cardiothoracic Surg 701 0.33 (0.25–0.44)  < 0.001* AS3 1015 0.95 (0.78–1.17) 0.634

Colorectal surgery 1674 0.28 (0.24–0.34)  < 0.001* AS4 808 0.46 (0.36–0.6)  < 0.001*

ENT surgery 1175 0.12 (0.09–0.17)  < 0.001* CA 173 0.16 (0.06–0.46)  < 0.001*

Emergency physician 321 n/a 0.999 M2 393 1.86 (1.48–2.34)  < 0.001*

Endocrine surgery 219 0.09 (0.04–0.17)  < 0.001* M3 604 0.84 (0.67–1.03) 0.097

Endocrinology 620 0.41 (0.33–0.5)  < 0.001* NEW 140 2.77 (1.24–6.17) 0.013*

Gastroenterology 1630 0.28 (0.23–0.32)  < 0.001* O3 111 n/a 0.999

General Medicine Phy 2349 0.3 (0.26–0.35)  < 0.001* OBC 724 0.28 (0.11–0.7) 0.007*

General Paed. Surg 112 0.94 (0.38–2.32) 0.886 OBN 1039 0.03 (0.01–0.14)  < 0.001*

General Paed.Med 340 0.33 (0.17–0.67) 0.002* Others 558 1.81 (1.45–2.26)  < 0.001*

Gerontology 1285 0.28 (0.24–0.34)  < 0.001* S 8520 1.37 (1.25–1.5)  < 0.001*

Gynaecology 464 0.17 (0.12–0.24)  < 0.001* S2 2214 1.71 (1.5–1.96)  < 0.001*

Haematology 619 0.34 (0.27–0.43)  < 0.001* Charlson Score

Hepato/biliary/pancr 693 0.17 (0.12–0.22)  < 0.001* 0 7994 Ref  < 0.001*

Infectious disease 184 0.69 (0.49–0.98) 0.035* 1 3020 0.34 (0.25–0.47)  < 0.001*

Medical oncology 1374 0.25 (0.21–0.31)  < 0.001* 2 4230 0.32 (0.23–0.43)  < 0.001*

Nephrology 839 0.54 (0.45–0.65)  < 0.001* 3 5751 0.31 (0.22–0.42)  < 0.001*

Neurology 824 0.46 (0.38–0.55)  < 0.001* 4 7658 0.39 (0.29–0.54)  < 0.001*

Neurosurgery 1204 0.17 (0.13–0.22)  < 0.001* 5 2844 0.43 (0.31–0.6)  < 0.001*

Obstetrics 109 n/a 0.999 6 1357 0.52 (0.37–0.72)  < 0.001*

Obstetrics & Gynae 2063 0.06 (0.04–0.1)  < 0.001* 7 546 0.68 (0.47–0.99) 0.043*

Ophthalmic surgery 302 0.08 (0.04–0.15)  < 0.001*  > 8 1228 0.56 (0.4–0.79) 0.001*

Plastic/recon surg 1822 0.44 (0.38–0.51)  < 0.001* Patient religion

Respiratory medicine 1054 0.28 (0.23–0.33)  < 0.001 No religion 8441 Ref

Trainee 282 n/a 0.999 Anglican 4714 0.78 (0.7–0.87)  < 0.001*

Upper GI surgery 1358 0.15 (0.12–0.18)  < 0.001* Baptist 170 1.04 (0.68–1.6) 0.84

Urogynaecology 134 0.08 (0.03–0.19)  < 0.001* Catholic 7224 0.77 (0.7–0.84)  < 0.001*

Urology 2493 0.25 (0.21–0.29)  < 0.001* Christian 1396 0.51 (0.42–0.62)  < 0.001*

Vascular surgery 711 0.38 (0.3–0.47)  < 0.001* Christian (others) 392 0.59 (0.42–0.82) 0.002*

Others 601 0.43 (0.34–0.55)  < 0.001* Greek Orthodox 1109 0.62 (0.51–0.75)  < 0.001*

Patient age (years) Jewish 3513 0.62 (0.55–0.7)  < 0.001*

20–50 Ref. Lutheran 135 0.62 (0.37–1.04) 0.069

50–60 3386 0.99 (0.73–1.34) 0.95 Methodist 112 0.68 (0.4–1.16) 0.161

60–70 5202 1.19 (0.87–1.62) 0.272 Presbyterian 571 0.8 (0.64–1.02) 0.067

70–80 7409 1.5 (1.1–2.05) 0.011* Protestant 302 0.99 (0.73–1.33) 0.935

80–90 6764 1.74 (1.27–2.38)  < 0.001* Religion (others) 894 0.53 (0.41–0.68)  < 0.001*

 < 20 1794 0.06 (0.04–0.09)  < 0.001* Undefined 4444 0.53 (0.47–0.6)  < 0.001*

 > 90 3524 1.85 (1.34–2.56)  < 0.001* Uniting church 1211 0.81 (0.68–0.96) 0.013*

Patient gender Distance to hospital (km)

Female 19,887 Ref. 0-5 km 11,519 Ref.

Male 14,741 0.63 (0.59–0.67)  < 0.001*  > 20 km 7284 0.64 (0.56–0.73)  < 0.001*

Admission category 5-10 km 8936 0.72 (0.67–0.78)  < 0.001*

PL1 16,734 Ref.  < 0.001* 10-20 km 6889 0.75 (0.68–0.82)  < 0.001*

EMG 11,619 2.11 (1.93–2.31)  < 0.001* Socioeconomic status

MAT 1865 1.41 (0.64–3.11) 0.39 High 29,131 Ref.
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Table 6  (continued)

Parameters Size RR (95% CI) P-value Parameters size RR (95% CI) P-value

Others 258 4.11 (2.71–6.24)  < 0.001* Middle 2998 1.28 (1.1–1.5) 0.002*

UC1 2739 3.17 (2.82–3.55)  < 0.001* Low 2487 1.45 (1.24–1.7)  < 0.001*

US1 1413 3.64 (3.09–4.28)  < 0.001*

Table 7  Risk severity of the various risk factors of ELOHS (NB: all features are computed at 95% significance level; ** are significant at 
90% significance level)

Parameter RR (95%CI) Parameter RR (95%CI)

Patients’ features DRG specialty

PAG (> 90) 1.85 (1.34–2.56) VMO (infectious disease) 0.69 (0.49–0.98)

PAG (80–90) 1.74 (1.27–2.38) VMO (nephrology) 0.54 (0.45–0.65)

PAG (70–80) 1.5 (1.1–2.05) VMO (neurology) 0.46 (0.38–0.55)

SES (low) 1.45 (1.24–1.7) VMO (plastic/recon surg) 0.44 (0.38–0.51)

SES (middle) 1.28 (1.1–1.5) VMO (others) 0.43 (0.34–0.55)

PRG (uniting church) 0.81 (0.68–0.96) VMO (endocrinology) 0.41 (0.33–0.5)

PRG (Anglican) 0.78 (0.7–0.87) VMO (vascular surgery) 0.38 (0.3–0.47)

PRG (Catholic) 0.77 (0.7–0.84) VMO (haematology) 0.34 (0.27–0.43)

DTH (10-20 km) 0.75 (0.68–0.82) VMO (general paed.med.) 0.33 (0.17–0.67)

DTH (5-10 km) 0.72 (0.67–0.78) VMO (cardiothoracic surg.) 0.33 (0.25–0.44)

CCI (7) 0.68 (0.47–0.99) VMO (general medicine phy) 0.3 (0.26–0.35)

DTH (> 20 km) 0.64 (0.56–0.73) VMO (colorectal surgery) 0.28 (0.24–0.34)

PGD (male) 0.63 (0.59–0.67) VMO (gerontology) 0.28 (0.24–0.34)

PRG (Jewish) 0.62 (0.55–0.7) VMO (respiratory medicine) 0.28 (0.23–0.33)

PRG (Greek Orthodox) 0.62 (0.51–0.75) VMO (gastroenterology) 0.28 (0.23–0.32)

PRG (Christian (others)) 0.59 (0.42–0.82) VMO (medical oncology) 0.25 (0.21–0.31)

CCI (> 8) 0.56 (0.4–0.79) VMO (urology) 0.25 (0.21–0.29)

PRG (undefined) 0.53 (0.47–0.6) VMO (cardiology) 0.25 (0.22–0.28)

PRG (religion (others)) 0.53 (0.41–0.68) VMO (breast surgery) 0.19 (0.14–0.28)

CCI (6) 0.52 (0.37–0.72) VMO (gynaecology) 0.17 (0.12–0.24)

PRG (Christian) 0.51 (0.42–0.62) VMO (neurosurgery) 0.17 (0.13–0.22)

CCI (5) 0.43 (0.31–0.6) VMO (hepato/biliary/pancr) 0.17 (0.12–0.22)

CCI (4) 0.39 (0.29–0.54) VMO (upper GI surgery) 0.15 (0.12–0.18)

CCI (1) 0.34 (0.25–0.47) VMO (ENT surgery) 0.12 (0.09–0.17)

CCI (2) 0.32 (0.23–0.43) VMO (endocrine surgery) 0.09 (0.04–0.17)

CCI (3) 0.31 (0.22–0.42) VMO (urogynaecology) 0.08 (0.03–0.19)

PAG (< 20) 0.06 (0.04–0.09) VMO (ophthalmic surgery) 0.08 (0.04–0.15)

VMO (obstetrics & gynae) 0.06 (0.04–0.1)

Hospital-based features DRG specialty

ADC (others) 4.11 (2.71–6.24) ADT (others) 1.81 (1.45–2.26)

ADC (US1) 3.64 (3.09–4.28) ADT (S2) 1.71 (1.5–1.96)

ADC (UC1) 3.17 (2.82–3.55) ADT (S) 1.37 (1.25–1.5)

ADT (NEW) 2.77 (1.24–6.17) ADT (AS) 0.84 (0.73–0.95)

ADC (EMG) 2.11 (1.93–2.31) ADT (AS4) 0.46 (0.36–0.6)

ADT (AS2) 1.99 (1.73–2.29) ADT (OBC) 0.28 (0.11–0.7)

ADT (M2) 1.86 (1.48–2.34) ADT (CA) 0.16 (0.06–0.46)

ADT (OBN) 0.03 (0.01–0.14)
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Discussion
This study develops a preadmission assessment for 
patients admitted to a private acute teaching hospital to 
predict those that are prone to ELOHS and identify the 
risk factors of ELOHS to enable hospitals to pro-actively 
plan their care. By relying on hospital-specific features and 
patients’ demographic and psychosocial characteristics, 
it was possible to develop a machine learning algorithm 
for reasonably identifying patients that will exceed their 
expected length of stay on admission. It can be inferred 
from the study that the risk of ELOHS is very predominant 
for patients who are 60 years and over and those that have 
been treated for infectious disease and neurological con-
ditions. Even though some other conditions considered in 
the study such as neurosurgery, upper GI surgery, urology, 
cardiology, etc. (see VMO specialty in Table  5) are also 
linked to ELOHS because they are significant at 95% con-
fidence level, the fact that the RR of these factors are small 
(< 1) means that their tendency of causing ELOHS is mini-
mal compared to those with the RR values > 1.

The influence of age on ELOHS is pronounced as the 
rate of ELOHS increases with the age of the patients, a 
finding that resonated with other researchers, who also 
attributed SES, which is a risk factor in this study to 
ELOHS [6–9]. The risk of ELOHS is pronounced with 
patients who are ≥ 80 years judging from their RR of > 1, 
but previous research showed that those who are prone 
to ELOHS are patients who are ≥ 65 years old for patients 
of elective anterior cervical discectomy and fusion [7]. It 
is important to note that the vulnerability of the elderly 
can be attributed to hospital-acquired infections and 
other complications in hospitals [17]. This and other fac-
tors combine to cause complications, which result in a 
higher likelihood of ELOHS amongst the elderly [6]. This 
situation has resulted in higher hospitals costs, shortage 
of hospital space, and poor-quality penalties imposed on 
hospitals [18, 19]. There are significant incentives for hos-
pitals to improve patients’ outcomes through quality care 
that will reduce hospital-acquired infections from endog-
enous and procedure-related risk factors [10, 11].

Previous studies linked Charlson score, which can be a 
good gauge of a patient’s comorbidity predisposition [12] 
to ELOHS. For this study, Charlson scores of 1–6 are risk 
factors of ELOHS, however, since the relative risk (RR: 
0.04–0.09; P-value:  < 0.001)) of the patients is < 1, there 
is a higher likelihood they may not exceed their expected 
stay on admission. Despite the impact of Charlson score 
on ELOHS, it is also linked to unplanned readmission due 
to the severity of comorbidities [13]. This also suggests 
that the current DRG models successfully account for 
patient complexity.

The prediction accuracy of the ELOHS model, which is 
89.3% is comparatively higher than the accuracy obtained 

by other researchers [9, 16, 20, 35] even though it may 
be difficult to justify some of their techniques for defin-
ing ELOHS. This is because some of the patients who 
may have been classified as likely to exceed their expected 
length of stay in the hospital because they spent 3, 4, 5, 
9, or 11 days based on the proposition of the models may 
have not exceed their expected length of stay in the hos-
pital following the assessment of their DRG per the tech-
nique described in this study. Even though most of the 
studies reported on specific disease conditions [9, 21, 35], 
the current study painted a better picture of ELOHS by 
taking a comprehensive look at patients in the acute care 
setting. This approach gives the hospital a better tool for 
an immediate decision on requisite patients’ manage-
ment plans to forestall complications that will result in 
ELOHS. Again, it is important to state that some of the 
ELOHS contributing features investigated by many previ-
ous researchers such as surgical approach, preoperative 
functional status, and patients’ anaesthetic history [36, 37] 
may not suffice for preadmission assessment of ELOHS.

The core limitation of this study is the few features con-
sidered. There is a need to consider more demographic 
and psychosocial features such as ethnicity, level of edu-
cation, marital status, and the comorbidities suffered by 
these patients as they have the potentials of influencing 
ELOHS. There is also the need to increase the data size 
while looking at a narrowed classification of similar DRGs 
to facilitate better accuracy of the prediction model. 
Again, the reliance on only 10 hospital-specific and psy-
chosocial features for the analysis may not suffice. Other 
important features that can contribute to ELOHS such as 
the kind of procedure adopted for surgical patients will be 
vital for consideration in future studies.

Conclusions
To ensure that patients who are prone to ELOHS are given 
appropriate, tailored care when admitted to the hospital, 
a technique for preadmission assessment with hospital-
specific and psychosocial features is developed in this study 
using hospital records. By relying on RFECV-ETC algorithm 
that uses the backward elimination technique, and ETC as 
the base estimator, it was possible to develop a model that 
predicted patients expected to have ELOHS. The study 
relied on SMOTE up sampling, tenfold cross-validation, and 
features such as VMO specialty, patient age, patient gen-
der, admission category, admission type, patient care class, 
patient religion, distance to hospital, SES, and Charlson 
score. After 12 trials of different combinations of the fea-
tures, the model with the best accuracy predicted ELOHS to 
89.3% accuracy, 89.4% recall, 89.4% precision, and identified 
61 optimal sub-features for ELOHS prediction.

Since the knowledge of the risk factors of ELOHS is 
vital for developing strategies for better care outcomes, 
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multivariate LR was used for estimating the risk factors of 
ELOHS at a 95% confidence level and the relative risk of the 
risk factors. The risk of ELOHS increases with age, ADC 
(EMG, UC1, US1 and others), ADT (M2, AS2, NEW, S, S2, 
others), SES (low, middle), etc., while the VMO specialties 
have limited likelihood of increasing ELOHS despite many 
of them being risk factors of ELOHS. Prediction of ELOHS 
before admitting the patients and understanding the risk 
factors of ELOHS will make patient management better 
because of the increased likelihood of implementing ade-
quate and person-centred treatments.

Summary points
What is known

Extended length of hospital stay has been treated as a 
LOS more than a given number of days of hospitaliza-
tion such as 4, 5, 6, 9, etc.
Charlson scores affect LOS in hospitalization.
ELOHS is computed for patients already admitted to 
the hospital using clinical characteristics.
ELOHS has been treated for specific disease condi-
tions, not in consideration of different DRGs.

What was found

Extended length of hospital stay (ELOHS) was deter-
mined as 3* average LOS for a given DRG.
ELOHS can be predicted preadmission to 89.3% 
accuracy with RFECV-ETC.
Infectious diseases and neurology patients have a 
very high likelihood of ELOHS compared to patients 
admitted for other DRGs.
The rate of ELOHS amongst patients increases with 
age but patients who are ≥ 80  years have a higher 
likelihood of ELOHS than younger patients.
Charlson score is a risk factor of ELOHS, but has a 
limited likelihood of causing ELOHS due to the low 
relative risk (< 1.0).

Appendix I

Characteristics of algorithms

Algorithm Characteristics

KNN KNeighborsClassifier (algorithm = ’auto’, leaf_size = 30, met-
ric = ’minkowski’, metric_params = None, n_jobs = None, 
n_neighbors = 5, p = 2, weights = ’uniform’)

Characteristics of algorithms

Algorithm Characteristics

GBM Gradient Boosting Classifier (ccp_alpha = 0.0, crite-
rion = ’friedman_mse’, init = None, learning_rate = 0.1, 
loss = ’deviance’, max_depth = 3, max_features = None, 
leaf_nodes = None, min_impurity_decrease = 0.0, 
min_impurity_split = None, min_samples_leaf = 1, 
min_samples_split = 2, min_weight_fraction_leaf = 0.0, 
n_estimators = 100, n_iter_no_change = None, pre-
sort = ’deprecated’, random_state = None, subsample = 1.0, 
tol = 0.0001, validation_fraction = 0.1, verbose = 0, warm_
start = False)

ADB Ada Boost Classifier (algorithm = ’SAMME.R’, base_estima-
tor = None, learning_rate = 1.0, n_estimators = 50, random_
state = None)

ETC Extra Trees Classifier (bootstrap = False, ccp_alpha = 0.0, 
class_weight = None, criterion = ’gini’, max_depth = None, 
max_features = ’auto’, max_leaf_nodes = None, max_sam-
ples = None, min_impurity_decrease = 0.0, min_impurity_
split = None,min_samples_leaf = 1, min_samples_split = 2, 
min_weight_fraction_leaf = 0.0, n_estimators = 100, 
n_jobs = None, oob_score = False, random_state = None, 
verbose = 0, warm_start = False)

SVM SVC (C = 1.0, break_ties = False, cache_size = 200, class_
weight = None, coef0 = 0.0, decision_function_shape = ’ovr’, 
degree = 3, gamma = ’scale’, kernel = ’rbf’, max_iter = -1, 
probability = False, random_state = None, shrinking = True, 
tol = 0.001, verbose = False)

XGB XGBClassifier (base_score = 0.5, booster = ’gbtree’, 
colsample_bylevel = 1, colsample_bynode = 1, col-
sample_bytree = 1, gamma = 0, gpu_id = -1, impor-
tance_type = ’gain’, interaction_constraints = ’’, learning_
rate = 0.300000012, max_delta_step = 0, max_depth = 6, 
min_child_weight = 1, missing = nan, monotone_con-
straints = ’ ()’, n_estimators = 100, n_jobs = 4, num_paral-
lel_tree = 1, objective = ’binary: logistic’, random_state = 0, 
reg_alpha = 0, reg_lambda = 1, scale_pos_weight = 1, 
subsample = 1,
tree_method = ’exact’, use_label_encoder = True, validate_
parameters = 1, verbosity = None)

RF Random Forest Classifier (bootstrap = True, ccp_alpha = 0.0, 
class_weight = None, criterion = ’gini’, max_depth = None, 
max_features = ’auto’, max_leaf_nodes = None, max_sam-
ples = None, min_impurity_decrease = 0.0, min_impurity_
split = None, min_samples_leaf = 1, min_samples_split = 2, 
min_weight_fraction_leaf = 0.0, n_estimators = 100, 
n_jobs = None, oob_score = False, random_state = None, 
verbose = 0, warm_start = False)
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