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Background: The liver-specific microRNA-122 (miR-122) has been demonstrated as a pow-
erful and promising biomarker of hepatic diseases. However, the researches on the accuracy
of miR122 detection in chronic viral hepatitis have been inconsistent, leading us to conduct
this meta-analysis to systematically summarize the diagnostic value of circulating miR-122
in patients with hepatitis B virus (HBV) and/or hepatitis C virus (HCV)-associated chronic
viral hepatitis.
Methods: A comprehensive literature search (updated to January 30, 2019) in PubMed,
Cochrane library, EMBASE, CNKI, Wanfang, and CQVIP databases was performed to iden-
tify eligible studies. The sensitivity (SEN), specificity (SPE), positive and negative likelihood
ratios (PLR and NLR), diagnostic odds ratio (DOR), and area under the curve (AUC) were
pooled to explore the diagnostic performance of circulating miR-122. Subgroup and thresh-
old effect analysis were further carried out to explore the heterogeneity.
Results: Overall, 15 studies were finally included in this meta-analysis according to the ex-
clusion and inclusion criteria. The pooled estimates indicated a moderately high diagnostic
accuracy for circulating miR-122, with a sensitivity of 0.92 [95% confidence interval (CI),
0.86–0.95], a specificity of 0.84 (95% CI, 0.78–0.89), a PLR of 5.7 (95% CI, 4.7–8.1), a NLR
of 0.1 (95% CI, 0.06–0.18), a DOR of 57 (95% CI 25-129), and an AUC of 0.93 (95% CI,
0.91–0.95). The subgroup analysis demonstrated that diagnostic accuracy was better for
HCV-associated chronic viral hepatitis patients and non-Chinese compared with other sub-
groups. In addition, we found that serum might be a more promising matrix for detecting
the expression of miR-122 than plasma.
Conclusions: Our results demonstrated that circulating miR-122 have a relatively high
diagnostic value for chronic viral hepatitis detection, especially in the patients with
HCV-associated chronic viral hepatitis. However, further large cohort studies are still re-
quired to confirm our findings.

Introduction
Hepatitis usually refers to inflammation of the liver tissue, which may result from both infectious (e.g. viral
and bacterial) and noninfectious causes (e.g. alcohol, certain medications, and toxins). Severe liver disease
usually contributes to persistent inflammation and necrosis, of which the two primary adverse outcomes
are cirrhosis and hepatocellular carcinoma, consequently may cause liver-related death. Here, this article
focuses on viral hepatitis because viruses mainly including hepatitis B virus (HBV), and hepatitis C virus
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(HCV), which have already been proved to be the most common cause of hepatitis worldwide. Furthermore, about a
million of patients die from chronic viral hepatitis, most of which occur indirectly from liver scarring or liver cancer
[1]. Therefore, early diagnosis of chronic viral hepatitis not only plays a significant role in hepatitis treatment and
prevention but also allows for inhibiting disease progression, and decreasing transmission to others to a large extent
[1,2].

Nowadays, the laboratory diagnostic tests for hepatitis are mainly based on blood tests, imaging, and liver biopsy
[3]. Blood tests include antigens, antibodies, liver-associated enzymes, nucleic acid testing (e.g. hepatitis virus
DNA/RNA). Furthermore, hepatic ultrasound, computed tomography, and magnetic resonance imaging are the pro-
cedures which can identify steatosis of the liver tissue and nodularity of the liver surface suggestive of cirrhosis. Liver
biopsy is still the gold standard for assessing the precise extent and pattern of inflammation and fibrosis of the liver.
However, some of these diagnostic approaches are invasive while some fail in early detection of disease due to the
limited sensitivity which can only be used in advanced cases [4]. Since the delayed diagnosis may result in poor prog-
nosis, it is necessary to find minimally invasive and cost-effective biomarkers to expand the diagnosis range for liver
diseases. Accumulating evidence has witnessed the potential role of circulating miRNAs, as a part of “liquid biopsy”,
in the diagnostic value for viral hepatitis [5]. miRNAs, a family of highly conserved single-stranded RNA molecules
(19–22 nucleotides), have been proved to participated in multiple biological processes mainly including cell cycle,
cell proliferation, differentiation, and apoptosis through binding to the complimentary 3′UTR of their target mRNAs
and degrading the mRNAs [6,7]. Several research groups have demonstrated that circulating miRNAs, deriving from
intracellular miRNAs and secreted out of the cell via exosomes and microvesicles during the process of cell death, can
be stably detected in the biofluid like serum, plasma, urine, and cerebrospinal fluid (CSF) from patients making them
relatively non-invasive biomarker for infectious diseases [8–10]. As a major miRNA in liver, miR-122 accounts for
approximately 70% of the total liver miRNAs and has been widely reported to suffer from dysregulation in HCV and
HBV infection. Besides, the level of miR-122 has been shown to correlate with the severity and stage of infection and
helps to evaluate the treatment response [11–13]. In order to verify the hypothesis and assess the diagnostic value of
miR-122 in chronic viral hepatitis, we systematically reviewed the literature and conducted this meta-analysis.

Materials and methods
Search strategy
In order to retrieve all the articles analyzing the diagnostic value of miR-122 in patients with HBV and/or HCV
chronic viral hepatitis, a comprehensive literature search (updated to January 30, 2019) in PubMed, Cochrane library,
EMBASE, and CNKI Wanfang and CQVIP databases was performed without language restrictions. The medical
subject heading (MeSH) terms (“microRNA-122” or “miRNA-122” or “miR-122” or “hsa-miR-122”) and (“diagnostic
value” or “diagnoses” or “receiver operating characteristics curve” or “ROC curve” or “sensitivity and specificity”)
and (“HCV” or “Chronic hepatitis C” or “CHC” or “HBV” or “Chronic hepatitis B” or “CHB”) were used to identify
all the relevant articles. Besides, we examined the reference lists of review articles and selected papers manually to
identify whether there are any other eligible articles.

Inclusion and exclusion criteria
Studies were considered eligible for inclusion in this meta-analysis had to fulfill the following criteria: (1) evaluate the
diagnostic value of miR-122 in patients with HBV and/or HCV-associated chronic viral hepatitis; (2) the patients with
HBV-associated chronic viral hepatitis should be positive for HBV surface antigen, positive for HBV DNA, while the
diagnosis of HCV-associated chronic viral hepatitis was based on the detection of anti-HCV antibodies and consistent
detection of HCV RNA, for at least 6 months; (3) each study involved both experimental and control groups; (4) the
miR-122 expression was measured in serum or plasma samples; (5) articles provided sufficient data. Exclusion criteria
were as follows: (1) studies with duplicate data; (2) meta-analysis, letters, reviews, case reports; (3) studies without
sufficient data or with 20 patients or less.

Data extraction and quality assessment
Two investigators (XHZH and SHQF) are responsible for assessing all the publications. Any disagreements were
resolved through discussion with a third reviewer (MW). The following information was extracted from eligible
studies: first author’s name, year and country of the publication, characteristics of participants (ethnicity, total number
of cases and controls, mean/median age), sample types, methods of miR-122 testing, and the data (true-positive (TP),
false-positive (FP), false-negative (FN), and true-negative (TN), sensitivity, and specificity). In addition, the Quality
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Figure 1. Flowchart of the articles selection process in this meta-analysis

Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) was performed to assess the methodological qualities of
each included article.

Statistical analysis
Stata 14.0 (STATA Corp, College Station, TX, U.S.A.) and Meta-DiSc version 1.4 software were used to perform all the
statistical analysis and P-value less than 0.05 was considered statistically significant. We calculated the pooled sensi-
tivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and
corresponding 95% confidence intervals (CIs) for the miR-122 studied using the bivariate random-effect regression
model [14]. In addition, we determined the sensitivity and specificity of the miRNAs in each study using a bivariate
summary receiver operating characteristic (SROC) curve. We calculated the area under the curve (AUC) and the
maximum point of intersection between sensitivity and specificity [15]. Moreover, subgroup and sensitivity analysis
were carried out to explore potential sources of between-study heterogeneity. And publication bias was assessed by
Deeks’ funnel plot asymmetry test.

Results
Selection process and characteristics of the eligible studies
As presented in Figure 1, a total of 762 articles were initially identified from the primary literature search strategy.
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704 articles were left for screening after 65 duplicates were removed through Endnote X7 software. After reviewing
their abstracts and titles, 679 articles were removed due to unfit literary forms, research subjects of animal model and
irrelevant research topic. Subsequently, the full-texts of the remaining 25 articles were read to assess the eligibility and
10 articles were further excluded. As a result, 15 articles were included in the current meta-analysis [13,16–29].

The main characteristics, along with the QUADAS-2 scores of the 15 included articles are summarized in Table
1, in an order by the publication year, ranging from 2010 to 2018. In all studies, quantitative real time polymerase
chain reaction (qRT-PCR) assays were performed to detect the expression levels of miRNAs in either plasma (n =
4) or serum (n = 11). Seven articles of these selected studies were conducted in China, while the rest eight articles
did research in foreign countries. As for the virus types, six articles focus on HBV-associated chronic viral hepatitis,
and nine articles focus on HCV-associated chronic viral hepatitis. In addition, according to the 14-item QUADAS
assessment tool, the quality assessments for each included study are presented in Figure 2.

Diagnostic accuracy of miR-122 in chronic viral hepatitis
First, significant heterogeneity was found in our meta-analysis, as demonstrated by the results (I2 = 90.78% for sen-
sitivity and I2 = 79.18% for specificity, respectively). Thus, the random-effect model was selected for the next cal-
culation. Forest plots of the sensitivity and specificity results are shown in Figure 3. Overall, as shown in Table 2,
the pooled sensitivity was 0.92 (95%CI: 0.86–0.95), specificity was 0.84 (95% CI: 0.78–0.89), PLR was 5.7 (95%CI:
4.7–8.1), NLR was 0.10 (95%CI: 0.06–0.18), DOR was 57 (95%CI: 25–129), and AUC was 0.93 (95%CI: 0.91–0.95).
The SROC curve for the overall results is shown in Figure 4. The above results both suggest that miR-122 can be
served as an adjuvant tool for the diagnosis of HBV- and/or HCV-associated chronic viral hepatitis.

Threshold effect and subgroup analysis
Since threshold effect has been reported to be major cause of between-study heterogeneity and occurs when differ-
ences in sensitivities and specificities arise; this effect can be assessed with the spearman correlation coefficient [30].
And a value of −0.298 (P=0.229; P>0.05) indicated the absence of the threshold effect in our study. Afterwards,
subgroup analyses based on ethnicity, sample types and virus types were also performed. The pooled sensitivity,
specificity, PLR, NLR, DOR, and AUC for each subgroup are listed in Table 2. As for virus types, the HCV-associated
chronic viral hepatitis group showed a higher accuracy than HBV-associated chronic viral hepatitis group with sen-
sitivity of 0.94 versus 0.87, specificity of 0.85 versus 0.81, PLR of 6.6 versus 4.7, NLR of 0.07 versus 0.16, DOR of
89 versus 30 and AUC of 0.95 versus 0.88, respectively. Furthermore, a comparison of miR-122 expression profile in
serum and plasma showed that the sensitivity (0.93 versus 0.87), specificity (0.86 versus 0.79), and AUC (0.94 versus
0.90) were higher in serum-based test than in plasma, providing additional evidence for the use of serum as a better
matrix for diagnostic profiling of miR-122 in patients with HBV- and/or HCV-associated chronic viral hepatitis. Af-
terwards, the analysis based on ethnicity demonstrated the non-Chinese populations yield a better diagnosis accuracy
than their Chinese counterparts. Specifically, for the non-Chinese population group, the pooled sensitivity, specificity,
PLR, NLR, DOR, and AUC were 0.95, 0.85, 6.6, 0.06, 100, and 0.96, while the results for the Chinese population group
were 0.97, 0.83, 5.1, 0.16, 32, and 0.91, respectively.

Sensitivity analysis and publication bias
As shown in Figure 5A,B, the results of goodness of fit and bivariate normality analysis suggested that the
random-effect model was suitable for subsequent calculation of the pooled estimates. Afterwards, influence anal-
ysis and outlier detection (Figure 5C,D) identified two outlier researches. After excluding these outliers, sensitivity
increased from 0.92 to 0.93, specificity increased from 0.84 to 0.86, PLR increased from 5.7 to 6.6, NLR decreased
from 0.10 to 0.09, DOR increased from 57 to 66, and AUC increased from 0.93 to 0.94. In addition, heterogeneity in-
creased from 90.78% to 91.19% for sensitivity and from 79.18% to 62.02% for specificity. Furthermore, Deeks’ funnel
plot asymmetry test was carried out to explore the potential publication bias of the included studies. As demonstrated
in Figure 6, an obtained P value of 0.29 indicated the absence of publication bias in this meta-analysis.

Discussion
Though significant progress has been occurred in diagnostic techniques over the years, the accurate and convenient
diagnosis of HBV- and/or HCV-associated chronic viral hepatitis remains a clinical challenge. Subsequently, the ap-
plication of miRNAs, which can control gene expression in multiple biological processes including growth, cell pro-
liferation, differentiation, apoptosis, and carcinogenesis through RNA interference (RNAi) [31,32], has gained much
attention. As a part of miRNAs, miR-122 has already been demonstrated to be the most frequent miRNA in adult
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Included
studies Country

Detection
method

Internal
reference

Source of the
virus Sample size Mean age (year) Sensitivity Specificity Specimen QUADAS-2

Case Control Case age Control age

Zhang, 2010 China SYBR PCR U6 snRNA HBV 83 40 40.2 +− 13.1 39.1 +− 13.4 98% 93% Plasma 9

Xu, 2011 China SYBR PCR U6 snRNA HBV 48 89 NA NA 80% 96% Serum 6

Cermelli, 2011 Egypt SYBR PCR miR-238 HCV 18 19 NA NA 94% 83% Serum 7

Meer, 2012 Netherlands Taqman PCR NA HCV 102 25 48.65 +− 10.34 35.3 +− 11.5 95% 92% Serum 5

Zhang, 2012 China SYBR PCR NA HBV 24 24 37.6 +− 9.0 35.6 +− 10.2 88% 100% Serum 6

Kumar, 2014 India Taqman PCR U6 snRNA HCV 25 25 38.08 +− 10.81 32.53 +− 9.63 92% 84% Serum 6

Zhang, 2014 China SYBR PCR U6 snRNA HBV (active) 112 22 NA NA 86% 63% Plasma 7

China SYBR PCR U6 snRNA HBV (indolent) 19 22 NA NA 84% 37% Plasma

Zhang, 2015 China SYBR PCR U6 snRNA HCV 39 29 49.0 +− 14.3 45.0 +− 16.1 92% 79% Serum 6

Shaker, 2015 Egypt SYBR PCR SNORD68 HCV 30 55 60.27 +− 8.2 55.88 +− 15.91 90% 100% Serum 7

Motawi, 2016 Egypt SYBR PCR SNORD68 HCV 40 30 42.95 +− 11.21 49.9 +− 14.9 93% 100% Serum 7

Butt, 2016 Egypt SYBR PCR U6 snRNA HCV (abnormal ALT) 80 60 32.7 +− 9.9 39.2 +− 12.9 87% 97% Serum 8

Egypt SYBR PCR U6 snRNA HCV (normal ALT) 43 60 32.7 +− 9.9 39.2 +− 12.9 65% 93% Serum

Demerdash,
2017

Egypt SYBR PCR SNORD68 HCV 60 60 35.1 +− 6.7 33.9 +− 8.64 80% 88% Plasma 7

Wang, 2017 China Taqman PCR cel-miR-39 HBV (occult) 119 117 42.30 +− 13.60 45.58 +− 13.08 79% 55% Serum 9

China Taqman PCR cel-miR-39 HBV (active) 115 117 42.30 +− 13.60 44.40 +− 13.10 86% 83% Serum

Amr, 2018 Egypt SYBR PCR SNORD68 HCV 50 20 41.5 41.7 72% 85% Serum 8

Chen, 2018 China Taqman PCR Hsa-miR-25-3p HBV 30 30 42.7 +− 10.3 37.6 +− 12.8 80% 83% Plasma 8

NA, not available.
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Figure 2. Overall methodological quality assessments of the included 15 articles based on QUADAS-2 tool
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Figure 3. Forest plots of summary sensitivities and specificity of circulating miR-122 in the diagnosis of HBV- and

HCV-associated chronic viral hepatitis

Table 2 Summary diagnostic accuracy of circulating miR-122 for HBV and/or HCV

Analysis Sensitivity (95% CI) Specificity (95% CI) PLR (95% CI) NLR (95% CI) DOR (95% CI) AUC (95% CI)

Virus types

HBV 0.87 (0.75–0.94) 0.81 (0.75–0.87) 4.7 (3.3–6.7) 0.16 (0.07–0.33) 30 (11–79) 0.88 (0.85–0.91)

HCV 0.94 (0.89–0.97) 0.85 (0.78–0.90) 6.6 (4.4–10.0) 0.07 (0.04–0.14) 89 (36–217) 0.95 (0.93–0.97)

Sample types

Serum 0.93 (0.86–0.97) 0.86 (0.80–0.90) 6.4 (4.5–9.2) 0.08 (0.04–0.17) 79 (30–207) 0.94 (0.91–0.96)

Plasma 0.87 (0.72–0.95) 0.79 (0.61–0.90) 4.1 (2.0–8.5) 0.16 (0.07–0.40) 25 (6–109) 0.90 (0.87–0.92)

Ethnicity

Chinese 0.87 (0.76–0.93) 0.83 (0.73–0.89) 5.1 (3.0–8.5) 0.16 (0.08–0.31) 32 (11–95) 0.91 (0.88–0.93)

Non-Chinese 0.95 (0.89–0.97) 0.85 (0.77–0.91) 6.6 (4.4–10.0) 0.06 (0.03–0.13) 100 (36–279) 0.96 (0.94–0.97)

Overall 0.92 (0.86–0.95) 0.84 (0.78–0.89) 5.7 (4.7–8.1) 0.10 (0.06–0.18) 57 (25–129) 0.93 (0.91–0.95)

Outliers excluded 0.93 (0.87–0.95) 0.86 (0.82–0.89) 6.6 (4.9–8.9) 0.09 (0.05–0.19) 66 (27–160) 0.94 (0.90–0.96)

human liver accounting up to 70% of the total hepatic miRNAs, and a central player in liver development, differentia-
tion, and homeostasis as well as in metabolic functions [33]. There is a great deal of researches into the use of miR-122
as a biomarker for HBV and HCV. In the aspect of HBV regulation, Chen et al. [34] have demonstrated that miR-122
can bind to the highly conserved region of a bicistronic mRNA called HBV pregenomic RNA, which reported to
encode the HBV polymerase and core protein, thereby ultimately leading to inhibition of HBV gene expression and
replication. Furthermore, it has also been confirmed that increase in miR-122 can attenuated the replication of HBV
by regulating cyclin G(1) -modulated P53 activity [35]. As for the aspect of HCV regulation, liver-specific miR-122
can stabilize HCV viral RNA through a process involving protecting highly conserved 5′ untranslated region the HCV
genome from degradation by the host exonuclease, Xrn-1 or from host innate immune responses [36–39]. A phase
2a study has shown that miravirsen, an antisense oligonucleotide, exhibited remarkable prolonged dose-dependent
reductions in HCV RNA levels in patients with chronic HCV genotype 1 infection [40]. All the above researches both
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Figure 4. Summary ROC curves for miR-122 in the diagnosis of HBV- and HCV-associated chronic viral hepatitis

suggest that miR-122 is a significant regulator of HBV and HCV replication by either directly affecting viral RNA or
modulating host gene expression.

However, due to the different study designs and study subjects, some studies dispute its diagnostic efficacy [41].
Thus, the present study was carried out to summarize the results of individual studies. As the present results show,
circulating miR-122 achieved a pooled sensitivity of 0.92, specificity of 0.84, and AUC of 0.93, indicating an overall
moderate test performance for the diagnosis of HBV- and HCV-associated chronic viral hepatitis. Furthermore, the
PLR value of 5.7 suggested that HBV- and HCV-associated chronic viral hepatitis patients had an almost six-fold
higher chance of being miR-122 test positive than other individuals without the disease, and a NLR value of 0.1
implied that in a negative result from the miR-122 test, only 10% is likely to be false-negative. Obviously, the DOR
value, which combines the strengths of both sensitivity and specificity, was 57 in our meta-analysis, indicating a high
level of discriminating accuracy for clinical practice [42].

Furthermore, to explore the potential sources of heterogeneity, subgroup analysis based on virus types, sample
types and ethnicity were subsequently performed. The results of subgroup analysis based on virus types suggest that
miRNA-122 yielded an overall higher diagnostic accuracy in HCV-associated chronic viral hepatitis patients with a
sensitivity of 0.94, specificity of 0.85, PLR of 6.6, NLR of 0.07, DOR of 89, and AUC of 0.95. Besides, with regard to
sample types, miRNA expression profiles have been reported to be considerably affected by the coagulation process in
the blood [43]. In our study, serum turned out to be a better matrix for diagnostic profiling of miR-122 in HBV- and
HCV-associated chronic viral hepatitis than plasma: the pooled sensitivity was 0.93 versus 0.87, specificity was 0.86
versus 0.79, PLR was 6.4 versus 4.1, NLR was 0.08 versus 0.16, DOR was 79 versus 25, and AUC was 0.94 versus 0.90.
However, as only four studies were included in the plasma specimen group, thus large-scale prospective researches are

8 © 2019 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 5. Sensitivity analysis: graphical depiction of goodness of fit and bivariate normality analysis (A,B), influence and

outlier detection analysis (C,D), respectively

Figure 6. Deeks’ funnel plot asymmetry test for the assessment of potential publication bias

© 2019 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

9



Bioscience Reports (2019) 39 BSR20190900
https://doi.org/10.1042/BSR20190900

still needed to consolidate the results. In the subgroup analysis based on ethnicity, we found compared with Chinese
populations, miR-122 assay may be more accurate in non-Chinese populations, with the DOR value hiked from 32
to 100, and AUC increased from 0.91 to 0.96.

Admittedly, heterogeneity still exists when interpreting the results of any meta-analysis. In our study, heterogeneity
does not come from the threshold effect. However, in the sensitivity analysis, after excluding the outlier, the overall
pooled sensitivity, sensitivity, PLR, DOR, and AUC all increased while NLR decreased suggesting that the outlier
is probably a source of heterogeneity. In addition, as the P value of I2 for the overall study altered inconspicuously,
substantial heterogeneity from non-threshold effect still exists among studies to some extent. Although we have made
every effort to avoid bias during the process of our study, there were still some limitations in this meta-analysis. In the
first place, several valuable studies may be missed in spite of the comprehensive search strategy during our literature
search. What’s more, diagnostic performance maybe affected as the majority of healthy people were randomly selected
as controls and were not blind designed.

Conclusions
Taken together, for the first time, our meta-analysis focuses on the diagnostic performance of circulating miRNA-122
in HBV- and/or HCV-associated chronic viral hepatitis detection, and it is concluded that circulating miRNA-122
has a relatively high diagnostic value for chronic viral hepatitis detection, especially in patients of HCV-associated
chronic viral hepatitis. However, in the future, well-designed, large-scale and accurate researches are still needed to
consolidate the results of this meta-analysis in clinical practice. The ultimate purpose is to combine clinical variables
with those available in public databases to open avenues for prospective trials of a non-invasive diagnostic test for
enhancing the early detection of patients with chronic viral hepatitis.
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