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Organic push-pull systems featuring through-space charge transfer (TSCT) excited states have been disclosed to be capable of
exhibiting thermally activated delayed fluorescence (TADF), but to realize high-efficiency long-wavelength emission still
remains a challenge. Herein, we report a series of strongly emissive orange-red and red TSCT-TADF emitters having (quasi)
planar and rigid donor and acceptor segments which are placed in close proximity and orientated in a cofacial manner.
Emission maxima (λem) of 594−599 nm with photoluminescence quantum yields (PLQYs) of up to 91% and delayed
fluorescence lifetimes of down to 4.9μs have been achieved for new acceptor-donor-acceptor (A-D-A) molecules in doped thin
films. The presence of multiple acceptors and the strong intramolecular π-stacking interactions have been unveiled to be
crucial for the efficient low-energy TSCT-TADF emissions. Organic light-emitting diodes (OLEDs) based on the new A-D-A
emitters demonstrated electroluminescence with maximum external quantum efficiencies (EQEs) of up to 23.2% for the red
TSCT-TADF emitters. An EQE of 18.9% at the brightness of 1000 cdm-2 represents one of the highest values for red TADF
OLEDs. This work demonstrates a modular approach for developing high-performance red TADF emitters through
engineering through-space interactions, and it may also provide implications to the design of TADF emitter with other colours.

1. Introduction

The past decade has witnessed a booming research interest
in seeking luminescent purely organic push-pull molecules
that can harvest triplet excitons for organic light-emitting
diode (OLED) applications owing to their advantages over
noble metal complexes in terms of low cost. Rather than
direct radiative decay of the lowest lying triplet excited state
(T1) to give phosphorescence, the upconversion of T1 exci-
tons to singlet ones (S1) which subsequently radiate to give
thermally activated delayed fluorescence (TADF) has been
devised for organic molecules to circumvent their very slow
phosphorescent decay processes [1, 2]. It can be seen that a
key to efficient TADF is a fast T1→S1 reverse intersystem
crossing (RISC) process which is executed by an electron

spin-flip. According to the Fermi golden rule under the Con-
don approximation, RISC rate correlates proportionally with
spin-orbit coupling matrix element (SOCME) between the
coupling singlet and triplet excited states and inversely with
their energy difference (ΔEST). Taking into account of the
very small SOCME for purely organic molecules devoid of
a heavy atom, a rapid RISC takes place only when the cou-
pling singlet and triplet excited states are close in energy,
that is, a trifling ΔEST. To this end, it has been a consensus
to design molecules with spatially separated highest occu-
pied molecular orbital (HOMO) and lowest unoccupied
molecular orbital (LUMO) which can effectively minimize
the exchange interaction. Following this principle, efficient
TADF emissions with widely tunable excited state properties
including energies and lifetimes have been realized through
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connecting an electron donor (D) and an acceptor (A) in a
twisted manner [3–5].

Alternatively, construction ofmolecular scaffolds featuring
intramolecular through-space charge transfer (TSCT) excited
states as opposed to through-bond charge transfer (TBCT)
between the D and A offers another molecular design of TADF
emitters on account of their intrinsically small ΔEST values
[6–21], whereas early efforts to develop TSCT-TADF mole-
cules have been frustrated by the weak through-space elec-
tronic coupling within the D-A pair and the presence of
abundant intramolecular motions [17–21]. In this context, sig-
nificant enhancements in photo- and electroluminescence effi-
ciencies have recently been achieved for TSCT-TADF small
molecules, polymers, and dendrimers (Figure S1) [22–33].
Remarkably, Kaji and coworkers reported a significantly
boosted RISC rate for a triptycene-supported molecule by
virtue of a vibronically coupled spin-orbit coupling (SOC)
effect [30]. The space-confining effect has been exploited for
greatly suppressing the nonradiative decay of TSCT excited
states [31–33]. However, high-efficiency TSCT-TADF
emissions have been mainly limited to the blue-to-green
regime with only few reports on relatively weak red
emissions [25, 28]. Although various D-A combinations have
been developed for widely tuning the colours of TBCT-
TADF emitters, they may not be well suited for the design of
TSCT-TADF emitters if their geometric structures do not
favour through-space interactions [34]. In particular, the
suppression of nonradiative decay is essential for efficient red
emissions to offset the energy gap law [35, 36]. Therefore, a
molecular design that allows for simultaneous manipulations
of all these parameters has become an imperative demand.

The cofacial donor-acceptor orientation has proven cru-
cial for regulating the electronic communications and thus
the excited state dynamics of push-pull dyads, which is an
important topic in the studies of charge-separated states
[37–39]. However, its implications on TADF properties have
been scarcely explored. We recently demonstrated highly
efficient green TADF and phosphorescence emissions by
confining quasiplanar motifs to have a face-to-face orienta-
tion [40, 41]. We envisioned that this molecular design
leveraging on strong intramolecular π-stacking interactions
would be able to break the efficiency limit on long wave-
length TSCT-TADF emissions, as opposed to an edge-to-
face orientation. Herein, we designed four molecules,
DPXZ-QX, DPXZ-DFQX, DPXZ-2QX, and DPXZ-2DFQX
using planar dibenzo[a,c]phenazine (QX) and its fluorinated
derivative (DFQX) as the acceptors (Figure 1) [42–49]. The
quasiplanar O-bridged triphenylamine (DPXZ) was used as
the donor [40, 41, 50]. For comparison, triphenylamine
(TPA) and phenoxazine (PXZ) were used as the donors to
prepare the control compounds TPA-QX and PXZ-QX.
Single-crystal X-ray diffraction studies revealed substantial
face-to-face alignment of the donor and acceptor and thus
strong π-π interactions in the four molecules containing
DPXZ. These four emitters exhibit orange-red to red
TSCT-TADF emissions with photoluminescence quantum
yields (PLQYs) of 70−91% in doped films and have demon-
strated OLEDs (λem = 588 – 617 nm) with maximum exter-
nal quantum efficiency (EQE) over 23%. In stark contrast,

TADF properties were not observed for TPA-QX and PXZ-
QX, revealing the crucial role of face-to-face orientation in
promoting electronic communications for TSCT-TADF
emission.

2. Results

2.1. Molecular Design, Synthesis, and Structures. Geometries
of the donor and acceptor and their relative orientation consti-
tute the two key factors steering the strength of π-π interactions.
As shown in Figure S1, the two planes at orthopositions of five-
and six-membered rings are largely deviated from a parallel
orientation. In these two cases, close contacts only exit
between atoms near the bridge. Other prevailing bridges based
on anthracene- and xanthene-type skeletons have been used
for underpinning two planes in parallel [51]. However, only
intramolecular π-π interactions between partial planes on the
rigid anthracene can be found after significant torsion.
Despite the shortening of distance between the anchorages in
a bent geometry in xanthene, its flexibility is deleterious to
emission efficiency [21]. In contrast, carbazole and fluorene
derivatives can confine the two planes to be in proximity with
a large degree of π-π overlap [31–34, 40, 41]. In addition, this
kind of skeletons allows for a construction of sandwich-type
molecular architecture in which intramolecular interactions
can be further strengthened. More importantly, the presence
of multiple donors/acceptors has proven capable of boosting
RISC between states with different orbital configurations
[52–56]. Illustration of the design concept from “edge-to-face”
to sandwich-type “face-to-face” is shown in Figure 1(a),
following which the emitters in this study have been
developed (Figure 1(b)).

All target compounds were prepared by a three-step pro-
cedure (Supplementary Materials) and obtained as yellow-
to-orange powders. Their structures were characterized by
1H and 13C NMR spectroscopy, high-resolution mass spec-
trometry, elemental analysis, and single-crystal X-ray dif-
fractions. Thermogravimetric analysis (TGA) revealed high
decomposition temperatures (Td at a 5% weight loss) of
402−470°C for all the six compounds under Ar, among
which the lowest thermal stability was observed for TPA-
QX (Figure S2).

All single crystals of the present compounds were grown
by slow evaporation of their solutions inmixed dichlorometh-
ane (DCM)/hexane. The crystal data are compiled in
Tables S1–S3 (Supplementary Materials). As depicted in
Figures 1(c) and S3, the QX and DFQX in all molecules have
a flat geometry and are tilted with respect to the carbazole
plane (torsion angles: 48−70°). The short distances (ca.
3.5Å) between the donor and acceptor segments in DPXZ-
QX, DPXZ-DFQX, DPXZ-2QX, and DPXZ-2DFQX signify
strong π-π stacking interactions. Of note, the attractive force
buckles the DPXZ to allow for a parallel orientation of the
participating Ph ring relative to the QX plane. The force also
leads to an antiparallel orientation of the two QX/DFQX
planes in DPXZ-2QX and DPXZ-2DFQX, endowing them
with a C2 symmetry. A pair of enantiomers are observed for
the crystals containing DPXZ. Differently, there is no
evident short π-π contact in TPA-QX and PXZ-QX. Instead,
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C-H⋯π interactions result from the edge-to-face alignment
of the donor and acceptor.

To validate the rational design in this work, the electronic
structures of all molecules were studied through theoretical
calculations using dispersion-corrected density functional
theory (DFT) and time-dependent DFT (TDDFT) [57]. First,
theoretical insights into the intramolecular π-π stacking
interactions were gained by reduced gradient density
(RGD) analysis of the optimized ground state (S0) structure
[58]. The spikes within ±0.02 a.u. of the sign (λ2)ρ value
reveal the presence of noncovalent interactions which are
the strongest in the A-D-A structures (Figure S4). It can be
clearly seen from the RDG isosurfaces that the noncovalent
interactions are mainly confined to the space between the
donor and acceptor in each molecule. As illustrated in

Figure S5, the HOMO in the S0 geometry for each molecule
is predominantly localized on the donor (TPA, PXZ, or
DPXZ) with a very minor contribution from the
nonbonding p orbital of the N(carbazoyl) atom. The
LUMO is localized on the QX/DFQX moiety. Natural
transition orbital (NTO) analyses of their S1 states show a
TSCT nature (Figures 2 and S5). However, the T1 states of
TPA-QX and PXZ-QX are dominated by a local-excitation
(LE) character of QX, in contrast to the TSCT nature of T1
states for the others. This difference is caused by the
destabilized 1,3TSCT states when TPA or PXZ is used,
which also result in relatively larger ΔEST values. Therefore,
an energy diagram that does not favour the TADF process
is obtained for TPA-QX and PXZ-QX. Of interest, the
presence of multiple acceptors imparts the sandwich-type
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Figure 1: Design principle and structures of compounds in this study. (a) Illustration of the molecular design of A-D-A-type TSCT emitters
with a sandwich configuration. (b) Chemical structures of TPA-QX, PXZ-QX, DPXZ-QX, DPXZ-DFQX, DPXZ-2QX, and DPXZ-2DFQX. (c)
Perspective views of the single crystal structures of TPA-QX, DPXZ-QX, and DPXZ-2QX with key short C-π/π-π distances indicated.
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emitters DPXZ-2QX and DPXZ-2DFQX dense excited states
that should facilitate the RISC process as per the El-Sayed
rule [52–56]. It is worth mentioning that the literature
reports on engineering of multiple charge transfer excited
states are majorly limited to D-A-D-type molecules with
few exceptions of A-D-A congeners [59]. Importantly, the
calculated oscillator strength (f) values of up to 10-2 are
significantly high among the TSCT transitions, implying
strong electronic coupling between HOMO and LUMO in
DPXZ-2QX and DPXZ-2DFQX.

2.2. Photophysical Properties. The electronic spectra of all the
cofacial D-A and A-D-A stacks were recorded in toluene at
room temperature. The four precursors CQX, CDFQX,
C2QX, and C2DFQX, which do not contain the D moiety
(Supplementary Materials), were studied under the same con-
ditions. As depicted in Figures 3(a) and S6, all of the com-
pounds exhibit similar UV-Vis absorption spectral profiles.
The intense absorptions in the region below 300nm and in
340−410nm are assigned to π-π ∗ and charge transfer (carba-
zole→QX/DFQX) transitions, respectively. Close inspection
of the absorption spectra of the D-A and A-D-A compounds
show additional broad absorption tails in the lowest energy
regime with much lower intensities. They are attributed to

direct charge transfer transitions from the donor (TPA, PXZ,
or DPXZ) to QX/DFQX, evidencing the presence of apprecia-
ble through-space electronic interactions.

For assignment of the emitting states, the photolumines-
cence spectra of the four precursors were firstly examined to
identify the excited state energy levels of fragments. As illus-
trated in Figures 3(b) and S7, vibronically structured emis-
sions with peak maxima (λmax) at 428−442nm are
observed for CQX, CDFQX, C2QX, and C2DFQX in nonpo-
lar hexane, which are assigned to singlet LE states of the QX
and DFQX moieties (termed 1LEA where the subscript A
denotes acceptor). The 1TBCT states arising from carbazo-
le→QX/DFQX transitions are proposed to lie at higher
energy levels in hexane. Increasing solvent polarity switches
on their 1TBCT emissions in toluene (λmax = 464 – 490 nm)
and dichloromethane (λmax = 556 – 586 nm). Taking
DPXZ-QX as an example, new broad lower-energy emission
bands appear at λmax = 571 and 614nm in hexane and tolu-
ene (Figure 3(c)), respectively, in comparison with the emis-
sions of its precursor CQX. These bands are assigned as
1TSCT (DPXZ→QX) emissions. The coexistence of
1LEA/

1TSCT and 1TBCT/1TSCT emissions in hexane and
toluene reveals incomplete internal conversion (IC), pre-
sumably due to weak coupling between the TSCT and
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Figure 2: Theoretical simulations. NTOs of the S1, T1, and T2 states at optimized S0 structure (green: hole; purple: particle) and calculated
energy level of each state for TPA-QX, DPXZ-QX, and DPXZ-2QX.
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TBCT/LE states [60, 61]. It is noted that simultaneous 1LEA
and 1TBCT emissions have not been observed for CQX or
DPXZ-QX in any solvent, revealing stronger coupling
between these two states. In DCM, however, only a single

emission band at λmax = 541 nm is observed for DPXZ-QX.
Given that the TSCT state in DCM should be further stabi-
lized, the single band is assigned to the 1TBCT emission,
meaning that the 1TSCT state in DCM is dark, which can
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be accounted for by a fast nonradiative decay of the TSCT
state. The emission behaviours of TPA-QX, PXZ-QX, and
DPXZ-DFQX in different solvents are akin to those of
DPXZ-QX (Figure S8). On the basis of these findings, a
diagram showing the solvent polarity-dependent emitting
state(s) and their interplays is proposed in Figure 3(e) (left
panel). In stark contrast, the single emission for A-D-A-
type DPXZ-2QX and DPXZ-2DFQX in each solvent
suggests stronger electronic communications between
TSCT and TBCT/LE states which should be owing to
enhanced interactions. As a result, a different excited state
evolution dynamics is proposed, as shown in Figure 3(e)
(right panel). Of note, the oxygen effects on the emissions
of all the D-A and A-D-A emitters in fluid solutions were
also preliminarily examined. As depicted in Figure S9, an
enhancement of TSCT emission in the absence of air was
observed in hexane, suggestive of the TADF characteristic.

The solid-state emission properties of all the D-A and A-
D-A compounds were studied in a panel of hosts including
polymethyl methacrylate (PMMA), 1,3-bis(N-carbazolyl)
benzene (mCP), 9,9′-biphenyl-3,3′-diylbis-9H-carbazole
(mCBP), 4,4′,4″-tris(carbazole-9-yl) triphenylamine (TCTA),
and 2,2,2″-(1,3,5-benzinetriyl)-tris(1phenyl-1-H-benzimid-
azole (TPBI). All emitters in doped films display single emis-
sions at room temperature (Figure S10). By comparing with
the emissions of their precursors (Figure S11), the emissive
states for all the compounds in the solid state are assigned as
TSCT in nature. Enhanced through-space electronic
coupling interactions are surmised to boost the IC processes,
leading to the populations of lowest-lying TSCT states.
Impressively, the PLQYs for the emitters containing DPXZ
are determined to be 71−91% and 65−86% in mCP and
mCBP under Ar, respectively (Tables 1 and S4). In contrast,
TPA-QX and PXZ-QX show much lower PLQYs (Table 1).
To study their emission mechanisms, phosphorescence
spectra of all emitters in different hosts at 77K were also
recorded. As depicted in Figures 4 and S10, TPA-QX and
PXZ-QX have similar phosphorescence energies which are
assigned to 3LEA-dominated states. Differently, the emission
envelopes become less structured for DPXZ-QX/DPXZ-
DFQX and DPXZ-2QX/DPXZ-2DFQX. This trend suggests
an increasing 3CT character of the T1 state. As a result, the

S1 and T1 states become close for these four molecules with
ΔEST values smaller than 0.1 eV (Tables 1 and S4). In
contrast, the ΔEST values of TPA-QX and PXZ-QX are
estimated to be up to 0.40 eV. In line with the theoretical
prediction, transient PL measurements of all emitters in
mCP show long-lived components for those containing
DPXZ, corroborating their TADF nature (Figures 4 and
S12). Variable temperature transient PL characteristic of
DPXZ-2QX clearly confirms the TADF mechanism (Figure 4
(d)). To the best of our knowledge, all compounds except
TPA-QX represent the rare examples of orange-red to red
TSCT-TADF emitters in the literature [25, 28]. Remarkably,
the average delayed fluorescence lifetimes (τd) are reduced
from 26.9 and 6.8μs for DPXZ-QX and DPXZ-DFQX to 8.7
and 4.9μs for DPXZ-2QX and DPXZ-2DFQX, respectively.
Kinetic analysis of the excited state processes shows higher
RISC rates of 4:64 – 8:21 × 10−5 s−1 for the A-D-A
emitters in comparison with the D-A congeners (Tables 1
and S5). The presence of two close-lying 3CT states likely
opens multiple RISC channels for DPXZ-2QX and DPXZ-
2DFQX [52–56]. Notably, the delayed fluorescence lifetime
is much shorter for DPXZ-DFQX than for DPXZ-QX. It has
been established that an intervention of the 3LE state between
the 1CT and 3CT states can boost the RISC rate significantly
[52–56]. A slight increase of the acceptor strength in DPXZ-
DFQX engenders more stabilized 1,3CT states between which
the 3LE regulation is more pronounced. This difference is
minimized for DPXZ-2QX and DPXZ-2DFQX because of the
presence of another CT state which can also boost the RISC.

2.3. Electrochemistry. The electrochemical properties of all
compounds were examined by cyclic voltammetry in DCM
(Table 1). As shown in Figure S13, two quasireversible
oxidations were observed for each compound with half-
potentials (E1/2) in the range of 0.77−0.92 and 1.32−1.44V
versus Ag/AgCl, respectively. The first couple is assigned to
the oxidation of TPA, PXZ, or DPXZ. The second couple
is the carbazole-centered redox process. Irreversible waves
with onset potentials (Eonset) ranging from -1.41 to -1.31V
(versus Ag/AgCl) were noted in the cathodic scan,
corresponding to the reductions of the QX and DFQX
moieties. By referring to the redox potential of Cp2Fe

+/0, the

Table 1: Photophysical and electrochemical data.

Compounds λem
a (nm) τp

a (ns) τd
a (μs) ΦPL

b (%) ΔEST
c (eV) kRISC

d (105 s-1)
E1/2 (ox)

(V)
Eonset (red)

(V)
EHOMO

e

(eV)
ELUMO

f

(eV)

TPA-QX 535 30.2 — 44 0.38 — 0.92, 1.34 -1.33 -5.25 -3.00

PXZ-QX 573 62.3 — 32 0.24 — 0.78, 1.32 -1.32 -5.11 -3.01

DPXZ-QX 582 91.0 26.9 74 0.09 1.86 0.77, 1.44 -1.38 -5.10 -2.95

DPXZ-DFQX 595 144.1 6.8 71 0.01 4.33 0.78, 1.43 -1.31 -5.11 -3.02

DPXZ-2QX 594 151.8 8.7 87 0.02 8.21 0.76, 1.41 -1.41 -5.09 -2.92

DPXZ-2DFQX 599 155.9 4.9 91 -0.05 4.64 0.80, 1.42 -1.31 -5.13 -3.02
aFluorescence emission peak, lifetimes of prompt (τp) and delayed (τd) fluorescence for 5 wt% mCP films at room temperature under an argon atmosphere.
bAbsolute PLQYs of the 5 wt% mCP films determined using an integrating sphere at room temperature under an argon atmosphere. cΔEST calculated from the
high-energy onsets of the fluorescence spectra (room temperature) and phosphorescence spectra (77 K) of the 5 wt% mCP films. dRISC rate. eEstimated by
EHOMO = −e½E1/2ðoxÞ − E1/2 ðFc+/FcÞ� − 4:8 eV. fEstimated by ELUMO = −e½EonsetðredÞ − E1/2 ðFc+/FcÞ� − 4:8 eV; E1/2 ðFc+/FcÞ = 0:47V.
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HOMO levels (ca. −5.1 eV) are estimated to be comparable for
all molecules except TPA-QX (-5.25 eV). The deeper HOMO
level for TPA-QX is consistent with the theoretical simulation
and spectroscopic results. As expected, the presence of F atoms
on the acceptor stabilizes the LUMOs for DPXZ-DFQX and
DPXZ-2DFQX in comparison with DPXZ-QX and DPXZ-
2QX. It is notable that DPXZ-QX has a slightly higher LUMO
level than TPA-QX and PXZ-QX, likely due to stronger
interactions between more planar DPXZ and QX.

2.4. Electroluminescence Performance. Light-emitting devices
using strongly luminescent DPXZ-QX, DPXZ-DFQX, DPXZ-
2QX, and DPXZ-2DFQX as the dopants were fabricated
through vacuum deposition with an architecture of ITO/
HAT-CN (5nm)/TAPC (30nm)/TCTA (15nm)/mCBP
(10nm)/mCBP:emitter (15nm)/POT2T (20nm)/ANT-BIZ
(30nm)/Liq (2nm)/Al (100nm) (Figure 5(a)). Chemical

structures of 1,4,5,8,9,11-hexaazatriphenylene hexacarboni-
trile (HAT-CN), di-[4-(N,N-ditolyl-amino)-phenyl]cyclohex-
ane (TAPC), 4,4′,4″-tris(carbazole-9-yl)triphenylamine
(TCTA), 9,9′-biphenyl-3,3′-diylbis-9H-carbazole (mCBP),
(1,3,5-triazine-2,4,6-triyl)tris(benzene-3,1-diyl)tris(diphenyl-
phosphine oxide) (POT2T), and 1-[4-(10-[1,1′-biphenyl]-4-
yl-9-anthracenyl)phenyl]-2-ethyl-1H-benzimidazole (ANT-
BIZ) are depicted in Figure 5(b). The neat films of HAT-CN,
TAPC, TCTA, POT2T, and ANT-BIZ act as hole-injection,
hole-transporting, electron/exciton blocking, hole/exciton
blocking, and electron-transporting layers, respectively. An
additional layer of mCBP was also inserted adjacent to the
emitting layer to confine excitons. Device characteristics are
plotted in Figures S14–S17 and the representative data of
DPXZ-QX and DPXZ-2QX in Figure 5. The key numerical
device data are compiled in Table 2 (DPXZ-QX and DPXZ-
2QX) and Table S6 (DPXZ-DFQX and DPXZ-2DFQX).
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The electroluminescence (EL) maxima lie at 594
−599nm, 602−617nm, 605−616nm, and 616−625nm for
DPXZ-QX, DPXZ-DFQX, DPXZ-2QX, and DPXZ-2DFQX,
respectively, dependent on dopant concentrations. In line
with their PL difference, the EL spectra of devices based on
DPXZ-2QX and DPXZ-2DFQX are redshifted from their

double-decker congeners. The maximum EQE/current effi-
ciency/power efficiency are recorded as 23.2%/38.6 cdA-1/
30.3 lmW-1, respectively, for the device with 6wt% DPXZ-
2QX. The efficiencies are twofolds higher than the previous
record value for red TSCT-TADF OLEDs (Figure 5(f))
[28]. It is worth mentioning that most of the red TBCT-
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TADF emitters in the literature use triphenylamine (TPA)
and its substituted derivatives as the donor [42–49, 62, 63].
As summarized in Table S7, the maximum EQE of 23.2%
for DPXZ-2QX represents one of the highest efficiencies for
red TADF emitters without using TPA and its substituted
derivatives as the donor [43, 46, 47, 59, 64–67]. It is noted
DPXZ-DFQX and DPXZ-2DFQX have lower EQEs than
the emitters without containing F atoms, presumably due
to the self-quenching effect for the former. The higher
concentration-sensitivity of device EQEs for DPXZ-DFQX
and DPXZ-2DFQX also supports this proposition. Among
the four examined emitters, DPXZ-QX shows the largest
efficiency roll-off at high luminance, which should be
mainly due to its much longer delayed fluorescence
lifetime. Akin to a previous finding [40], a higher
concentration was found to be beneficial for reducing
efficiency roll-off at high brightness. Improved charge
balance is proposed to be responsible for this characteristic.
With a weak concentration-quenching effect and a short
delayed fluorescence lifetime, the EQE of the device doped
with 12wt% DPXZ-2QX remains as high as 18.9% at the
luminance of 1000 cdm-2. It is remarkable that this
performance is superior than most of the red TADF
emitters, irrespective of a TBCT or TSCT process (Figure 5
(h) and Table S7). For instance, despite a high maximum
EQE over 30%, the value dramatically drops to 6.4% at
the brightness of 1000 cdm-2 [68]. Therefore, the
accomplishments herein demonstrate that a TSCT design
integrating high molecular rigidity, strong intramolecular
π-π interactions, and multiple donors/acceptors is viable to
deliver high-performance red TADF devices.

3. Discussion

In summary, a molecular design of high-performance
orange-red to red TADF emitters featuring intramolecular
TSCT excited states has been demonstrated. The confining
of rigid and (quasi)planar donor and acceptor(s) in a face-
to-face orientation, which allows for strong intramolecular
π-stacking interactions within the donor-acceptor pair,
ensures concurrently boosted radiative charge transfer
transition and suppressed nonradiative decay. Together with
the regulation of the RISC rate by using multiple acceptors,

an acceptor-donor-acceptor-type emitter with a sandwich
configuration has been developed to deliver high-
performance red OLEDs with a high external quantum
efficiency and a small efficiency roll-off. This achievement
substantiates the significance of control over the conforma-
tion and orientation of donor-acceptor for the design of
high-efficiency TSCT-TADF emitters. The engineering of
intramolecular cofacial π-stacking interactions provides a
modular approach to the development of full-colour high-
performance TADF emitters.
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Conc. L (cdm-2)a CE (cdA-1)b PE (lmW-1)b EQE (%)b λmax (nm)c CIE (x, y)c

DPXZ-QX

3wt% 11700 48.02; 9.98 44.44; 5.23 19.40; 4.52 594 0.48; 0.43

6wt% 15400 48.60; 11.74 42.41; 6.15 20.56; 5.43 597 0.52; 0.44

12wt% 21400 37.56; 19.91 32.78; 12.03 18.86; 10.19 599 0.56; 0.43

DPXZ-2QX

3wt% 21300 37.75; 16.60 29.65; 8.15 19.95; 9.03 605 0.56; 0.42

6wt% 28400 38.59; 24.20 30.31; 13.58 23.16; 14.39 609 0.59; 0.41

12wt% 35200 30.88; 27.96 24.26; 18.30 21.14; 18.91 616 0.60; 0.39
aMaximum luminance; bvalues of current efficiency (CE), power efficiency (PE), and external quantum efficiency (EQE) at maximum and 1000 cdm-2; cλmax

and CIE coordinates at 1000 cdm-2.
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TDDFT calculations. Figures S6-S12 and Tables S4-S5:
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Figures S14-S17 and Table S6: OLED data. Table S7: compar-
ison of the present device performances with those in the
literature reports. (Supplementary Materials)
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