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Abstract. nimT encodes a protein in Aspergillus nidu- 
lans that is required for tyrosine dephosphorylation of 
p34 ~2 and has a strong homology to cdc25-type pro- 
teins. Conditional mutation of nimT (nimT23 mutation) 
arrests cells in G2 at the restrictive temperature. After 
release of the temperature-sensitive nimT23 block, 
p34 ~2 undergoes tyrosine dephosphorylation and we 
showed that as cells entered mitosis, a rapid increase 
in calmodulin was observed. The increase in calmodu- 
lin and progression into mitosis were prevented by re- 
ducing extracellular Ca 2÷ levels to 2 nM. The calmod- 
ulin gene of a nimT23-containing strain was replaced 
with a hybrid gene in which calmodulin transcription 
was regulated by the alcA promoter (AlcCaM/T23). 
This allowed experimental manipulation of the level of 
intracellular calmodulin by the carbon source in the 
medium. When either extracellular Ca 2+ or intracellu- 

lar calmodulin levels were reduced at the nimT23 G2 
arrest point, p34 ~¢2 remained tyrosine phosphorylated 
but the mitotic NIMA kinase encoded by nimA was 
not activated. Release of the temperature sensitive 
nimT23 arrest when either extracellular Ca :÷ or cal- 
modulin concentrations were low blocked tyrosine de- 
phosphorylation of p34 ~c2, activation of NIMA and 
progression of cells into mitosis. However, reduced 
levels of either Ca 2÷ or calmodulin had no effect on the 
increase in histone H1 kinase activity associated with 
p13 beads or the degree of phosphorylation of the ma- 
jority of MPM-2-reacting proteins following release of 
the nimT23 mutation. These results demonstrate that 
both Ca 2+ and calmodulin are important for progres- 
sion into mitosis from the nimT23 arrest point in a 
pathway involving activation of both NIMA and p34 ~¢2 
protein kinases. 

C 
ALCIUM has been shown to be critical for G2/M pro- 
gression in marine eggs (for review see Whitaker 
and Patel, 1990). For example, transient increases in 

intracellular free Ca 2÷ are associated with nuclear envelope 
breakdown in sea urchin eggs (Poenie et al., 1985) and mi- 
croinjection of the Ca 2÷ chelators EGTA or BAPTA blocks 
breakdown of the nuclear envelope (Steinhardt and Alder- 
ton, 1988; Twigg et al., 1988). Causing a premature increase 
in intracellular Ca 2+ by microinjecting either Ca 2÷ or IP3 in- 
duces a rapid and precocious entry into mitosis (Twigg et 
al., 1988). These results indicate that the Ca 2+ transients 
are both necessary and sufficient for the initiation of mitosis 
in sea urchin eggs. Similarly, in clam eggs, a requirement for 
Ca 2÷ has been shown for the initiation of germinal vesicle 
breakdown and meiosis immediately following fertilization 
which triggers influx of extracellular Ca 2÷ (Guerrier et al., 
1981; Dube et al., 1987; Bloom et al., 1988). Considerable 
evidence is also available that points to an importance for 
Ca 2+ and calmodulin in the G2 to mitosis transition of mam- 
malian cells (for review see Means et al., 1991). Both Ca 2÷ 
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and calmodulin are concentrated in the centrosomal region 
of the mitotic spindle (Welsh et al., 1978; 1979; Wolniak et 
al., 1980). Transient increases in intracellular Ca 2+ have 
been shown to be associated with nuclear envelope break- 
down and chromatin condensation (Keith et al., 1985; Kao 
et al., 1990). Artificially elevated cytosolic free Ca 2+ con- 
centrations were shown to induce premature breakdown of 
the nuclear envelope which could be blocked by a decrease 
in intracellular Ca 2+ levels (Kao et al., 1990). Reduction of 
functional calmodulin accomplished by either exposure to 
calmodulin antagonists or expression of calmodulin antisense 
RNA blocks progression into mitosis (Rasmussen and 
Means, 1989; Sasaki and Hidaka, 1982; Chafouleas et al., 
1982), indicating the involvement of calmodulin. However, 
because of the pleotypic effects of Ca 2+ and calmodulin, it 
could be argued that the cell effects are of a general rather 
than a specific nature. 

To address the nature of the role for calmodulin in cell cy- 
cle progression, we created a strain of Aspergillus nidulans 
in which calmodulin expression is conditional and demon- 
strated that manipulation of calmodulin levels allowed induc- 
tion of a reversible G2 arrest of the nuclear division cycle (Lu 
et al., 1992). Threshold levels of intracellular calmodulin 
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were found to be required for release from the block and sub- 
sequent entry of the cells into mitosis (Lu et al., 1992; Ras- 
mussen et al., 1992). Overexpression of calmodulin both in- 
creased the rate of growth and decreased the requirement for 
optimal extracellular Ca 2÷ by a factor of 10. Whereas it is 
formally possible that these requirements are not linked and 
that the essential function of calmodulin does not require 
Ca 2+ binding as is the case in Saccharomyces cerevisiae 
(Geiser et al., 1991), these observations support the notion 
that Ca 2÷ and calmodulin are required for cells to progress 
from G2 into mitosis in A. nidulans. However, nothing is 
known about whether Ca2+/calmodulin affects some selec- 
tive protein targets at this transition of cell cycle progression. 

Genes required for G2/M progression encode both protein 
kinases and phosphatases. The protein kinase (p34 ~dc2) en- 
coded by the cdc2 gene of S. pombe and its homologs in other 
species is the most widely studied of the mitotic protein ki- 
nases and has been demonstrated to be functionally con- 
served (Beach et al., 1982; Lee and Nurse, 1987; Murray 
and Kirschner, 1989; Nurse, 1990). The p34 c~c2 protein ki- 
nase is the catalytic subunit of maturation promotion factor 
(MPF), l a multi-protein complex that includes p34 ~2 and 
cyclin B, and is thought to regulate mitosis and meiosis in 
all eukaryotes (Arion et al., 1988; Gautier et al., 1988; 
Labbe et al., 1989). Activity of the p34 c~2 protein kinase 
has been shown to be modulated posttranscriptionally by 
tyrosine and threonine phosphorylation/dephosphorylation 
and interaction with cyclin proteins. The phosphorylation of 
p34 ¢d~2 on a threonine residue (amino acid [aa] 167 in 
fission yeast, or aa 161 in Xenopus) seems important for 
binding to mitotic cyclin (Gould et al., 1991; Norbury et al., 
1991) and for mitotic progression (Gould et al., 1991; Solo- 
mon et al., 1992). During interphase, cyclin binding targets 
p34 ~d~2 for tyrosine phosphorylation (aa 15 in fission yeast; 
Gould and Nurse, 1989; Meijer et al., 1991). Two protein 
kinases, WEE1 and MIK1, have been shown to be responsible 
for p34 ~c2 tyrosine phosphorylation, resulting in an inactive 
p34 ~dc2 (Featherstone and Russell, 1991; Lundgren et al., 
1991). During the G2/M transition, the protein encoded by 
the cdc25 gene of S. pombe, and its homolog in other sys- 
tems, is activated. The active cdc25 protein is a tyrosine 
phosphatase which specifically removes tyrosine phosphate 
from p34¢d% thereby activating the protein kinase (Gould 
and Nurse, 1989; Morla et al., 1989; Dunphy and Newport, 
1989; Solomon et al., 1990; Dunphy and Kumagai, 1991; 
Gautier et al., 1991). 

A homolog of cdc25 in A. nidulans has recently been 
identified as the product of the nimT gene (Osmani et al., 
1991a; O'Connell et al., 1992). Strains containing a temper- 
ature sensitive mutation of nimT ~c25 (nimT23) are arrested 
in G2 at the restrictive temperature with p34 ¢d~2 tyrosine 
phosphorylated. Upon release from the block, p34 ¢d~2 ki- 
nase is tyrosine dephosphorylated and activated, resulting in 
entry of cells into mitosis. However, whereas activation of 
p34 ~2 kinase is required, it is not sufficient to trigger mito- 
sis in A. nidulans if the NIMA protein kinase encoded by 
nimA is not activated (Osmani et al., 1991a). The NIMA ki- 
nase is a cell cycle-dependent/3-casein kinase that exhibits 

1. Abbreviations used in this paper: aa, amino acid; MPE maturation pro- 
moting factor. 

elevated activity during late G2 and M (Osmani et al., 
199 lb). Temperature sensitive mutations of nimA cause a G2 
arrest at the restrictive temperature. During the block, 
p34 cdc2 kinase is tyrosine dephosphorylated and fully acti- 
vated. Upon returning to the permissive temperature, the ar- 
rested cells rapidly and synchronously enter mitosis, demon- 
strating that the NIMA kinase is also required to enter 
mitosis. These results indicate that activation of both p34 c~c2 
and NIMA kinases are mandatory for mitosis in A. nidulans 
(Osmani et al., 1991a). 

Since mitotic progression requires the activities of the 
p34 cd~2 and NIMA protein kinases in A. nidulans, and this 
cell cycle transition also requires Ca 2÷ and calmodulin, we 
have questioned whether extracellular Ca 2+ and calmodulin 
would affect activation of either one or both of these mitotic 
kinases. Our results indicate that Ca 2+ and calmodulin are 
not required for tyrosine phosphorylation of p34 cdc2 at the 
nimT23 G2 arrest point, nor required for the increase in his- 
tone HI kinase activity associated with p13 beads or most 
protein phosphorylation detected by the MPM-2 mAb after 
release of the temperature sensitive nimT23 mutation. How- 
ever, both Ca 2+ and calmodulin are required for entry of 
cells into mitosis, activation of the NIMA kinase, and tyro- 
sine dephosphorylation of p34 ~d~2. 

Materials  and Methods  

A. nidulans Strains and General Techniques 

Strains used in this study were R153 (wA3; pyroA4), SO7 (nimA5) 
(nimAS;wA2), SO53 (nimT23) (nimT23; wA2), PL0 (AIcCaM) (alc:cal- 
modulin; wA2; pyroA4), and PL7 (AlcCaM/T23) (alc:calmodulin; nimT23; 
wA2; biA1; pabaA1). The AlcCaM/T23 strain was created from SO26 
(nimT23; pyrG89; wA2; biA1; pabaA1) by transformation with plasmid 
pAL-CaMKP containing a pAL3 vector and a copy of the calmodulin gene 
with a 3' deletion driven by the alcA promoter, as described previously (Lu 
et al., 1992; Lu and Means, 1993). Growth and fluorescence microscopy 
of A. nidulans were as described previously (Rasmussen et al., 1990; Lu 
et al., 1992), as were cell cycle blocks (Osmani et al., 1991a). 

Measurement of Ca 2+ and Calmodulin Concentrations 

Intracellular calmodulin concentrations ofA. nidulans were assayed by the 
radioimmunoassay developed by Chafouleas et al. (1979) and modified by 
Rasmussen et al. (1990), while calcium concentrations in the chemically 
defined growth media were determined by atomic absorption spectrometry, 
as described previously (Lu et al., 1992). 

NIMA Protein Kinase and Histone H1 Kinase Assays 

NIMA kinase assays were carried out using fl-casein as a substrate after im- 
munoprecipitation with NIMA specific antibodies, while the HI kinase was 
assayed in p13 precipitates using histone HI as a substrate, as described by 
Osmani et al. (1991a,b). 

Immunoblot Analysis 

Preparation of cell extracts and p13 affinity purification of p34 cd¢2 were 
performed as described (Osmani et al., 1991a). For detecting MPM-2 anti- 
gens, 200 #g of soluble cell extracts were directly solubilized in SDS buffer. 
The proteins were separated on 10% acrylamide gels in the presence of SDS 
and transferred to Immobilon-P membranes. The filters were blocked for 
1 h in TBS, pH 7.4, containing 5 % bovine albumin. Subsequently, filters 
were incubated for 2 h at room temperature and either anti-phosphotyrosine 
antibody (Upstate Biotechnology Inc., Lake Placid, NY), anti-PSTAIR an- 
tibody, anti-p34 ~¢~, or MPM-2 antibody, followed by five washes with 
TBS:Tween 20 (0.05%). To determine which anti-PSTAIR antibody-react- 
ing proteins contained Tyr phosphate, filters containing separated pl 3 bind- 
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ing proteins (three- to fivefold more than usual) were probed sequentially 
with the anti-phosphotyrosine antibody and then with anti-PSTAIR anti- 
body. To detect phosphotyrosine, the filters were incubated for 1 h in TBS 
containing [12sI]-protein A (ICN Radiochemicals, Irvine, CA), followed by 
five washes of 5 min each and then subjected to autoradiography. For using 
anti-PSTAIR or MPM-2 antibodies, the filters were incubated with alkaline 
phosphatase-conjugated secondary antibodies (Promega Biotec, Madison, 
WI) and binding of the secondary antibodies was visualized as described 
previously (Kuang et al., 1989). Alternatively, the filters were incubated 
with HRP conjugated anti-mouse IgG, and a ECL detection system was 
used according to the manufacturer's procedure (Amersham Corp., Arling- 
ton Heights, IL). To semi-quantify the MPM-2 stainings, films were 
scanned by LKB Ultroscan. 

Phosphatase Treatments 

To examine the effect of phosphatases on the mobility of PSTAIR-containing 
proteins, the cell extracts were incubated either with p13 beads for 2 h and 
then washed three times with HK buffer and five times with potato acid 
phosphatase buffer consisting of 50 mM Pipes, pH 6.0, 0.1% ~-mercapto- 
ethanol, 0.1 mM PMSF, 0.1 mM benzamidine, 10/~g/ml soybean trypsin 
inhibitor and 10 tzg/ml leupeptin (Pondaven et al., 1990), or calf alkaline 
phosphatase buffer consisting of 50 mM Tris-HCl, pH 9.0, 1 mM MgCI2, 
1 mM ZnC12, 10 mM spermidine, 0.1 mM PMSF, 10 t~g/ml soybean tryp- 
sin inhibitor, and 10 ~g/ml leupeptin according to the manufacturer's proce- 
dure (Boehringer Mannheim Biochemicals, Indianapolis, IN). The pl3- 
binding proteins were incubated for 10 rain at 30°C with different amounts 
of potato acid phosphatase (Sigma Immunochemicals, St. Louis, MO) or 
calf alkaline phosphatase (Boehringer Mannheim Biochemicals), respec- 
tively, and then solubilized in SDS buffer for Western analysis. 

Results 

Increase in Calmodulin Levels as Cells Enter Mitosis 

We previously reported an increase in the level of calmodulin 
late in the cell cycle of a strain of A. nidulans (Rasmussen 
et al., 1990). This was discovered by monitoring calmodulin 
levels in cells entering the cell cycle from dormant spores 
(conidia). To more precisely examine the relationship be- 
tween changes in the calmodulin level and entry into mitosis, 
we have used a nimT23 temperature-sensitive mutation in the 
nimT ~25 gene to first arrest cells in G2 and then, by a shift 
to the permissive temperature, allow a synchronous nuclear 
division to take place. Incubation of nimT23 cells in normal 
medium at the restrictive temperature for 2.5 h results in ar- 
rest of >90% of the cells in G2 (Osmani et al., 1991a). There- 
fore, a strain containing the nimT23 mutation was grown to 
early log phase at the permissive temperature and the culture 
was then shifted to the restrictive temperature for 3 h to ar- 
rest cells in G2. Before and after returning the culture to the 
permissive temperature, we monitored the chromosome mi- 
totic index and the levels of calmodulin, calmodulin mRNA, 
and histone H3 mRNA (Fig. 1 top, and data not shown). As 
a control, the nontemperature-sensitive R153 strain was used; 
no significant changes in the parameters tested occurred in 
this strain during the temperature shifts (Fig. 1 bottom)• 
However, when the nimT23-containing cells were released 
from the G2 block, changes in calmodulin levels occurred 
in concert with changes in the chromosome mitotic index 
(Fib. 1 top). This rapid increase in calmodulin during the on- 
set of mitosis was not preceded by an increase in calmodulin 
mRNA (data not shown). Similar results to those described 
above using the nimT23 mutation were also obtained using 
another temperature-sensitive strain, nimA5, that contains a 
temperature-sensitive mutation of the nimA gene and is also 
reversibly arrested in G2 (data not shown)• These data indi- 
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Figure 1. Changes in calmodulin levels as cells enter mitosis• Coni- 
dia from the temperature-sensitive nimT23 (top and middle) or 
nontemperature-sensitive R153 strain (bottom) were grown until 
early log phase at 25°C and then shifted to 42°C for 3 h (time 0). 
For low Ca 2+ culture (middle), EGTA was added to reduce extra- 
cellular Ca 2+ levels to 2 nM for 2.5 h during incubation at the re- 
strictive temperature. The cultures were then placed in ice water 
to decrease the temperature to 25°C and incubated at this tempera- 
ture for the times indicated• Chromosome mitotic indexes were de- 
termined by counting the percentage of cells without defined nu- 
cleoli but with shape changed and condensed nuclei, after DAPI 
staining, as described (Osmani et al., 1991a) and calmodulin levels 
were determined by radioimmunoassay, as described (Rasmussen 
et al., 1990)• 

cate that progression into mitosis in A. nidulans is associated 
with a rapid increase in the level of calmodulin that appears 
to be regulated posttranscriptionaUy. 

Requirement of  Ca 2+ for the Calmodulin Increase and 
Progression into Mitosis 

Since Ca 2+ has been shown to be required for protein trans- 
lation (for review see Brostrom and Brostrom, 1990), we ex- 
amined the effect of extracellular Ca 2+ on the increase in 
calmodulin after release of the G2 arrest, as shown in Fig. 
1 (middle). The nimT23 cells were grown to early log phase 
at the permissive temperature and then shifted to the restric- 
tive temperature. After 1 h at the restrictive temperature, the 
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extracellular Ca 2÷ concentration was reduced to 2 nM by 
the addition of EGTA for 2 h and the cultures were then 
returned to the permissive temperature, followed by measur- 
ing the chromosome mitotic index and the levels of calmodu- 
lin, as described above. There was no significant change in 
calmodulin levels in low Ca 2÷ conditions and neither could 
the cells enter mitosis. These results suggest that extracellu- 
lar Ca 2÷ is required for the calmodulin increase as well as 
entry into mitosis following release of the nimT23 mutation. 

To further examine the requirement of extracellular Ca 2+ 
for progression of the nimT23 arrested ceils into G2, we 
evaluated progression into mitosis as a function of time that 
the ceils were exposed to low extracellular Ca 2÷. As shown 
in Fig. 2 A, EGTA was added at different times during which 
the cells were held at the restrictive temperature and the mi- 
totic index was determined at various times after returning 
the cells to the permissive temperature. To block cells that 
were released from G2 in mitosis making them easier to 
monitor the G2/M transition, the microtubule-depolymeriz- 
ing drug benomyl was added at a concentration of 5 #g/ml 
10 min immediately before the temperature downshift, as de- 
scribed previously (Osmani et al., 1991a). The control cells 
(without adding EGTA) readily entered mitosis from the G2 
arrest and so did those to which EGTA was added 10 min 
before the temperature shift (Fig. 2 B). However, when cells 
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Figure 2. Effect of reduced extracellular Ca 2÷ levels on entry into 
mitosis from the nimT23 arrest point. The nim'I23 strain was grown 
to early log phase at 25°C and then shifted to 42°C for 3 h. EGTA 
and/or Ca 2÷ were added at different times during the restrictive 
temperature as indicated in A to bring the extracellular free Ca 2÷ 
to 2 nM or 1 mM, while water was added as control. The cultures 
were shifted to 25°C in the presence of 5/.tg/ml benomyl (time 0) 
and then incubated at this temperature for the times indicated in B. 
Samples were removed to count the percentage of cells with mitotic 
figures. (e) control; (o, [], zx, A) EGTA was added at 2.5, 2, 1, 
and 0.17 h, respectively, before the downshift; ,., EGTA was 
added at 2.5 h but CaC12 was added at 0.17 h before the downshift 
to bring the extracellular free Ca 2÷ to 1 raM. 

were incubated in the presence of EGTA for 2.5, 2 or 1 h 
at the restrictive temperature, and then released from the G2 
block, the majority of cells did not enter mitosis (Fig. 2 B). 
Fig. 2 B also shows that increasing extracellular Ca 2÷ to 
1 mM by adding CaC12 just 10 min before the temperature 
downshift allowed cells to enter mitosis as rapidly as control 
cells, indicating that under the conditions used, the effect of 
reduced levels of extracellular Ca 2÷ is fully reversible. These 
results suggest that reducing extracellular Ca 2÷ may decrease 
intracellular Ca 2÷ levels, thereby blocking progression into 
mitosis. 

Effect of Reduced IntraceUular Calmodulin Levels o n  

Progression into Mitosis from the nimT23 Arrest Point 

An increase in calmodulin levels has been implicated to be 
required for cell cycle progression in animal cells (for review 
see Means et al., 1991). To examine a potential role for the 
calmodulin increase during mitosis in A. nidulans, we intro- 
duced a mutation conditional for calmodulin expression into 
the genetic background of the nimT23 strain, generating an 
AIcCaM/T23 strain, as described previously (Lu et al., 
1992). The AlcCaM/T23 strain, like the AlcCaM strain 
generated in the wild type genetic background (Lu et al., 
1992), was found to be dependent on the activity of the alcA 
promoter for growth. When grown in glycerol (nonin- 
duced/nonrepressed for the alcA promoter), both AlcCaM/ 
T23 and AlcCaM strains were able to grow normally but 
when placed in repressing glucose and/or acetate media 
shutting off calmodulin expression, cells did not grow (data 
not shown). There was no detectable difference between the 
AlcCaM/T23 and AlcCaM strains when grown at the per- 
missive temperature, but at the restrictive temperature, the 
AlcCaM/T23 strain could not grow even in glycerol-con- 
taining medium, while the AlcCaM strain did grow in the 
same medium (data not shown). These results indicate that 
the AlcCaM/T23 strain contains an alcA promoter-regulated 
calmodulin gene as well as a temperature-sensitive nimT23 
mutation. 

With the AlcCaM/T23 strain, it is possible to examine the 
requirement of calmodulin for entry into mitosis by arresting 
cells in G2 with the nimT23 mutation in the presence of 
different levels of calmodulin and then examining the ability 
of these cells to enter mitosis after release of the tempera- 
ture-sensitive mutation. When spores from AIcCaM/T23 
strain were germinated in repressing medium at the permis- 
sive temperature, most cells were also able to undergo one 
nuclear division and then arrested in G2 (data not shown), 
as was previously shown to be the case for the AlcCaM strain 
(Lu et al., 1992). To synchronize the majority of cells in G2 
of the first nuclear division cycle, spores were first germi- 
nated in either repressing or inducing medium for 4.5 h and 
then shifted to the restrictive temperature for an additional 
4.5 h. This protocol resulted in the arrest of over 95 % of the 
cells in G2 with one nucleus per cell regardless of which 
medium was used. Therefore the G2 arrest was due to activa- 
tion of the temperature-sensitive nimT23 mutation. However, 
as shown in Fig. 3 A, calmodulin levels were influenced by 
the carbon source present in the culture media and decreased 
in repressing medium but increased in inducing medium to 
'~5 or 300% of the calmodulin level present in control nimT23 
cells, respectively. These cells containing different calmodu- 
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Figure 3. Effect of intracellular calmodulin levels on entry into mi- 
tosis from the him123 arrest point. The nimT23 and AIcCaM/123 
conidia were grown in repressing medium or inducing medium (E) 
at 32°C for 4.5 h and then at 42°C for 4.5 h (time 0). Samples were 
removed to measure calmodulin levels by radioimmunoassay (.4) 
and, except for one culture of AlcCaM/T23 cells (-Ben), benomyl 
was added to a final concentration of 5 /~g/ml for 10 min before 
downshifting to 25°C. After downshift for the times as indicated, 
samples were removed to count the percentage of cells with mitotic 
figures (B), as described in Fig. 1. (~, t3) nintI23 cells in re- 
pressing medium; ([7, []), AIcCaM/T23 cells in repressing me- 
dium; (~, m) AIcCaM/T23 cells in inducing medium; (o) AIcCaM/ 
I23 cells in repressing medium in the absence of benomyl. 

lin concentrations were then returned to the permissive tem- 
perature in the presence or absence of benomyl. In low cal- 
modulin conditions, the AlcCaM/T23 strain was severely 
impaired in its ability to enter mitosis upon release from the 
G2 arrest point when compared to the same cells grown in 
inducing medium or to control nimT23 cells (Fig. 3 B). At 
30 min following release from G2 arrest, over 90 % of the 
nimT23 cells or AIcCaM/T23 cells grown in inducing medium 
had entered mitosis. In contrast, only '~15 % of the AlcCaM/ 
T23 cells entered mitosis after release from the G2 block 
when grown in repressing media. Fig. 3 B also reveals that 
the inhibitory effect of reduced calmodulin levels on entry 
into mitosis was seen both in the presence and the absence 
of benomyl, indicating that the effects of reduced calmodulin 
levels are not due to the presence of benomyl. A similar 
effect of reduced levels of calmodulin was also observed in 
AlcCaM/T23 cells that had been grown to early log phase 

(data not shown). These results demonstrate that threshold 
levels of intracellular calmodulin are required for the cells 
to enter mitosis upon release from the nimT23-arrest point. 

Effect of  Reduced Calmodulin Levels on NIMA 
Protein Kinase Activity and 1)~osine 
Phosphorylation/Dephosphorylation 
of  p34 ~z 

Activation of both NIMA and p34 ~c2 has been shown to 
be essential for the initiation of mitosis in A. nidulans (Os- 
mani et al., 1991a). To identify potential targets that might 
be affected by reducing calmodulin levels, we examined 
NIMA activity and tyrosine phosphorylation of p34 ~2 in 
the presence of different calmodulin levels. Conidia from the 
AIcCaM/T23 and control niniI23 strains were germinated in 
repressing or inducing medium at the permissive tempera- 
ture and then placed at the restrictive temperature to arrest 
cells in G2, followed by release into mitosis, as described 
above. The ceils before (as indicated in figures as 0) and after 
release into benomyl for 30 min (30) were harvested for as- 
say of NIMA kinase activity, p34 ~2 tyrosine phosphoryla- 
tion, HI kinase activity, and phosphorylation of the MPM- 
2-reacting proteins, as described in Materials and Methods. 
As shown previously (Osmani et al., 1991a), when the 
nimT23 cells were arrested in G2, NIMA kinase was fully 
active, with an activity similar to that in mitotic cells (Fig. 
4 A). However, when calmodulin in the AIcCaM/T23 strain 
was reduced to 'x,5 % of the control level in repressing me- 
dium (Fig. 3 A), NIMA was not activated at the nirdI23 ar- 
rest point, having an activity similar to that present in G1 
cells, and only increased slightly after release from the arrest 
(Fig. 4 A). In contrast, if similarly treated cells were in- 
cubated in inducing medium and contained increased cal- 
modulin levels, NIMA activity was high at the G2 arrest 
point as is the case in the control nintI23 cells (data not 
shown). These results indicate that the increase in NIMA ki- 
nase activity associated with the arrest of cells in G2 and mi- 
tosis is not observed when cells contain low levels of cal- 
modulin. 

As shown in the upper panel of Fig. 4 B, when the nimT23 
cells were arrested in G2, p34 ~2 was found to be tyrosine 
phosphorylated and the tyrosine phosphate disappeared fol- 
lowing release from the nimT23 mutation, consistent with 
previously reported data (Osmanl et al., 1991a). In the pres- 
ence of reduced levels of calmodulin, similar levels of tyro- 
sine phosphate on p34 ~c2 were observed at the G2 arrest 
point (Fig. 4 B, top). However, p34 ~2 remained tyrosine 
phosphorylated after release of the nimT23 temperature- 
sensitive mutation (Fig. 4 B, top). Immunoblot analysis using 
the anti-PSTAIR antibody revealed that each sample con- 
tained equivalent amounts of p34 ~2 (Fig. 4 B, bottom), in- 
dicating that the observed differences in tyrosine phosphate 
on p34 ~ is not due to different amounts of proteins pre- 
cipitated by the p13 beads. These results show that low cal- 
modulin conditions prevent tyrosine dephosphorylation of 
p34cd~2. 

Effects of Reduced Ca 2+ Levels on 
NIMA Kinase Activity and 13~sine 
Phosphorylation/Dephosphorylation of p34 ~z 

Since reduced levels of extracellular Ca 2+ prevented the cal- 
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Figure 4. Effect of reduced calmodulin levels on NIMA kinase ac- 
tivity and tyrosine phosphorylation/dephosphorylation of p34 c~2. 
(A) Effect on NIMA activity. The nimT23 and AlcCaM/T23 cells 
were arrested in (32 of the first cell cycle in repressing medium at 
420C (0) and then at 25°C for 30 min (30) in the presence of beno- 
myl as described in Fig. 3. Samples were assayed for NIMA protein 
kinase activity using B-casein as a substrate, as described (Osmani 
et al., 1991a). Phosphorylated/~-casein is shown as the relative 
activities determined by counting the/3-casein bands excised from 
the dried gel (100% = the maximal activity observed in control 
nimT23-arrested cells). (t3) nimY23 block and release; (~) AlcCarrd 
123 block and release. (B) Effect on tyrosine phosphorylation/ 
dephosphorylation. Aliquot of the samples same as A were ground 
in HK buffer and used to isolate the p13 binding proteins using p13 
beads. Half of the pl 3-binding proteins were probed with the mono- 
clonal anti-phosphotyrosine antibody and the other half was probed 
with the anti-PSTAIR antibody, after Western blotting. 

modulin increase at mitosis as well as entry of  the nimT23 
cells into mitosis, we also examined the effect of  reduced ex- 
tracellular Ca e÷ levels on NIMA kinase activity and tyro- 
sine phosphorylation of  p34 ~2, as shown in Fig. 5. The 
nirdI23 cells were arrested in (32 at the restrictive tempera- 
ture in the presence of  2 nM or 1 mM extracellular Ca 2÷ for 
2 h and then released into mitosis in the presence of  benomyl, 
as described earlier. The samples were collected at the G2 
arrest point (0) and 30 min after the temperature downshift 
(30). The increase in NIMA activity usually observed when 
nimT23 cells are arrested in (32 or at mitosis was not observed 
if extracellular Ca 2+ levels were reduced to 2 nM (Fig. 5 A). 
I f  extracelhlar Ca 2+ concentration was increased to 1 mM, 
normal activation of  NIMA activity was then observed (data 

Figure 5. Effect of reduced extraceUular Ca 2÷ levels on NIMA ki- 
nase activity and tyrosine phosphorylation/dephosphorylation of 
p34 ~c2. (A) Effect on NIMA activity. The ninff23 cells were ar- 
rested in (32 at 42°C (0) in media containing different Ca 2+ con- 
centrations as described in Fig. 1 and then at 25"C for 30 min (30) 
in the presence of benomyl. Cells were harvested and assayed for 
NIMA protein kinase activity (100% = the maximal activity ob- 
served in control nimT23-arrested cells). ([]) nimI23 block and re- 
lease in normal Ca2+; (m) AleCaM/T23 block and release in low 
Ca 2+. (B) Effect on tyrosine phosphorylation/dephosphorylation. 
The same samples as A were used to isolate the p13 binding pro- 
teins, followed by Western analysis using the anti-phosphotyrosine 
or anti-PSTAIR antibody. 

not shown). Furthermore, while reduced extracellular Ca 2+ 
concentrations did not affect tyrosine phosphorylation of  
p34 ~2 at the ninf123 arrest point, they substantially inhibited 
removal of  tyrosine phosphate from p34 °~ following release 
of  the nimT23 mutation, although this block was not as effec- 
tive as lowering intracellular calmodulin levels, (Fig. 5 B, 
top). This may be due to the presence of  some intracellular 
Ca 2÷ even in the presence of  only 2 nM extracellular Ca 2+. 
Since the protein levels of  p34 ~2 were quite similar among 
lanes as indicated in the bottom panel of  Fig. 5 B, these 
results indicate that in the presence of  low Ca 2+ levels, both 
NIMA activity and tyrosine dephosphorylation of  p34 c~2 
were inhibited. 

Effects of  Reduced Levels of  Calmodulin or Ca ~+ 
on the HlsWne 141 Kinase Acgrity Associated with p13 
Beads following Release of  the nimT23 Arrest 

As shown in Fig. 4 and 5, we also detected another protein 
with Mr 37 kD (p37) in pl 3 precipitates which was recog- 
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nized by the anti-PSTAIR antibody, but not by the anti-phos- 
photyrosine antibody. The p37 protein could be a p34 ~2- 
related protein, or a posttranslationaUy modified form of 
p34 ~2. The most common posttranslational modification of 
p34 ~2 is protein phosphorylation and phosphorylation can 
impede the mobility of the protein on SDS-containing poly- 
acrylamide gels (Pondaven et al., 1990). To examine the pos- 
sibility that p37 could be a phosphorylated form of p34 ~2, 
pl 3 precipitates were pretreated with two different phospha- 
tases: potato acid phosphatase and calf alkaline phosphatase 
before being subjected to immunoblot analysis. Neither phos- 
phatase treatment using 1 U potato acid phosphatase or 
10 U calf alkaline phosphatase changed the ratio of p37 to 
p34 ~ detected with anti-PSTAIR (Fig. 6 A). However, even 
at 10-fold lower concentrations, both phosphatases did com- 
pletely remove tyrosine phosphate from p34 ~c2, with potato 
acid phosphatase being about 10-fold more potent than calf 
alkaline phosphatase (Fig. 6 B). These results suggest that 
p37 protein may be a distinct gene product (e.g., a homo- 
log of p37~k3; Meyerson et al., 1992) although we cannot 
rule out a form of p34 '~c2 modified in some way we cannot 
detect. 

Since p13 bound at least two PSTAIR-containing proteins 
and at least one protein was apparently not subject to tyro- 
sine phosphorylation/dephosphorylation during the nimT23 
block release (Figs. 4 and 5), we measured HI kinase activity 
in 1313 immunoprecipitates isolated from control nimT23 and 
AIcCaM/T23 cells before and after release of the nimT23 ar- 

rest. As expected, the p13 associated H1 kinase activity in 
control nimT23 cells increased five- to sixfold following re- 
lease into mitosis (Fig. 7 A). But to our surprise, when 
calmodulin levels in the AlcCaM/T23 cells were reduced to 
5% of the control nimT23 cellS, the increase in the p13 HI 
kinase activity was not substantially affected either at the 
block or after the release, as compared to the appropriate 
control (Fig. 7 A). Furthermore, when the nimT23 cells were 
arrested in G2 and released from the block in the presence 

\ . • 

of 2 nM extraceUular Ca 2÷ as descnbed previously, the p13 
bead-associated HI kinase activity also increase similarly to 
that in the nimT23 cells incubated in normal Ca 2÷ media 
(Fig. 7 B). When the nontemperature-sensitive R153 strain 
was used, there was no significant change in the pl 3 precipi- 
table HI kinase activity associated with the downshifl in tem- 
perature (data not shown), as shown previously (Osmani et 
al., 1991a), indicating that the observed increase in the HI 
kinase is not due to the change in the culture temperature. 
These data, together with the finding that at least two PSTAIR- 
containing proteins were precipitated by p13 beads, suggest 
that there are multiple H1 kinases in the pl 3 precipitates. Al- 
though the number and nature of the pl 3 associated protein 
kinase(s) that account for the changes in H1 kinase activity 
remain to be determined, these data indicate that reduction 
of calmodulin or Ca 2÷ does not affect the changes in the ac- 
tivity of the H1 kinase(s) precipitated by p13 during G2/M 
progression even though p34 ~¢: remains tyrosine phosphor- 
ylated. 

Effect of Reduced Levels of Calcium or 
Calmodulin on Phosphorylation of the Majority of 
MPM-2-Reacting Proteins following Release of the 
nim I23 Arrest 

The observation that low Ca 2+ or calrnodulin does not affect 

Figure 6. Phosphatase treatment of pl3-binding proteins. Soluble 
proteins extracted from the ninff23 G2-arrested cells were incu- 
bated with p13 beads and then washed three times with 1 ml of ilK 
buffer and five times with 1 ml of potato acid phosphatase buffer 
or calf alkaline phosphatase buffer. After incubation with the indi- 
cated amounts of potato acid phosphatase or calf alkaline phospha- 
tase for 10 min at 30"C, two thirds of the pl3-binding proteins were 
probed with the anti-PSTAIR antibody (A) and the rest was probed 
with the anti-phosphotyrosine antibody (B), after Western blotting. 

Figure 7. Effect of reduced calmodulin or Ca 2+ levels on the his- 
tone HI kinase activity associated with p13 beads after release from 
n/nff23 arrest. (A) Effect of reduced calmodulin levels. The AIcCaM/ 
T23 and ninfl'23 strains were arrested in G2 in repressing medium 
at 42°C and then at 25°C for 30 min. 100/~g of soluble proteins 
were incubated with p13 beads and the precipitated kinase activity 
was assayed using histone H1 as a substrate. (B) Effect of reduced 
Ca 2+ levels. The nirdF23 cells were arrested at 42°C in G2 in the 
presence of normal or 2 nM Ca 2+ concentrations, and then at 
25°C for 30 min. pl3-binding proteins were isolated and used to 
assay H1 kinase activity. The fold increase values at the bottoms 
of A and B represent the change in relative kinase activity obtained 
by counting the excised gel slides. All values shown as the mean 
value from two different experiments are relative to the left 0 of A 
or B lane which is set at 1.0. 
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overall increases in H1 kinase activity suggests that the 
effects on the state of tyrosine phosphorylation and NIMA 
activity could be selective. To evaluate this possibility fur- 
ther, we examined phosphorylation of M phase-specific 
phosphoproteins using the monoclonal antibody MPM-2, 
that selectively reacts with M phase-specific phosphopro- 
teins in many systems (Davis et al., 1983; Vadre et al., 1986), 
including A. nidulans (Engle et al., 1988; Osmani et al., 
1991b). The nimT23 and AlcCaM/T23 cells were arrested in 
G2 at the restrictive temperature in repressing medium (0) 
and then released into mitosis for 30 min (30), as described 
before. Total soluble proteins were isolated and subjected to 
immunoblot analysis using the MPM-2 antibody. Three sep- 
arate experiments were performed and the results evaluated 
by both the ECL detection system and the alkaline phospha- 
tase color reaction system. Although subtle differences could 
be seen between the various experimental results, the overall 
patterns were remarkably similar. One representative immu- 
noblot is shown in Fig. 8. When the nimT23 or AIcCaM/T23 
cells were arrested in G2, levels of MPM-2-reacting pro- 
teins were low (Fig. 8, left 0 and right 0). In contrast, when 
the nimT23 mutation was released, MPM-2-reacting pro- 
teins in the nirrtI23 control cells increased both qualitatively 
and quantitatively (Fig. 8, left 0 and 30). The majority of 
these MPM-2-reacting proteins were also present in the Alc- 
CaM/T23 cells (Fig. 8, left 30 and right 30) in which the 
calmodulin level was only ~5  % of that present in control 
cells (Fig. 3 A). p58 was also detected in both cells (indicated 
by an arrow), which has been previously shown to be selec- 

Figure 8. Effect of reduced calmodulin levels on phosphorylation of 
MPM-2-reacting proteins after release from the nimT23 arrest. The 
nimT23 and AlcCaM/T23 cells were arrested in G2 in repressing 
medium at 42°C (0) and then at 25°C for 30 min (30) in the pres- 
ence ofbenomyl. Cells were harvested and ground in ER buffer and 
150 #g of soluble proteins were separated by SDS gel, followed by 
transferring to membranes. The filters were stained with Ponceau 
S to insure the equal loading of proteins among lanes (data not 
shown), before probing with the monoclonal MPM-2 antibody. Left 
0 and 30, nitdI23 block and release; right 0 and 30, AIcCaM/T23 
block and release. The fold increase values at the bottom represent 
the change in density obtained by scanning the film with an LKB 
Ultroscan. All values are relative to the left 0 lane which is set 
at LO. 

tively phosphorylated at mitosis in A. nidulans detected by 
the MPM-2 mAb (Osmani et al., 1991b). Similar results 
were also obtained when niniI'23 cells were grown in low ex- 
traceUular Ca 2÷ (data not shown). Since there were no sig- 
nificant differences in MPM-2 staining pattern when the 
nontemperature-sensitive R153 cells were downshifted from 
the restrictive temperature to the permissive temperature 
(data not shown), the changes in the MPM-2 staining pattern 
observed in the AlcCaM/T23 and nimT23 cells are not due 
to the temperature shift but rather due to cellular processes 
that are selective for mitotic progression as have been shown 
in many other systems. These results indicate that reducing 
extracellular Ca 2÷ or calmodulin levels does not lead to a 
general decrease in phosphorylation of proteins that are nor- 
mally modified during the G2/M transition. 

D i s c u s s i o n  

In this study we have investigated the level at which Ca2+/ 
calmodulin is required for mitotic progression using condi- 
tional mutations in several G2 specific functions (the NIMA 
protein kinase, the NIMT tyrosine phosphatase and calmodu- 
lin) and by modulating the level of Ca 2+ in the filamentous 
fungus A. nidulans. We demonstrate that progression into 
mitosis is correlated with an increase in the level of calmodu- 
lin protein although calmodulin mRNA levels do not vary. 
Reduction of extracellular Ca 2+ both prevents the increase 
in calmodulin levels and progression of cells into mitosis. In 
addition, we demonstrate that by directly reducing calmodu- 
lin levels it is possible to severely impede the ability of cells 
to enter mitosis. To address the molecular requirements for 
Ca 2+ and calmodulin for mitotic progression, the activation 
of two mitotic specific protein kinases have been measured 
when either Ca ~+ or calmodulin levels are held at a low 
level. We demonstrate that a threshold level of Ca~+/cal - 
modulin is required for the activation of NIMA as a protein 
kinase and for the nimTc~c2~-mediated tyrosine dephosphor- 
ylation of p34 cdc2. In contrast, the activation of the mitotic 
specific phosphorylations detected by the MPM-2 mAb and 
the mitotic activation of a p13 associated histone H1 kinase 
are shown not to require this threshold level of either Ca ~+ 
or calmodulin. These data demonstrate that Ca 2+ and cal- 
modulin are required for specific components of mitotic 
regulation in A. nidulans that involve the activation of NIMA 
by an unknown mechanism and p34 ~c2 by promoting its ty- 
rosine dephosphorylation. 

The effects of reduced levels of Ca 2+ or calmodulin on 
cell cycle functions are apparently selective, if not specific, 
for activation of NIMA and p34 cdc2 since neither affects sev- 
eral other cell cycle-specific events. For instance, reduced 
Ca 2+ or calmodulin levels do not affect the tyrosine phos- 
phorylation of p34 ~c2 at the G2 arrest point of nimT23 even 
though it has been demonstrated that tyrosine phosphoryla- 
tion of p34 cd°2 requires that it binds to newly synthesized 
cyclin B protein (Gould and Nurse, 1989; Meijer et al., 
1991) and requires the activity of two protein kinases, WEE1 
and MIK1 (Featherstone and Russell, 1991; Lundgren et al., 
1991) which may be activated by serine/threonine dephos- 
phorylation (Smythe and Newport, 1992). Therefore, reduc- 
ing Ca ~+ or calmodulin levels does not prevent protein syn- 
thesis, or protein kinase activity or phosphatase activity in 
general but it does selectively prevent activation of the 
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NIMA protein kinase at the nimT23 G2 arrest point. Further- 
more, when the nimT23 mutation is released in the absence 
of normal levels of Ca 2÷ or calmodulin, the tyrosine de- 
phosphorylation of p34 cd¢2 is strongly inhibited and cells re- 
main in G2 even though the HI kinase activity measured 
using p34 ~2 affinity p13 beads increases significantly. This 
result may indicate the existence of non-p34 ¢dc2 protein ki- 
nase activity on the pl 3 beads. We have observed that two 
anti-PSTAIR-reacting proteins in our p13 precipitates which 
are not apparently two different phosphorylated forms of 
p34 ¢dc2. The larger of these proteins does not contain phos- 
photyrosine based on the lack of interaction with anti-phos- 
photyrosine antibodies. If the increase in HI kinase activity 
after release of the nimT23 arrest in the absence of normal 
levels of Ca 2÷ or calmodulin is due to this second PSTAIR- 
containing protein, then it must be activated either indirectly 
by NIMT or by the ability of NIMT to carry out nonphos- 
photyrosine dephosphorylation since CDC25 protein has 
been shown to harbor protein serine phosphatase activity in 
vitro (Millar et al., 1991). The possibility also exists that 
other non-p34cdc2-related protein kinases could be present 
in the p13 precipitates as it has been recently shown that 
MAP kinases can bind to this affinity matrix (Shibuya et al., 
1992). Finally, the correlation between tyrosine dephosphor- 
ylation of p34 cd°2 type protein kinases and activation as an 
H1 kinase is not always observed. In budding yeast, it has 
been shown that increased HI kinase associated with 
p34 ¢~¢2s can occur without apparent tyrosine dephosphory- 
lation of p34 °dc2s (Sorger and Murray, 1992; Amon et al., 
1992). Therefore, there are numerous possible explanations 
that could account for our observation that HI kinase activity 
increases in the absence of tyrosine dephosphorylation when 
the concentration of Ca 2÷ or calmodulin is held low. The 
pertinent observation is that some protein phosphorylation 
detected by the MPM-2 antibody can occur when nimT23 is 
released in the absence of normal levels of Ca ~÷ or calmodu- 
lin but the activated (partially?) NIMT cannot dephosphory- 
late p34 ~2 phosphotyrosine in the normal manner. The level 
at which Ca 2÷ and calmodulin are required for tyrosine de- 
phosphorylation could therefore be via a modification of ei- 
ther NIMT, p34 ~2 or the ability of these components to in- 
teract correctly. It is not, however, due to some general 
inability of the cell to function correctly. 

In addition, the level of the phosphoproteins detected by 
the MPM-2 mAb was not significantly modified by the ab- 
sence of normal levels of Ca 2÷ or calmodulin when the 
nimT23 mutation was released. This indicates that some mi- 
totic specific protein phosphorylation is not affected by the 
reduction in the level of Ca 2÷ or calmodulin and that NIMT 
can become activated sufficiently under conditions of low 
Ca 2÷ or calmodulin to allow the MPM-2 detected phos- 
phorylation to occur. It is therefore unlikely that p34 ~dc2 is 
directly responsible for the MPM-2-detected phosphoryla- 
tion but perhaps the second kinase(s) present on the p13 
beads that is activated downstream of nimT cdc25 in the ab- 
sence of Ca 2+ or calmodulin is the "MPM-2" kinase. 

Very little is known concerning the mechanism by which 
Ca 2÷ and calmodulin are involved in activation of NIMA 
and NIMT. Ca2+/calmodulin could directly interact with and 
activate NIMT and/or NIMA. Alternatively, NIMT and/or 
NIMA activities could be modulated as a consequence of ac- 
tivation of other Ca2+/calmodulin-dependent enzymes in a 

protein phosphorylation/dephosphorylation cascade. Since 
calmodulin neither binds directly nor activates purified NIMT 
or NIMA in the presence of Ca 2÷ (Lu, K. P., S. A. Osmani, 
and A. R. Means, unpublished data), the former possibility 
is unlikely. We favor an indirect pathway since recent evi- 
dence indicates that the cdc25 protein may require ser- 
ine/threonine phosphorylation for its activity CKumagai and 
Dunphy, 1992; Izumi et al., 1992). In addition, we have 
found that an active form of NIMA is a phosphoprotein both 
in A. nidulans or when expressed in bacteria and that ser- 
ine/threonine phosphorylation is essential for its enzymatic 
function (Lu et al., 1993). Since the dephosphorylated form 
of NIMA cannot be activated by autophosphorylation in 
vitro (Lu et al., 1993), we suspect NIMA to be an intermedi- 
ate component in a cascade of protein kinases, as is the case 
for MAP kinase (for review see Thomas, 1992). Therefore, 
we suggest that Ca2+/calmodulin is involved in regulating 
NIMA and NIMT via activation of Ca2+/calmodulin - 
dependent enzyme(s). 
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